旋转机械非平稳信号微弱特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于振动信号处理的特征提取方法是旋转机械故障特征提取最常用方法。由于旋转机械在运行中受到多种因素的影响,其振动信号往往是非平稳信号,另外,现场采集的信号经常受到各种噪声干扰的影响,有用信号往往被淹没在强噪声背景中,因此,非平稳信号的微弱故障特征提取是当前的一个研究热点。本文基于小波变换、HHT、重分配尺度谱和魏格纳时频谱等时频分析方法,以及奇异值分解(SVD)、形态滤波等降噪技术,提出了三类旋转机械非平稳信号微弱故障特征提取方法,并将这些微弱特征提取方法与支持向量机(SVM)相结合应用于旋转机械的故障诊断中。本文的主要研究内容如下:
     在波形特征提取方面,研究了基于小波变换的微弱特征提取方法。利用小波变换的滤波特性和Morlet小波良好的时域和频域特性,提出了一种基于参数优化Morlet小波变换的微弱故障特征提取方法。利用最小Shannon熵方法优化Morlet小波的带宽参数,实现其与冲击特征成分的较优匹配,再根据小波系数矩阵的奇异值曲线中主要反映突变信息的过渡阶段求得最佳变换尺度。进一步的研究发现该方法依然存在着不足,为此对其进行了改进,提出了一种基于尺度周期性指数谱(SPE)的自适应Morlet小波微弱特征提取方法,利用修正的Shannon熵方法同时优化Morlet小波的中心频率与带宽参数,实现其与冲击特征成分的最优匹配,再根据得到的SPE谱求得最佳的小波变换尺度。试验信号分析和实际工程应用结果验证了该方法的有效性和优越性。
     在谱图特征提取方面,对基于重分配谱的微弱特征提取方法进行了系统的研究。针对重分配小波尺度谱存在着时、频分辨率不能同时达到最佳及当振动信号中存在着能量较大的噪声时会降低其时频分布可读性的缺陷,提出了一种重分配小波尺度谱的时频分布优化方法。首先优化重分配尺度谱基函数的时间-带宽积(TBP),克服其时、频分辨率不能同时达到最佳的缺陷,再对重分配尺度谱进行SVD降噪降低噪声干扰影响,提高其时频分布的可读性。针对魏格纳时频谱存在的问题,提出了一种基于重分配魏格纳时频谱和SVD的微弱特征提取方法。利用重分配算法对魏格纳时频谱进行重分配,提高魏格纳时频谱的时频聚集性,再对重分配时频谱进行SVD降噪,提高其谱图的可读性。此外,针对基于小波尺度谱的模极大值法提取小波脊线存在着受噪声干扰影响大、高频部分频率分辨率低等不足,提出了一种基于最优重分配小波尺度谱的小波脊线提取方法,并将其应用于齿轮箱的故障分析中。
     在瞬时特征提取方面,研究了基于形态奇异值分解和HHT的微弱特征提取方法。针对现场采集信号中的随机噪声和局部强干扰影响EMD分解质量的问题,提出一种形态奇异值分解滤波消噪方法,并将其与HHT相结合形成一种新的微弱故障特征提取方法。该方法首先对原始振动信号进行相空间重构和奇异值分解,根据奇异值分布曲线确定降噪阶次进行SVD降噪,再形态滤波,最后把消噪后的信号进行EMD分解,利用本征模模态分量(IMF)提取故障特征信息。对仿真信号和试验信号的应用分析结果表明,该方法能有效提取微弱故障特征,还可以减少EMD的分解层数和边界效应,提高EMD分解的时效性和精确度。
     在故障诊断方面,研究了基于微弱特征提取和支持向量机(SVM)的故障诊断方法。利用SVM出色的多类分类性能和小生境遗传算法优化参数的全局寻优能力,分别结合自适应Morlet小波变换和形态奇异值分解-EMD的微弱特征提取方法,实现了基于微弱特征提取和遗传优化SVM的故障诊断方法,滚动轴承故障诊断实例验证了其有效性和可行性。
     在软件开发方面,研发了基于本文所提方法的非平稳信号微弱特征提取模块。采用面向对象的编程技术以及VC++开发工具,设计开发了该模块,为旋转机械微弱特征提取和故障诊断提供了一个有效的分析工具,并通过实际应用验证了该模块的有效性和实用性。
     文章最后对本文的工作进行了总结,并展望了下一步的研究方向。
Vibration signals analysis is one of the most important methods used for feature extraction and fault diagnosis. However, various kinds of factors, such as the change of the environment and the faults from the machine itself, often make the output signals of the running rotating machinery be non-stationary. Usually, these non-stationary signals contain abundant information about machine faults; therefore, it is important to analyse the non-stationary signals. Furthermore, these vibration signals sampled on the spot often contain amount of noise. If the background noise is too heavy, the useful information will be submerged, so the weak feature extraction of nonstationary signals is one of the current research focuses. With this background, based on time-frequency analysis methods of signal analysis including wavelet tansform, Hilbert-Huang transform (HHT), reassigned wavelet scalogram, reassigned Wigner-Ville distribution spectrogram, and denoising technology inchuding singular value decomposition (SVD), morphology filter, three types of weak feature extraction methods of non-stationary signals are proposed. In addition, condition identification is another key issue. Therefore, SVM is researched and introduced into rotating machinery fault diagnosis combined with these weak feature extraction methods. The main research work and conclusions are as follows:
     ①In terms of waveform-based feature extraction, weak feature extraction method based on wavelet transform is researched in detail. A weak feature extraction method based on parameter optimized Morlet wavelet transform is proposed by using excellent filtering and time-frequency characteristics of Morlet wavelet. Minimum Shannon entropy is used to optimize the Morlet wavelet bandwidth parameter in order to achieve match with the impact component. Then, an abrupt information detection method based on the transitional stage of singular curve of wavelet coefficients’matrix is used to choose the appropriate scale for the wavelet transformation. Furthermore, the proposed method is improved upon and a weak feature extraction method with adaptive Morlet wavelet based on scale periodical exponential spectrum (SPE) is proposed. Modified Shannon entropy is used to optimize central frequency and bandwidth parameter of the Morlet wavelet in order to achieve optimal match with the impact component. Then, SPE spectrum obtained by carrying singular value decomposition (SVD) to the matrix is utilized to choose the appropriate scale for the wavelet transform. Simulation and application results show that the proposed method can be effecitively applied for weak feature extraction.
