列车盘式制动器温度场与振动模态的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制动盘和闸片是高速列车盘式制动器的重要组成部分,本文在查阅大量相关文献的基础上,以制动盘和单个制动块组成的“基本制动元”为研究对象,应用有限元软件ABAQUS,建立了“基本制动元”模型,采用热—机耦合方法,研究了稳态制动温度场的变化规律,并进行了实验验证,提出了等面积制动块形状因子的概念,对制动盘和闸片进行了实模态分析,研究了结构和约束对制动盘和闸片固有频率的影响规律,为制动器减振降噪提供依据。
     以常用的圆形制动块与制动盘构成的摩擦副为研究对象,采用定速、恒压条件进行了制动温度场和接触压力的仿真分析。结果表明,制动盘和制动块的接触面温度变化曲线都呈现出锯齿状的变化特征,制动盘温度场云图由开始的尾巴形状,逐渐过渡到环带状,最后由斑点状高温区域相互连通而形成条带状分布。制动块温度场云图由开始的舌头状逐渐变为带状,温度向出口方向扩散,最后沿厚度方向辐射至整个模型上。制动温度场实验研究表明,模拟温度曲线和实验温度曲线趋势相同。说明使用“基本制动元”模型进行研究的方法是可行的,其结果也具有揭示过程本质特征的特点。
     提出了制动块等面积形状因子的概念,并进行了公式推导,即Fs=0.0174R·θ/L表达式中既包含了制动块关键要素,又包含了摩擦半径,所以能够比较全面的反映摩擦副之间的相互作用。形状因子描述的是一类图形的属性,等面积形状因子可以衡量制动块形状的区别,也可反映其在制动盘上的摆放位置不同。仿真结果对比分析表明,制动块形状因子越小,制动盘和制动块的温度越低;制动块形状因子越大,制动盘和制动块的温度越高。等面积制动块形状因子的提出为设计者提供了制动块形状设计的理论参考依据。
     研究了结构和约束对制动盘和闸片振动模态的影响,制动盘边缘处结构的改变对制动盘每一阶频率的影响趋势基本一致,约束的改变对频率大于5000Hz以上的模态影响敏感,设计者可以根据实际测量的噪声频率范围,通过改变结构或约束的方法,避开噪声频率,达到减振降噪的目的;制动块排列方式改变后,各阶频率都不同程度的变化,频率越高,变化越大,在约束数量不变的情况下,将闸片钢背的约束影响半径由原来的5mm增大到10mm,闸片的模态频率也随之增加,10KHz以内的增加幅度较小,大于10KHz的增加幅度较大,所以设计者可以通过改变制动块的排列和增大约束半径范围的方式改变所关心的模态振动频率。
Brake disc and brake lining are the important components of high-speed train disc brake system. Based on numbers of relative references, basic brake element composed of brake disc and single brake pad is used as research object; basic brake element model is established by finite element software ABAQUS; the changing regularity of brake temperature field is researched by thermo-mechanical coupling method, and is proved by experiment; the concept of equal-area brake pad shape factor is proposed, and the modal analysis of brake disc and brake lining is carried out; the effect of structure and constraint on brake disc and brake lining is researched, thereby vibration damping and noise reduction are realized. On the basis of this, the temperature field simulation of brake disc and brake lining is carried out.
     Fiction pair composed of common circular brake pad and brake disc is taken as research object, and simulation analysis of brake temperature field is carried out in the conditions of fixed speed and constant pressure. The simulation result shows that temperature variation curves of contact surfaces of brake disc and brake pad both have saw-toothed variation characteristic; the temperature field cloud picture of brake disc is in tail shape from start, and gradually passes to circle type, and finally spotted high-temperature areas are interconnected to form banding distribution. The temperature field cloud picture of brake pad is in tongue shape from start, and gradually becomes banded; temperature spreads to export direction, and finally radiates to the whole model along width direction. The experiment research of brake temperature field shows that the simulation temperature curve is identical to the experimental temperature curve. This indicates that the method for research using basic brake element model is feasible, and its result also reveals process essential characteristic.
     The concept of equal-area brake pad shape factor is proposed for the first time, that is Fs=0.0174R·θ/L. The formula not only has key element of brake pad, but also has friction radius, thus, the interaction of friction pair can be fully reflected. The shape factor describes graphic attributes; equal-area shape factor can measure the shape difference of brake pad, and can also reflect different placing position on the brake disc. The simulation results show that the smaller the shape factor of brake pad is, the lower the temperature of brake disc and brake pad is; the larger the shape factor of brake pad is, the higher the temperature of brake disc and brake pad is. The equal-area brake pad shape factor provides theoretical reference basis of brake pad shape design for designers.
