基于软光刻的多层光互连垂直耦合结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今是一个信息爆炸的时代,计算机和通信技术的快速发展为我们开辟了一个全新的世界。电子系统的信息处理能力与日俱增,但随着芯片工作频率的不断增加和线宽的不断缩小,人们也越来越清楚地发现互连技术已成为系统性能进一步发展的严重障碍。与电互连伴随的各种固有缺陷,如频率相关损耗、线路之间电磁干扰(EMI)和在高数据传输率时的串扰,不但限制了可用带宽,而且已成为限制系统表现的主要瓶颈。
     近年来,光学互连作为一种解决电互连存在的带宽问题的实施方案,引起世界许多研究机构的关注。在主板上的芯片与芯片间的通信系统中,光互连已经被证明拥有很大的潜力,具有传输速率快、能耗低的优点,并且在进行高速数据传输时的误码率极低。
     本文以研究层间垂直光耦合为目的,设计了一种新型多层光互连垂直耦合结构,可用于高速计算机内部垂直堆迭的多层连通光互连的芯片间光信息通讯;并且,将软光刻工艺应用于器件的制作,大大降低器件成本,简化制作过程,增加生产效率。本文的主要内容包括以下几部分:
     首先,介绍了当前光互连的基本情况,讨论了电互连方式的缺陷以及光互连方式的优点。
     其次,设计了一种新型的多层垂直耦合光互连线路,其结构简单,且具有较小的连接损耗(可低至0.05dB)。对四种不同的典型波导截面(分别为30×30μm~2,50×50μm~2,100×100μm~2,200×200μm~2),在光学设计软件ZEMAX中进行了跨越1—6层的垂直耦合性能分析,发现当该结构的跨越高度与横向跨越距离的比值约为0.128时,可实现较理想的低损耗(<1dB)光传输。
     最后,通过软光刻的方法制备了实际的多层互连线路,其测试性能得到的数据与理论结果基本相符。
Today, we live in the midst of an information explosion. The rapid development of computing and communications technologies has opened an entirely new world. Although the ability of information processing of electronic system increasing steadily, the means of interconnecting these devices has remained relatively stationary, relying on conductive electrical lines. The performance of advanced electronic systems is increasingly limited by constraints imposed by interconnects and this limitation will inevitably become more serious as the operating frequency increases and the feature size reduces. Electrical interconnects suffer from problems such as frequency dependent loss, EMI and crosstalk at high data rates that limit the available bandwidth, and become the main bottleneck on the performance of systems.
    Optical interconnects have gained interest worldwide over the last years in view of their ability to offer a possible solution to the bandwidth problems associated with electrical interconnects. Optical interconnects, which have proven their potential in chip-to-chip communication systems on main boards, transport data faster, consume less power and transfer data more accurately at high data rates.
    A novel vertical coupling structure is designed for multilayered optical interconnect in this paper, one of most promising approaches for high speed communications in next-generation computer. In addition, we fabricate this newly designed interconnection using soft lithography technique, which can dramatically reduce cost, simplify production procedures and increase efficiency.
    First, the paper discusses the disadvantages of electrical interconnection and advantages of optical interconnection, and introduces the presently basic conditions of optical interconnection.
    Then, detailed design for the vertical coupling structure is followed. The layer-to-layer coupling features a simple structure with an insertion loss as low as 0.05dB. For four cross-sections of 30×30μm~2,50×50μm~2 , 100×100μm~2 , and 200×200μm~2 calculations for cross-over of up to 6 layers were performed using ray-
    tracing simulation tool ZEMAX, it was found that a low-loss coupling can be achieved as the ratio of cross height to traveling distance is about 0.128.
    At last, Prototypes were fabricated by using soft-lithography and measurement agrees with the calculated result in general.
引文
[1] 朱京平,光电子技术基础,科学出版社,2003.
    [2] 神保孝志,光电子学,科学出版社,2001.