     ②In terms of spectrum-based feature extraction, weak feature extraction method based on reassigned spectrum is discussed in detail. According to the fact that the resolutions of time-frequency of reassigned scalogram cannot simultaneously attain the best and the readability of time-frequency representation of it would also be reduced when there exist strong noise in a signal, a novel method to improve the readability of time-frequency representation of reassigned scalogram based on parameter optimization and SVD is proposed to overcome this shortcoming. The time-bandwidth product (TBP) of the wavelet basis is optimized by Shannon entropy, so the problem that the resolutions of time-frequency of reassigned scalogram cannot simultaneously attain the best is solved. Then, SVD de-noising is applied to the reassigned wavelet scalogram to reduce the influence of the noise. In order to overcome the shortcoming of reassigned Wigner-Ville distribution spectrogram (RWVDS), a weak feature extraction method based on RWVDS and SVD is proposed. The RWVDS is obtained by using the reassigned algorithm to the WVDS. Then, SVD de-noising is applied to the RWVDS to improve the readability of it. In addtion, in order to improve the precision of wavelet ridge extracted by modulus maximum method based on scalogram, a new method for extracting wavelet ridge based on optimal reassigned wavelet scalogram is proposed. The results of simulation and experiment show that the proposed method is feasible and effective for extracting weak feature of mechanical vibration signals with heavy background noise.
     ③In terms of transient feature extraction, weak feature extraction method based on SVD-morphology filter and HHT is investigated in detail. Due to the influence caused by random noises and local strong disturbances embedded in signal on empirical mode decomposition (EMD) results, a novel integrated SVD-morphology filter method is proposed to overcome this shortcoming. And combining with EMD, a weak feature extraction method is proposed. Firstly, reconstruct the original vibration signal in phase space and decompose the attractor track matrix by singular value decomposition, and then select a reasonable order for noise reduction according to the singular curve. Secondly, filter the de-noised signal by morphology filter. Finally, decompose it by EMD to extract the intrinsic mode functions (IMF) for fault feature extraction. Experimental results show that this method could extract weak feature of rolling bearing effectively, reduce decomposition levels and boundary effect of EMD, and improve the timeliness and precision of EMD.
     ④In terms of fault diagnosis, fault diagnosis method based on weak feature extraction and SVM is researched. Using the excellent multi-class classification performance of SVM and the global search capability of optimization parameters of niche genetic algorithm (NGA), combining the weak feature extraction method of adapative Morlet wavelet or SVD-morphology filter-EMD, a fault diagnosis method based on weak feature extraction and NGA-SVM is proposed. The experimental results of rolling bearing demonstrate the proposed diagosis approach is effective.
     ⑤In terms of software development, a weak feature extraction module of nonstaionary signal of rotating machinery is developed successfully, including wavelet-based sub-module、HHT-based sub-module and spectrum-based sub-module. The module based on time-frequency analysis methods is implemented by using object-orientied programming technology and VC++ 6.0. Finally, the weak feature extraction module is applied to engineering applications and proved to be effective and pratical.
     At the end of the thesis, the summarization of the thesis and expectation of the feature extraction technology development are presented.
引文
[1]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社, 1986.
    [2]钟秉林,黄仁.机械故障诊断学(第3版)[M].北京:机械工业出版社, 2007.
    [3]杨叔子等.机械设备诊断的理论技术与方法[J].振动工程学报, 1992, 5(3): 193-201.
    [4]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社, 2001.
    [5]秦树人等.机械测试系统原理与应用[M].北京:科学出版社, 2005.