     The effect of structure and constraint on brake disc and brake lining vibration modal is studied.the change of edge structure of brake disc structure has effects on each rank frequency of brake disc, and the effect trends are basically the same; the change of constraint is sensitive to modal effect with frequency more than 5000Hz. According to noise frequency range of actual measurement, designers can use the method of changing structure or constraint to avoid noise frequency, therefore, the purposes of vibration damping and noise reduction are achieved. After the arrangement of brake pad is changed, each rank frequency changes to some extent. In the condition of unchanged constraint quantity, the constraint effect radius of brake lining steel backing increases to 10mm from 5mm, and the modal frequency of brake lining also increases; the increase of modal frequency less than 10KHz is less, and the increase of modal frequency more than 10KHz is larger; therefore, designers can change concerned modal vibration frequency by changing arrangement of brake pad and the way of increasing constraint radius range.
引文
[1]李强,金新灿.动车组设计.北京:中国铁道出版社,2008:25-55
    [2]刘建秀,杨改云,韩长生等.铜基粉末冶金闸瓦刹车仿真计算.机械.2004,31(1):55-57
    [3]马大炜.关于高速列车制动系统的思考.铁道车辆.2000,38(1):11-15
    [4]饶忠.列车制动.北京:中国铁道出版社,1998:3-8
    [5]俞展猷.国外高速列车发展简述与我国提速列车试验的回顾.北京:铁路部科学研究院机辆所,1999:86-95
    [6]黄继承,黄伯云.列车制动摩擦材料研究进展.材料科学与工程,1997,17(3):85-95
    [7]Wiebelhaus铁道车辆制动技术的新发展.国外铁道车辆.1996,(2):8-14
    [8]内田清五.日本新干线列车制动系统.陈贺.中国铁道出版社,1992:65-69
    [9]赵海燕,徐济民,陈强等.高速列车制动盘寿命评估.北京:清华大学,2003:12-16
    [10]智廉清.编近代铁道制动技术.北京:中国铁道出版社,1983:277-280
    [11]张乐乐,杨强,谭南林等.基于摩擦功率法的列车制动盘瞬态温度场分析.中国铁道科学.2010,31(1):99-104
    [12]应之丁,李小宁,林建平等.列车车轮踏面制动温度循环试验与温度场仿真分析.中国铁道科学.2010,31(3):70-74
    [13]赵海燕,张海泉,汤晓华等.快速列车盘型制动热过程有限元分析.清华大学学报(自然科学版).2005,45(5):589-592
    [14]赵文清.高速列车“中华之星”制动盘温度场及热应力.兵工学报,2006,27(1):132-136
    [15]张谦,常保华,王力等.高速列车锻钢制动盘温度场特征的实验研究.中国铁道科学.2007,28(1):8-15
    [16]林谢昭,高诚辉.紧急制动过程制动盘表面非轴对称温度场的数值模拟.摩擦学学报.2002,22(4):366-369
    [17]Chung Kyun Kim, Boo-Yong Sung. Finite element analysis on the thermal behaviors of a disk-pad brake for a high-speed train, Proceedings of the first Asia international conference on tribology. Beijing China:1998:95-802
    [18]Zagrodzki P, K B Lam, E Al Bahkali, J R Barber. Nonlinear Transient Behavior of a Sliding System with Frictionally Excited Thermoelastic Instability. Journal of Tribology.2001,123:699-708
    [19]胡宇铎,刘少军,陈国胜等.200 km/h高速机车制动盘及联接件温度场、应力场数值模拟.电力机车与城轨车辆.2006,29(4):18-46
    [20]王志刚.盘形制动器制动过程能量分析及温度场计算.四川工业学院学报.2004,(4):18-21
    [21]王志刚.用有限元法计算盘式制动器非稳态温度场.四川工业学院学报.1989,17(2):97-103
    [22]李继山,林祜亭李和平.高速列车合金锻钢制动盘温度场仿真分析.铁道学报.2006,28(4):45-48
    [23]鲁国富,郭世永.盘式制动器瞬态温度场的数值模拟.机械研究与应用,2006,19(1):30-33
    [24]陈德玲,张建武等.高速轮轨列车制动盘热应力有限元研究.铁道学报.2006,28(2):39-43
    [25]郑剑云,郭晓晖,包子骞等.提速客车制动盘热应力有限元分析.机车车辆工艺.2002,6:4-6
    [26]王文静.SiCp/A356复合材料制动盘温度场应力场数值模拟及热疲劳寿命预测.北京:北京交通大学.2003:10-20
    [27]GAO Chen-hui, LIN Xie-zhao. Transient temperature field analysis of brake in nonaxisymmetric three-dimensional model. Journal of Materials Processing Technology.2002,129(1-3):513-517
    [28]杨莺,王刚.机车制动盘三维瞬态温度场与应力场仿真.机械科学与技术.2005,24(10):1257-1260
    [29]钱立军,余武弦,杨年炯.盘式制动器摩擦片瞬态温度场分析.客车技术.2008(6):47-52
    [30]杨智勇,韩建民,李卫京.盘形制动有限元模拟计算方法研究.铁道学报.2010,32(2):114-118
    [31]马思群,兆文忠,谢素明等.列车制动盘热-机耦合过程的数值仿真.机械设计与制造.2003,(4):73-74
    [32]王艺,陈辉,李明.高速列车制动盘制动过程数值模拟.机械.2008,35(3):15-17
    [33]阳光武,肖守讷.基于有限单元法的客车盘形制动盘瞬态温度场分析.铁道机车车辆.2003,23(6):28-32
    [34]P. Dufrenoy, D. Weichert. Prediction of railway disc brake temperatures taking the bearing surface variations into account. Proc. instn Mesh. Engrs.1995,209:67-76
    [35]S. Panier, P. Dufrenoy, D. Weichert. An experimental investigation of hot spots in railway disc brakes. Wear.2004,256:764-773
    [36]Gerard Degallaix,Philippe Dufrenoy,etc. FAILURE MECHANISMS OF TGV BRAKE DISCS. The Mechanical Behavior of Materials X,2007,345-346:697-700
    [37]Floquet A. Thermo mechanical behavior of multi layered media. ASME of Tribo,1989,111:538-545.