    [3] D.A.B.Miller, H.M.Ozaktas, "Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture", Journal of parallel and distributed computing, 1997, 41:42-52.
    [4] 黄章勇,光纤通信用光电子器件和组件,北京邮电大学出版社,2001.
    [5] 张以谟,光互连网络技术,电子工业出版社,2006.
    [6] N. Hendrickx, G. Van Steenberge, P. Geerinck, and P. Van Daele, "Multilayer optical interconnections integrated on a printed circuit board", IEEE/LEOS Benelux Chapter, 2005, Mons:213-216.
    [7] Chulchae Choi, Yujie Liu, Lei Lin, and Ray T. Chen, "Board level guided-wave optical interconnects", Proc. of SPIE, 2003, 4991:341-354.
    [8] Edward Palen, "Low cost optical interconnects", Proc. of SPIE, 2007, 6478(4): 1-5.
    [9] Marc A.Taubenblatt, "Challenges and Opportunities for Integrated Optics in Computing Systems", Proc. of SPIE, 2006, 6124(6): 1-11.
    [10] 李之棠,光互连与并行处理,电子工业出版社,2001.
    [11] 花嵘,傅游,卫文学,“光互连技术的发展与现状”,山东科技大学学报,2002,2l(4):72-75。
    [12] O.Rits, M.De Wilde, G.Roelkens, R.Bockstaele, Richard Annen, "2D parallel optical interconnects between CMOS ICs", Proc. of SPIE, 2006, 6124(L): 1-12
    [13] D.A.B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. of IEEE, 2000, 88(6):728-749.
    [14] 林瑜,“光互连技术及其相关器件的发展与展望”,光子学报,1997,21(5):428-434.
    [15] 王英霞,梁国栋,林子杨,“自由空闻光互连的发展”,应用光学,2001,22(2).
    [16] Ravindra A.Athale, "Optical Interconnects: How far will it go?".
    [17] N.Davidson, A.A.Friesem, and E.Hasman, "On the limits of optical interconnects", Applied Optics, 1992, 31 (26):5426-5430.
    [18] “光互连技术的最新进展”,电子产品世界,2003,6:77-78.
    [19] Dawei Huang, Guoqiang Li, Emel Yuceturk, Mark M.Wang, Christoph Berger, "3D Optical Interconnect Distributed Crossbar Switching Architecture".
    [20] Miller, D.A.B., "Physical Reasons for Optical Interconnection" Int. J. Optoelectronics, 1997. 11(3): 155-168.
    [21] Marius P.Schamschula, H.John Caulfield, "Adaptive optical interconnection", Optics Letters, 1991, 16(18):1421-1423.
    [22] W.Shin, S.Choe, and K.Oh, "All-fiber wavelength- and mode-selective coupler for optical interconnections", Optics Letters, 2002, 17(21): 1884-1886.
    [23] A.Dickinson and Michael E.Prise, "Free-space optical interconnection scheme", Applied Optics, 1990, 29(14):2001-2005.
    [24] Gary Hughes, Keren Bergman, "Optical interconnection networks: introduction to the feature issue", Journal of Optical Networking, 2004, 3(12):933-934.
    [25] Jang-Hun Yeh, Raymond K.Kostuk, "Free-space holographic optical interconnects for board-to-board and chip-to-chip interconnections", Optics Letters, 1996, 21(16): 1274-1276.
    [26] A. V. Krishnamoorthy and D. A. B. Miller, "Firehose architectures for free-space optically interconnected VLSI circuits," J.Parallel Distrib. Comput. Special Issue on Optical Interconnects 41,1997, 20-35.
    [27] Michael W.Haney, Marc P.Christensen, "Performance scaling comparison for free-space opticl and electrical interconnection approaches", Applied Optics, 1998, 37(14):2886-2894.
    [28] M. R. Feldman, C. C. Guest, T. J. Drabik, and S. C. Esener, "Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities", Applied Optics, 1989,28:3820-3829.