    [6]高晋占.微弱信号检测[M].北京:清华大学出版社, 2004.
    [7]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].博士学位论文.湖南:国防科技技术大学, 2004.
    [8]徐春生.微弱信号检测及机械故障诊断系统研究[D].博士学位论文.天津:天津大学, 2008.
    [9]刘喜贵,杨万海,谢任聘.光纤电流传感器微弱信号检测技术[J].半导体光电, 1998, 19(2): 97-100.
    [10]刘建科,张海宁,马毅.红外测温中检测强噪声下微弱信号的新途径[J].物理学报, 2000, 49(1): 106-109.
    [11]白奉天,罗飞路,张玉华.软正交矢量型LIA在微弱信号检测中的应用[J].现代电子技术, 2003, 152(9): 18-20.
    [12]来五星,轩建平,史铁林,杨叔子.用自回归最小二乘消噪法提纯轴承故障信号[J].振动、测试与诊断, 2007, 27(4): 292-294.
    [13] C. Offelli, D. Petri. The influence of windowing on the accuracy of multifrequency signal parameter estimation[J]. IEEE Transaction on Instrumentation and Measurement, 1992, 41(2): 256-261.
    [14] Y.J. Jen, J.H. Jones, T. Fiorcucci. Roller bearing health minitoring using CPLE frequency analysis method[C]. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, United States, 2007, 3206-3223.
    [15] J. Lin, L.S. Qu. A difference resonator for detecting weak signals[J]. Mearsurment, 1999, 26: 69-77.
    [16] Z. Gingl, R. Vajtai, L.B. Kiss. Signal-to-noise ratio gain by stochastic resonance in a bistable system[J]. Chaos, Solitons & Fractals, 2000, 11(12): 1929-1932.
    [17] X.Q. Luo, S.Q. Zhu. Stochastic resonance driven by two different kinds of colored noise in a bistable system[J]. Phys. Rev. E., 2003, 67(2): 1104-1117.
    [18] L.B. Donald, J.P. Stephen. Chaotic oscillators and complex mapping feed forward networks for signal detection in nosiy environments[C]. IEEE International Joint Conference on Neural Networks, 1992, 2: 881-888.
    [19] G.Y. Wang, D.J. Chen, J.Y. Lin, X. Chen. The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2): 440-444.
    [20] G. Gelle, M. Colas, G. Delaunay. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442.
    [21]季忠,金涛,杨炯明,秦树人.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程, 2005, 16(1): 50-53.
    [22] W. Jing, G.H. Xu, Q. Zhang, L. Liang. A application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical System and Signal Processing, 2009, 23: 236-245.
    [23] N.G. Nikolaou, I.A. Antoniadis. Application of morphological operators as envelope extractors for impulsive-type periodic signals[J]. Mechanical System and Signal Processing, 2003, 17(6): 1147-1162.
    [24] R.J. Hao, F.L. Chu. Morphological undecimated wavelet decomposition for fault diagnosis of rolling element bearings[J]. Journal of Sound and Vibration, 2009, 320: 1164-1177.
    [25] L.J. Zhang, J.W, Xu, J.H. Yang, et al. Multiscale morphological analysis and its application to fault diagnosis[J]. Mechanical System and Signal Processing, 2008, 22: 597-610.
    [26] P. Margos, R.W. Schafer. Morphological filters—Part II: Their relation to median, order-statistic, and stack filters[J]. IEEE Trans on ASSP, 1987, 35(8): 1170-1184.
    [27]赵春晖.数学形态滤波器理论及其算法研究[D].博士学位论文.哈尔滨:哈尔滨工作大学, 1998.
    [28]李舜酩,许庆余.微弱振动信号的谐波小波频域提取[J].西安交通大学学报, 2004, 38(1): 51-55.
    [29] D.L. Donoho. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [30] D.L. Donoho, I.M. Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 18: 425-455.
    [31] D.L. Donoho, I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90: 1200-1224.
    [32] Q. Pan. et al. Two denoising method by wavelet transform[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 567-589.
    [33] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. on PAMI, 1989, 11(7): 674-693.
    [34] Y.S. Xu, J.B. Weaver, M.J. Healy, et al. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.
    [35] W.J. Wang, P.D. McFadden. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical System and Signal Processing, 1995, 9(5): 497-507.
    [36]秦毅.信号小波理论与一体化小波分析仪的研究[D].博士学位论文.重庆:重庆大学, 2008.
    [37]赵学智,陈统坚,叶邦彦,等.小波包分析在轴承早期故障诊断中的应用[J].振动、测试与诊断, 2003, 23(4): 243-246.
    [38] C.J. Li, J. Ma. Wavelet decomposition of vibrations for detection of bearing localized defects[J]. NDT & E International (UK), 1997, 30(3): 143-149.
    [39]桂中华,韩凤琴.小波包—最大熵谱估计及其在水轮机故障诊断中的应用[J].电力系统自动化, 2004, 28(2): 62-66.