    [38]Jacobssen,H. Analysis of brake judder by use of amplitude functions. SAE,1999,1:1779-1785
    [39]Kennedy,F.E.,Ling,F.F.. A thermal,Thermoelastic,and Wear Simulation of a High-Emergy Sliding Contact Problem. ASME J.Lubr.Technol.1974:497-508
    [40]Zagtodzki P, Analysis of thermomechanical phenomena in multi-disc clutches and brakes, Wear.1990,140:291-308
    [41]Azarkhin,A.,Barber,J.R. Transient Thermoelastic Contact Problem of Two Sliding Half-planes. Wear.1985,102:1-13
    [42]Azarkhin,A.,Barber,J.R.Thermoelastic Instability for the Transient Contact Problem of Two Sliding Half-Planes. ASME J.Appl.Mech.1986,53:565-572
    [43]L iu P, Zheng H, Cai C, etal. Analys is of disc brake squeal using the complex eigenvalue method. A pplied a coustics.2007, (68):603-615
    [44]Zagrodzki,P. Analysis of Thermomechanical Phenomena in Multidisk Clutches and Brakes. Wear.1990,140:291-308
    [45]Chung Kyun Kim, Boo-Yong Sung etc. Finite element analysis on the thermal behaviors of a disk-pad brake for a high-speed train. Proceedings of the first Asia international conference on tribology. Beijing China.1998:795-802
    [46]P.Zagrodzki, K.B.Lam, E.Al Bahkali, J.R.Barber.Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability. Journal of Tribology.2001,123:699-708
    [47]P.Zagtodzki. Analysis of thermomechanical phenomena in multi-disc clutches and brakes. Wear.1990,140:291-308
    [48]卓继志,谢伟东,宁晓斌.盘式制动器制动振动噪声问题的解决方案.机械设计与制造.2007,11:215-217
    [49]杨国俊.鼓式制动器结构振动尖叫问题综述.噪声与振动控制.2010(1):1-6
    [50]陈光雄,周仲荣,谢友柏.摩擦噪声研究的现状和进展.摩擦学学报.2000,20(6):478-480
    [51]陈光雄,周仲荣.摩擦噪声有限元预测.机械工程学报.2007,(6):164-168
    [52]雷晓燕,圣小珍.铁路交通噪声与振动.北京:科学出版社,2004:225-235
    [53]朱新潮,管迪华.鼓式制动器噪声的结构闭环耦合理论模型.清华大学学报.1994,34(2):25-33
    [54]Bongsu Kang. An analytical study of vibration and instability of automotive disc brakes. Dissertation. Detroit, Michigan, The Graduate School of Wayne State University.2000:65-70
    [55]F.Chen, R.L.Quaglia.On Automotive Disc Brake Squeal Part I:Mechanisms and Causes. SAE Paper 2003:0675-0683.