    [29] Raymond K.Kostuk, "Simulation of board-level free-space optical interconnects for electronic processing", Applied Optics, 1992,31(14):2438-2445.
    [30] Sadik Esener, "Free Space Optical Interconnects and Parallel Accessed Optical Storage", SPIE, 1995,2524:88-89.
    [31] Yao Li, Jan Popelek, "Volume-consumption comparisons of free-space and guided-wave optical interconnections", Applied Optics, 2000, 39(11): 1815-1825.
    [32] K. S. Urquhart, P. Marchand, Y. Fainman, and S. H. Lee, "Diffractive optics applied to free-space optical interconnects," Applied Optics, 1994, 33:3670-3682.
    [33] J. Popelek and Y. Li, "Free-space-fiber hybrid distributed optical cross-connect interconnect module," Optical Letters, 1999, 24:142-144.
    [34] Ting Li, Suning Tang, "Polymer waveguide based high speed clock singal distribution system", SPIE, 1997, 3005: 128-135.
    [35] Feiming Li, Linghui Wu, Ting Li, Micheal Dubinovsky, Suning Tang, and R.T. Chen, "Unidirectional surface normal waveguide grating couplers for board level interconnect", SPIE 3005, 1997.
    [36] Ray T. Chen, Huey Lu, D. Robinson, M. Wang, G. Savant, and T. Jannson, "Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms," IEEE J. Light. Technol., 1992,10: 888-897,.
    [37] E.Cassan, S.Laval, L.Vivien, D.Pascal, and A.Koster, "Rib waveguide-based on-chip optical interconnects", Optical Society of America, 2003.
    [38] Julian Bristow, Yue Liu, Sayan Mukherjee, Terry Marta and Sommy Bounnak, "Polymer Optical Waveguides for Versatile Multichip Module and Board Level Optical Interconnects".
    [39] L.A.Bergman et al., "Towards the realization of multi-Kin Gbytes/sec bit-parallel WDM single fiber computer link", Pros. 5th International Conference on Massively Parallel Processing Using Optical Interconnections(MPPOI'98), 218-223.
    [40] 周革,“光互连技术的最新的进展与发展趋势,” Optics in Computing, 2000, 37-39.
    [41] John Lehman, Julian Bristow, Yue Liu, and Mary Hibbs-Brenner, "Progress in short disrance (0.5m to 100m) optical interconnects", SPIE, 1999, 3632: 12-21.
    [42] A.Trew, G.Wilson, "Past, present, parallel: a survey of available parallel computer systems", Springer-Verlag, Berlin Heidelberg, 1991.
    [43] 阮刚,肖夏,“集成电路芯片上光互连研究的新进展”,半导体学报,2001,22(4):387-396.
    [44] D.R.Cheriton, H.A.Goosen, P.D.Boyle, "Paradigm: A highly scalable shared-memory multicomputer architecture", Computer, 1991,24:33-45.
    [45] 张家亮,“光电印制电路板的发展评述——光电印制电路板的基本概述”,印制电路信息,2006,10:17-19.
    [46] Christoph Berger, Bert Jan Offrein, Martin Schmatz, "Challenges for the introduction of board-level optical interconnect technology into product development roadmaps", SPIE, 2006, 6124(J):1-12.
    [47] M.Gross, D.Song, S.Esener, "Board-to-board optical interconnects using a parabolic mirror for high angular misalignment tolerance".
    [48] Toshikazu Sakano, Takao Matsumoto, Kazuhiro Noguchi, "Three-dimensional board-to-board free-space optical interconnects and their application to the prototy[e multiprocessor system: COSINE-Ⅲ", Applied Optics, 1995, 34(11):1815-1822.
    [49] 姚玉良,“光电互连网络”,电子产品与技术,2004,3:38-41.
    [50] Springthorpe A J,"Strained 1.3μm MQW AlGaInAs laser grown by digiral alloy MBE", Electron Lett, 2000, 36(12): 1031-1032.