    [40]刘彬,王霄,谢平.基于小波多重分形的复杂机械故障诊断方法研究[J].传感技术学报, 2006, 19(1): 232-234.
    [41] J. Lin, A.M. Zhang. Fault feature separation using wavelet—ICA filter[J]. NDT & E International, 2005, 38(6): 421-427.
    [42]王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用[J].振动、测试与诊断, 2004, 24(1): 46-49.
    [43]何学文,孙林,付静.基于小波分析和支持向量机的旋转机械故障诊断方法[J].中国机械工程学报, 2007, 5(1): 86-90.
    [44] Y. Qin, B.P. Tang, J.X. Wang. Higher-density dyadic wavelet transform and its application[J].Mechanical Systems and Signal Processing, 2010, 24(3): 823-834.
    [45] D. Ioannis, H. Omer, et al. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)[J]. Physics in Medicine and Biology, 2007, 52: 3741-3751.
    [46] J. Rafiee, P.W. Tse, A. Harifi, M.H. Sadeghi. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system[J]. Expert Systems with Applications, 2009, 36(3): 4862-4875.
    [47] F. Liu, X.E. Ruan. Wavelet-based diffusion approaches for signal denoising[J]. Signal Processing, 2007, 87: 1138–1146.
    [48] S.J. Loutridis. Instantaneous energy density as a feature for gear fault detection[J].Mechanical Systems and Signal Processing, 2006, 20(5) : 1239-1253.
    [49] J.S. Chen, D.J. Yu, Y. Yang. Time-energy density analysis based on wavelet transforms[J]. NDT & T International, 2005, 38(7) : 569-572.
    [50] W.X. Yang, X.M. Ren. Detecting impulses in mechanical signals by wavelets[J]. EURASIP Journal on Applied Signal Processing, 2004, 8: 1156-1162.
    [51] A.A. Chanerley, N.A. Alexander. Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising[J]. Computers & Structures, 2007, 85(21): 1679-1692.
    [52]徐晨曦,陈光.基于响应误差矩阵SVD的软故障诊断方法[J].仪器仪表学报, 2006, 27(9): 1100-1103.
    [53]王维,张英堂,徐章遂.基于动态聚类的奇异值分解降噪方法研究[J].振动工程学报, 2008, 21(3): 304-308.
    [54]李建,刘红星,屈梁生.探测信号中周期性冲击分量的奇异值分解技术[J].振动工程学报, 2002, 15(4): 415-418.
    [55]何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报, 2006, 19(3): 399-403.
    [56]梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报, 2004, 38(9): 904-908.
    [57] J. Lin, L.S. Qu. Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis[J]. Sound and Vibration, 2000, 234(1): 135–148.
    [58]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J].振动与冲击, 2008, 27(2): 91-94.
    [59]程发斌.面向机械故障特征提取的混合时频分析方法研究[D].博士学位论文.重庆:重庆大学, 2007.
    [60] K. Konsstantinides, K. Yao. Statistical analysis of effective singular values in matrix rank decomposition[J]. IEEE Transactions on Acoustics, Speech, and Signal Process, 1988, 36(5): 757-776.
    [61] W.X. Yang, W.T. Peter. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition[J]. NDT & T International 2003, 36(6): 419-432.
    [62]何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报, 2006, 19(3): 399-403.
    [63] M.J. Brenner. Non-stationary dynamic data analysis with Wavelet-SVD filtering[J]. Mechanical System and Signal Processing, 2003, 17(4): 765-786.
    [64] D. Groutage, D. Bennink. Feature sets for nonstationary signals derived from moments of the singular value decomposition of Cohen-Posch (positive time-frequency) distributions[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1498-1503.
    [65]刘建国,李志舜,刘栋.基于平稳小波变换及奇异值分解的湖底回波分类[J].声学学报, 2006, 31(2): 167-172.
    [66]梁霖,徐光华,刘弹,等.小波—奇异值分解在异步电机转子故障特征提取中的应用[J].中国电机工程学报, 2005, 25(19): 111-114.
    [67] P.P. Kanjilal. On multiple pattern extraction using singular value decomposition[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1536-1540.
    [68]赵学智,叶邦彦,陈统坚.矩阵构造对奇异值分解信号处理效果的影响[J].华南理工大学学报(自然科学版), 2008, 39(9): 86-93.
    [69]袁静,何正嘉,王晓东,等.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用[J].机械工程学报, 2009, 45(4): 155-160.
    [70] E.P. Wigner. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40: 749-759.
    [71] J. Ville. Theorie et application de la notion de signalanalyique[J]. Cables et Transmission, 1948, 2A: 61-74.
    [72]毛永芳.机械测试中多分量信号特征提取方法的研究[D].博士学位论文.重庆:重庆大学, 2008.
    [73]张贤达.现代信号处理(第二版)[M].北京:国防工业出版社, 2002.
    [74]邹红星,戴琼海,李衍达,等.不含交叉干扰且具有WVD聚集性的时频分布之不存在性[J].中国科学(E辑), 2001, 31(4): 348-354.