    [56]Shalin Qiao. Stochastic characterization of friction-induced vibration. Detroit,Michigan, The Graduate School of Wayne State University.2001:26-32
    [57]管迪华,朱新潮,成波.鼓式制动器结构振动噪声研究.汽车工程.1993,15(2):71-78
    [58]朱新潮,管迪华.结构参数对鼓式制动器高频噪声的影响.汽车工程.1994,16(1):12-20
    [59]管迪华,宿新东.制动振动噪声研究的回顾、发展与评述.工程力学.2004,21(4):150-155
    [60]盛勇生,马力,过学迅等.面向制动噪声的盘式制动器零部件实模态分析.汽车科技.2007,(3):21-24
    [61]俄延华,李承德.鼓式制动器结构模态分析.汽车技术.1996,12(8):16-19
    [62]朱轶,张代胜,陆昌年.半挂牵引车整车模态分析.噪声与振动控制.2010,(1):48-54
    [63]王良模,吴长风.基于有限元及试验技术的制动盘模态分析.拖拉机与农用运输车.2009,36(1):78-83
    [64]俄延华,李明丽.鼓式制动器尖叫特性分析的复模态方法.汽车技术.1992,(7):29-34
    [65]中苗,唐驾时,李克安等.航空发动机双转子系统的模态分析.兵工自动化.2010,29(2):34-38
    [66]盛勇生,马力,孙国辉等.面向制动噪声的盘式制动器有限元复模态分析.机械设计与制造.2007,(11):87-89
    [67]文武,陈光雄,戴焕云等.铁路车辆盘形制动尖叫噪声的有限元分析.中国铁道科学.2007,28(5):89-92
    [68]张振峰等.基于ABAQUS的减速器齿轮的模态分析CAD/CAM与制造业信息化.2010,12:62-64
    [69]土裙,郭语.基于ANSYS的行星轮系模态分析方法.机械制造与研究.2010,39(5):21-25
    [70]李运超,吴光强,盛云.盘式制动器制动抖动研究综述.噪声与振动控制.2008,5:6-10
    [71]张永昌,MSC. N astran有限元分析理论基础与应用.北京:科学出版社,2004:46-70
    [72]曾攀.有限元分析及应用.北京:北京清华大学出版社,2004:10-20
    [73]王勖成.有限单元法.北京:清华大学出版社,2003:26-46
    [74]侯俊,过学迁等.基于有限元法的盘式制动器制动噪声的研究.机械设计.2008,25(8):50-52
    [75]张天孙.传热学(第2版).北京:中国电力出版社,2006:45-60
    [76]刘展,祖景平,钱英莉等ABAQUS6.6基础教程与实例详解.北京:中国水利水电出版社,2009:34-48
    [77]石亦平,周玉蓉ABAQUS有限元分析实例详解.北京:机械工业出版社,2009:25-50
    [78]赵腾伦ABAQUS6.6在机械工程中的应用.北京:中国水利水电出版社,2009:158-268
    [79]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用,北京:清华大学出版社,2008:287-350
    [80]戴振东,王现,薛群基.摩擦体系热力学导论,北京:国防工业出版社,2002:101-123
    [81]唐旭晟.盘式制动器热-结构非线性分析与计算.福州:福州大学,2003:35-45
    [82]王道明,王和伟,韩强强等.盘式制动装置制动盘的有限元分析及优化.起重运输机械.2010:45-52
    [83]罗明军,王文林.汽车盘式制动器制动尖叫的分析.南昌大学学报工科版.2009,31(1):72-79
    [84]蒋伟康,西择男,高田博.鼓式制动器振动与啸叫的研究.机械强度.1998,20(2):81-86
    [85]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(上).铁道车辆.1995,33(9):4-15
    [86]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(下).铁道车辆.1995,33(10):30-40
    [87]马大炜.铁道车辆制动热负荷的计算及应用.中国铁道科学.2000,21(4):30-40
    [88]王涛,朱坚文.摩擦制动器.广州:华南理工大学出版社,1992:6-10
    [89]T. C. Kennedy. Transient heat partition factor for a sliding railcar wheel. Wear.2006,251:932-936
    [90]P.Zagtodzki. Analysis of thermomechanical phenomena in multi-disc clutches and brakes. Wear.1990,140:291-308
    [91]R.Komandur, Z.B.Hou. Analysis of heat partition and temperature distribution in sliding systems. Wear.2001,251:925-938
    [92]梁君,赵登峰.模态分析方法综述.现代制造工程.2006,(8):139-141
    [93]方同,薛璞.振动理论及应用,西安:西北工业大学出版社,2004:125-140
    [94]杨为,邱清盈,胡建军.机械结构的理论模态分析方法.重庆大学学报.2004,27(6):1-4
    [95]许本文,焦群英.机械振动与模态分析基础.北京:机械工业出版社,1998:52-60
    [96]傅志方.振动模态分析与参数辨识.北京:机械工业出版社,1990:55-65
    [97]倪振华.振动力学.西安:西安通大学出版社,1989:244-247
    [98]刘习军,贾启芬.工程振动理论与测试技术.高等教育出版社,2004:63-64
    [99]赵阳东,刘更,吴立言.模态振动对噪声贡献预测及控制.噪声与振动控制.2010(1):29-34
    [100]张立军,权循宇.制动盘几何特征对结构模态特性影响仿真分析.系统仿真学报.2009,21(19):6256-6259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700