    [51] 廖先炳,“垂直腔面发射半导体激光器”,半导体光电,1990(3):257-264.
    [52] Ortsiefer M, "Room temperature operation of index-guided 1.55μm InP-based Vertical-Cavity Surface-emitting laser", Electron Lett, 2000, 36(5): 437-438.
    [53] 黄章勇,“长波长光电探测器的发展动向”,半导体光电,1978(2):48-70.
    [54] K.Kazutoshi, "Highly efficient 40GHz waveguide InGaAs PIN photodiode employing multimode waveguide structure", IEEE Photon Technol Lett, 1991, 3:820.
    [55] Hiroyuki Tsuda and Tatsushi Nakahara, "High-speed on-chip and chip-to-chip optical interconnection", SPIE, 2003, 5129:18-23.
    [56] B.Liu, A.Shokouri, P.Abraham, J.E.Bowers, "Vertical coupler with separated inputs and outputs fabricated using double-sided process", Electronics Letters, 1999, 35(18): 1552-1554.
    [57] Jong-Moo Lee, Joon Tae Ahn, Doo Hee Cho, Jung Jin Ju, Myung-Hyun Lee, and Kyong Hon Kim, "Vertical coupling of polymeric double-layered waveguides using a stepped MMI coupler", ETRI Journal, 2003, 25(2): 81-88.
    [58] Scan M.Garner, Sang-Shin Lee, Vadim Chuyanov, Antao Chen, Araz Yacoubian, William H.Steier, and Larry R.Dalton, "Three-dimensional integrated optics using polymers", IEEE Journal of Quantum Electronics, 1999, 35(8): 1146-1155.
    [59] Xuezhe Zheng, Philippe J.Marchand, "Free-space parallel multichip interconnection sysem", Applied Optics, 2000, 39(20):3517-3524.
    [60] 张瑞君,“聚合物基三维集成光学制作技术”,世界产品与技术,2000,8:28-29.
    [61] A. Kumar, G.M. Whitesides, "Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching", Applied Physics Letters, 1993,63(14): 2002-2004.
    [62] Y. Xia, E. Kim, X. Zhao, J.A. Rogers, M. Prentiss, G.M. Whitesides, "Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Maters", Science, 1996, 273(5273):347-349.
    [63] B. Xu, F. Arias, S.T. Brittain, X.M. Zhao, B. Grzybowski, S. Torquato, G.M. Whitesides, "Making Negative Poisson's Ratio Microstructures by Soft Lithography", Advanced Materials, 1999, 11(14): 1186-1189.
    [64] Y. Xia, G.M. Whitesides, Soft Lithography, "Angewandte Chemic International Edition", 1998, 37(5): 550-575.
    [65] Byung-Tak Lee, Min-Suk Kwon, Jun-Bo Yoon, Sang- Yung Shin. "Fabrication of polymeric Large-Core Waveguides for Optical Interconnects Using a Rubber Molding Process", IEEE Photonics Technology Letters, 2000, 12(1): 62-64.
    [66] Junmin Hu, R.G. Beck, Tao Deng, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, G.M. Whitesides, "Using soft lithography to fabricate GaAs/AlGaAs heterostructure field effect transistors", Applied Physics Letters, 1997, 71(14): 2020-2022.
    [67] 洪吉,刘伟庭,陈裕泉,“软光刻技术”,国外医学生物医学工程分册,2001,24(3):134-141.
    [68] David A. C. Yen, Richard K. Eich, Bruce K. Gale., "A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques", Journal of Lightwave Technology, 2005, 23, (6):2088-2093.
    [69] 刘伟庭,蔡强,郭希山,陈裕泉,王立人,“用软光刻技术实现微细结构”,传感技术学报,2002,2:136-139.
    [70] Yanyi Huang, George T. Paloczi, Jacob Scheuer, Amnon Yariv, "Soft lithography replication of polymeric microring optical resonators", Optics Express, 2003, 11(20):2452-2457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700