    [75] Z.K. Peng, F.L. Chu. Application of the wavelet transform in machine condition monitoring and fault diagnosis: a review with bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18: 199-221.
    [76] L. Gelman, V. Adamenko. Usage of the Wigner-Ville distribution for vibro-acoustcal diagnostics of cracks[C]. Proceedings of the Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 2000, 108: (5, Part 2).
    [77] M.A. Rodriguez, J. Emeterio. Ultrasonic Flaw Detection in NDE of Highly Scattering Materials Using Wavelet and Wigner-Ville Transform Processing[J]. Ultrasonics, 2004, 42: 217-250.
    [78] Z. Peng, Y. He, Q. Lu, F. Chu. Feature extraction of the rub-impact rator system by means of wavelet analysis[J]. Journal of Sound and Vibration, 2003, 259(4): 1000-1010.
    [79]何永勇,印欣运,褚福磊.基于小波尺度谱的转子系统碰摩声发射特性[J].机械工程学报, 2007, 43(6): 149-153.
    [80]肖思文,廖传军,李学军.小波尺度谱在AE信号特征提取中的应用[J].中国工程科学, 2008, 10(11): 69-75.
    [81] F. Auger, P. Flandrin. Improving the readability of time- requency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089.
    [82] K. Kodera, C. de Villedary, R. Gendrin. A new method for the numerical analysis of time-varying signals with small BT values[J]. Phys. Earth Planet. Interiors, 1976, 12: 142-150.
    [83] Z.K. Peng, F.L. Chu, Y.Y. He. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram[J]. Journal of Sound and Vibration, 2002, 253(5): 1087-1100.
    [84]彭志科,何永勇,褚福磊.小波尺度谱在振动信号分析中的应用研究[J].机械工程学报, 2002, 38(3): 122-126.
    [85] Z.K. Peng, F.L. Chu, P.W. Tse. Detection of the rubbing-caused impacts for rotor-stator fault diagnosis using reassigned scalogram[J]. Mechanical System and Signal Processing, 2005, (19): 391–409.
    [86] I. Yesilyurt. End mill breakage detection using mean frequency analysis of scalogram[J]. Machine Tools & Manufacture, 2006, (46): 450-458.
    [87]马辉,赵鑫,赵群超,等.时频分析在旋转机械故障诊断中的应用[J].振动与冲击, 2007, 26(3): 61–163.
    [88] H. Ma, T. Yu, Q.K. Han, et al. Time-frequency features of two types of coupled rub-impact faults in rotor systems[J]. Journal of Sound and Vibration, 2009, (321): 1109-1128.
    [89]廖传军,李学军,刘德顺.小波再分配尺度谱在声发射信号特征提取中的应用[J].机械工程学报, 2009, 45(2): 273–279.
    [90]赵松年,熊小芸.小波变换与子波分析[M].北京:电子工业出版社, 1996.
    [91]潘光斌,陈光礻禹.基于SVD的测量系统建模方法研究[J].电子测量与仪器学报, 2006, 20(5): 60–62.
    [92]徐晨曦,陈光礻禹.基于响应误差矩阵SVD的软故障诊断方法[J].仪器仪表学报, 2006, 27(9): 1100–1103.
    [93] X.Z. Zhao, B.Y. Ye. Similarity of signal processing effect between Hankel matrix-based SVD and wavelet transform and its mechanism analysis[J]. Mechanical Systems and Signal Processing, 2009, (23): 1062-1075.
    [94] N. ?zkurt, F.A.Savac. Determination of wavelet ridges of nonstationary signals by singular value decomposition[J]. IEEE Trans. Circuits and systems-II: Express Briefs, 2005, 52(8):480-485.
    [95] R.X. Li, D.F. Wang, P. Han, et al. On the applications of SVD in fault diagnosis[C]. Proceedings of the IEEE International Conference on System, Man and Cybernetics, 2003, (4): 3763-3768.
    [96]葛哲学,陈种生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社, 2006.
    [97]程发斌,汤宝平,钟佑明.利用ASTFT谱有效抑制WVD交叉项的方法[J].电子与信息学报, 2008, 30(10): 2299–2302.
    [98] J. Chen. Time frequency-based blind source separation technique for elimination of cross-terms in Wigner distribution[J]. Electronics Letters, 2003, 39(5): 475–477.
    [99] B. Mirela, A. Isar. The reduction of interference terms in the time-frequency plane[J]. Signals, Circuits and Systems, 2003, 2: 461-464.
    [100] F. Khandan, A. Ayatollahi. Performance region of center affine filter for liminating of interference terms of discrete Wigner distribution[J]. Image and Signal Processing and Analysis, 2003, 2: 621-625.
    [101]朱洪俊,王忠,秦树人.小波变换对瞬态信号特征信息的精确提取[J].机械工程学报, 2005, 41(12): 196-199.
    [102]秦毅,秦树人,毛永芳.基于小波脊线的解调方法及其在旋转机械故障诊断中的应用[J].机械工程学报, 2009, 45(2): 231-237.
    [103] L. Heng, M. Catherine. Ridge extraction from the scalogram of the uterine electromyogram[C]. Processings of the IEEE-SP International Symposium. Pittsburgh, 1998: 245-248.
    [104] Carmona R, Hwang W L, Torrdsani B. Torresani. Characterization of signals by the ridges of their wavelet transforms[J]. IEEE Transactions on Signal Processing, 1997, 45(10):2586 - 2590.
    [105] N. Delprat, B. Escudie, P. Guillemain, et al. Asymptotic wavelet and gabor analysis: extraction of instantaneous frequencies[J]. IEEE Transaction on Information Theory, 1992, 38(2): 644-664.
    [106]吴宏钢,秦毅,秦树人.基于重分配配算法和奇异值分解的多小波脊线提取[J].振动与冲击, 2008, 28(12): 9-11.
    [107]汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报, 2010, 46(5):37-42.
    [108] J. Wang, J. Zhou. Chirplet-based signal approximation for strong earth ground motion mode[J]. IEEE Transactions on Signal Processing Magazine, 1996, 16(2): 94-99.
    [109] N.E. Huang, Z. Shen, S.R. Long, et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
    [110] N.E. Huang, Z. Shen, S.R. Long, R.L. Steven. A new view of nonlinear water waves: The Hilbert spectrum[J]. Annual Review Fluid Mechanics, 1999, 31: 417-457.
    [111] S.R. Long, N.E. Huang. On the normalized Hilbert transform and its applications in remote sensing[J]. Signal and Image Processing for Remote Sensing, USA, CRC Press New York, 2006: 3-22.
    [112] J.W. Essex, A.P. Wiley. Applicaion of the Hilbert-huang transform to the analysis of molecular dynamics simulations[J]. Journal of Physical Chemistry, 2003, 107:4869-487.
    [113] G. Rilling, P. Flandrin, P. Goncalves. On empirical mode decomposition and its algorithms[C]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado(I), 2003: 8-11.
    [114] P. Flandrin, G. Rilling, P. Goncalves. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.
    [115] D.Y. Yu, J.S. Cheng, Y. Yu. Applicaion of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical System and Signal Processing, 2005, 19: 259-270.
    [116] Z.H. Wu, N.E. Huang. A study of the characterisctics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society London A, 2004, 460(2046): 1597-1611.
    [117] Z.H. Wu, N.E. Huang. Ensemble empirical mode decomposition:a noise assisted data analysis method[R]. Center for Ocean Land Atmosphere Studies, Technical Report, 2004, (193): 51.
    [118] Z.K. Peng, P.W. Tse, F.L. Chu. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J]. Mechanical System and Signal Processing, 2005, 19: 974-988.
    [119] G. Rilling, P. Flandrin. On the influence of sampling on the empirical mode decompostition[C]. ICASSP 2006, 3: 444-447.
    [120] N. Stevenson, M. Mesbah, B. Boashash. A sampling limit for the Empirical Mode Decomposition[C]. Proc. Int. Symp. on Signal Proc. and its Appl. , ISSPA-05, Sydney, 2005: 647-650.
    [121] M. Schwartz, W. Bennett, S. Stein. Communications systems and techniques[M]. New York: McGraw-Hill, 1996.
    [122]谭善文,秦树人,汤宝平. Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报,2004, 27(2): 9-12.
    [123]胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4): 127-130.
    [124]柏林,刘小峰,秦树人.小波_形态_EMD综合分析法及其应用[J].振动与冲击,2008,27(5): 1-4.
    [125]杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击, 2005, 24 (2): 12-15.
    [126]杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波阈值除噪方法[J].北京工业大学学报, 2007, 33(3): 265-272.
    [127]高云超,桑恩方,刘百峰.基于经验模态分解的自适应去噪算法[J].计算机工程与应用, 2007, 43(26): 59-61.
    [128]余泊.自适应时频分析方法及其在故障诊断中的应用[D].博士学位论文.辽宁:大连理工大学, 1998
    [129]程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用法[J].机械工程学报, 2004, 40 (8): 115-118.
    [130]盖强,张海勇,徐晓刚. Hilbert-Huang变换的自适应频率多分辨率分析研究[J].电子学报, 2005, 33(3): 563-566.
    [131] D. Gabor. Theory of Communication[J]. J. Inst. Eles. Eng. 1946, 93: 429-457.
    [132] P.M. Oliveira, V. Barroso. Instantaneous frequency of multicomponent signals[J]. IEEE Signal Processing Letters, 1999, 6(4): 81-83.
    [133] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal—Part 1:Fundamentals[J]. Proc. IEEE, April 1992, 80(4): 520-538.
    [134] R.S. Long, et al. The Hilbert techniques: an alternate approach for non-steady time series analysis[J]. IEEE Geoscience Remote Sensing Soc. Lett., 1995, 3: 6-11.
    [135] X. Zhu, Z. Shen, S.D. Eckermann, et al. Gravity wave characteristics in the middle atmosphere derived from the empirical mode decomposition method[J]. J. Geophys. Res., 1997, 102(16): 545-561.
    [136]程军圣,于德介,杨宇.基于支持矢量回归机的HILBERT-Huang变换端点效应问题的处理方法[J].机械工程学报, 2006, 42(4):23-31.
    [137]郝如江,卢文秀,褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用[J].清华大学学报(自然科学版), 2008, 48(5): 812-815.
    [138]王太勇,王正英,胥永刚,等.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击, 2005, 24(4): 96-98.
    [139]刘献栋.基于奇异值分解的突变信息检测新方法及其应用[J].机械工程学报, 2002, 38(6):102-105.
    [140]姚剑飞,江志农,赵庆亮,张雪.基于故障原因-征兆矩阵的故障诊断专家系统[J].振动、测试与诊断, 2009, 29(1): 74-78.
    [141]陈国荣,鄢萍,刘飞,易润忠,等.滚齿机网络化故障诊断专家系统的设计及应用[J].重庆大学学报, 2010, 33(5): 62-70.
    [142] W.X. Lai, W.Y. Peter, G.C. Zhang, et al. Classification of gear faults using cumulants and the radial basis function network[J]. Mechanical System and Signal Processing, 2004, 18(2): 381-389.
    [143] P. Meesad, G.G. Yen. Pattern classification by a neurofuzzy network: application to vibration monitoring[J]. Instrument Society of America Transactions, 2000, 39(3): 293-308.
    [144]徐光华,屈梁生.基于概率神经网络的大机组组合故障识别[J].机械科学与技术, 2000, 19(1): 85-87.
    [145]秦太龙,杨勇,程珩,等.基于IMF能量矩和神经网络的轴承故障诊断[J].振动、测试与诊断, 2008, 28(3): 229-232.
    [146]黄建军,刘会霞,杨润党,等.基于改进BP神经网络的数控机床振动趋势预测[J].制造技术与机床, 2009, 4: 63-65.
    [147]张忠奎,王效岳,丁晓坤.旋转机械故障诊断中的改进型RBF神经网络算法研究[J].山东理工大学学报(自然科学版), 2010, 24(4): 81-83.
    [148]万小朋,王军强,赵美英. BP算法改进及其在结构损伤检测中的应用[J].机械科学与技术, 2002, 21:61-63.
    [149]江磊,江凡.基于小波神经网络的旋转机械故障诊断[J].汽轮机技术, 2004, 46(3): 204-206.
    [150]孙涛,黄天戌,阚黎明,等.小波包消噪提高小波网络故障识别性能[J].哈尔滨工业大学学报, 2005, 37(4): 561-564.
    [151]林颖,刘亚俊,陈忠.基于分形理论和神经网络的刀具磨损监测[J].中国机械工程, 2004, 15(16): 1426-1428.
    [152]杨世锡,焦卫东,吴昭同.基于独立分量分析特征提取的复合神经网络故障诊断法[J].振动工程学报, 2004, 17(4): 438-442.
    [153]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击, 2005, 24(1): 85-88.
    [154]蒋东翔,王风雨,周明,等.模糊自组织神经网络在航空发动机故障诊断中的应用[J].航空动力学报, 2001, 16(1): 80-82.
    [155]赵学智,陈文戈,林颖,等.基于自适应小波神经网络的故障分类[J].振动、测试与诊断, 2001, 21(1): 21-25.
    [156] B. Samanta. Artificial neural networks and genetic algorithms for gear fault detection[J]. Mechanical System and Signal Processing, 2004, 18(5): 1273-1282.
    [157] V.N. Vapnik. Statistical learning theory[M]. New York: John Wiley, 1998.
    [158] V.N. Vapnik. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
    [159] S. Abbasion, A. Rafsanjani, A. Farshidianfar, N. Irani. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J]. Mechanical System and Signal Processing, 2007, 21(7): 2933-2945.
    [160] D.F. Shi, N.N. Gindy. Tool wear predictive model based on least squares support vector machines[J]. Mechanical System and Signal Processing, 2007, 21(4): 1799-1814.
    [161] S.F. Yuan, F.L. Chu. Fault diagnostics based on particle swarm optimisation and support vector machines[J]. Mechanical System and Signal Processing, 2007, 21(4): 1787-1798.
    [162] X.Q. Xiang, J.Z. Zhou, X.L. An, et al. Fault diagnosis based on Walsh transform and support vector machine[J]. Mechanical System and Signal Processing, 2008, 22(7): 1685-1693.
    [163]李岳,陶利民,温熙森.用于滚动轴承故障检测与分类的支持向量机方法[J].中国机械工程, 2005, 16(6): 498-501.
    [164] J.H. Holland. Adaptation in natural & artifical systems[M]. Ann Arbrr. MI: Univ. of Michigan Press, 1975.
    [165] L.B. Jack, A.K. Nandi. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mechanical System and Signal Processing, 2002, 16(2): 373-390.
    [166] B. Samanta. Artificial neural networks and genetic algorithms for gear fault detection[J]. Mechanical System and Signal Processing, 2004, 18(5): 1273-1282.
    [167] B. Samanta. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J]. Mechanical System and Signal Processing, 2004, 18(3): 625-644.
    [168] W.D. Chang. An improved real-coded genetic algorithm for parameters estimation of nonlinear systems[J]. Mechanical System and Signal Processing, 2006, 20(1): 236-246.
    [169]刘美容.基于遗传算法、小波与神经网络的模拟电路故障诊断方法[D].博士学位论文.湖南:湖南大学, 2009.
    [170]黄洪钟,赵正佳,姚新胜,冯春.遗传算法原理、实现及其在机械工程中的应用研究与展望[J].机械设计, 2000, 3(3): 1-6.
    [171]田芳.遗传算法的改进研究及其在压缩机性能分析与优化中的应用[D].博士学位论文.辽宁:东北大学, 2009.
    [172]王小平,曹立明,.遗传算法—理论、应用于软件实现[M].西安:西安交通大学出版社, 2002.
    [173]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社, 1999.
    [174] D.J. Cavicchio. Adaptive search using simulation[D]. University of Michigan, Ann, Arbor, 1970.
    [175] K.A. De Jone. An analysis of the behavior of a class of genetic adaptive system[D]. University of Michigan. Dissertation Abstracts International, 36(10): 5140B.
    [176] D.E. Goldberg, J.J. Richardson. Genetic algorithms with sharing for multimodal function optimization[C]. Genetic algorithms and their application: Proceedings of the Second International Conference on Genetic Algorithms, 1987: 41-49.
    [177] D. Beasley, D.R. Bull, R.R. Martin. A sequential niche technique for multimodal function optimization[J]. Evolutionary Computation, 1993, 1(2): 101-125.
    [178]李惠玲,盛万兴,张学仁,等.改进小生境遗传算法在电力系统无功优化中的应用[J].电网技术, 2008, 32(17): 39-34.
    [179]朱宁,冯志刚,王祁.基于小生境遗传算法的支持向量机分类器参数优化[J].南京理工大学学报(自然科学版), 2009, 33(1): 16-20.
    [180]黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报, 2004, 24(8): 675-678.
    [181]张琰,谢娟英.改进梯度算子的小生境遗传算法[J].计算机工程与科学, 2009, 31(9): 71-73.
    [182] J. Horn. The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations[D]. Department of Computer Science, University of Illinois at Urbana-Champaign, 1997.
    [183] K.Y. Lee, Y.M. Park, J.L. Ortiz. A united approach to optimal real and reactive power dispatch[J]. IEEE Trans on Power Apparatus and System, 1985, 104(5): 1147-1153.
    [184]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].博士学位论文.湖南:湖南大学, 2005.
    [185]彭兵.基于改进支持向量机和特征信息融合的水电机组故障诊断[D].博士学位论文.湖北:华中科技大学, 2008.
    [186]原峰山,朱思铭.利用傅立叶变换筛选核函数的方法[J].中山大学学报(自然科学版), 2004, 43(3): 10-14.
    [187] D.J. Strauss, G. Steidl. Hybrid wavelet-support vector classification of waveforms[J]. Journal of Computational and Applied Mathematics, 2002, 148(2): 375-400.
    [188] C.W. Hsu, C.J. Lin. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(3): 415-442.
    [189]王凯,张永祥,李军.遗传算法和支持向量机在机械故障诊断中的应用研究[J].机械强度, 2008, 30(3): 349-353.
    [190] U. Kressel. Pairwise classification and support vector machines[J]. In: B.Scholkopf, ed. Advances in Kernel Methods—Support Vector Learning. Cambridge: MIT Press, 1999: 255-268.
    [191]张亚楠,魏武,武林林.基于小波包Shannon熵SVM和遗传算法的电机机械故障诊断[J].电力自动化设备, 2010, 30(1): 87-91.
    [192] Karol, Zyczkowski. Renyi entrapolation and Shannon entropy[J]. System and Information, 2003, 10: 297-310.
    [193] E. Avic, Z.H. Akpolat. Speech recognition using a wavelet packet adaptive network based fuzzy inference system[J]. Expert System with Applications, 2006, 31(3): 495-503
    [194]李庚银,王洪磊,周明.基于改进小波能熵和支持向量机的短时电能质量扰动识别[J].电工技术学报, 2009, 24(4): 161-167.
    [195]赵冲冲.基于支持向量机的旋转机械故障诊断[D].博士学位论文.陕西:西北工业大学, 2008.
    [196] S.S. Keerthi, C.J. Lin. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J]. Neural Computation, 2003, 15(7): 1667-1689.
    [197] Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Programs[M]. 3rd ed. New York, USA: Springer, 1999: 134-166.
    [198] D.E. Goldberg, J.J. Richardson. An investigation of niche and species formation in genetic optimization[C]. 3rd International Conference on Genetic Algorithms, 1989: 42-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700