超支化不饱和聚酯酰胺合成、表征、辐射效应及流变改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中利用马来酸酐和二乙醇胺作为原料制备了超支化不饱和聚酯酰胺(Hyperbranched unsaturated polyesteramide)。研究内容包括五部分,即超支化不饱和聚酯酰胺的合成、结构和性能,电离辐射效应研究以及与聚碳酸酯共混研究。
     一、用马来酸酐和二乙醇胺作为原料进行聚合时,采用了两种聚合工艺。一是“一步法”,即通过分阶段升温将马来酸酐和二乙醇胺直接进行熔融聚合,为加快反应速度,向反应物中充入氮气流带出副产物水;另一是“二步法”,将马来酸酐和二乙醇胺分别溶于乙醇中,将两者混合进行低温反应,除去溶剂后得到产物N,N-二羟乙基马来酰胺酸,然后N,N-二羟乙基马来酰胺酸自缩合聚合,用二甲苯回流脱水。为调整聚合物分子量,上述两种反应体系中都加有乙二醇作为“成核”分子。实验表明用马来酸酐和二乙醇胺合成超支化聚合物没有出现凝胶化,而据文献资料,二乙醇胺和其它环羧酸酐反应时,由于副反应存在而容易形成凝胶。在“一步法”进行反应时的起始阶段,由于氨基低温反应活性高于羟基,二乙醇胺与马来酸酐首先反应也生成N,N-二羟乙基马来酰胺酸。因此,本文中“一步法”和“二步法”都属于由AB_2(A代表羧基,B代表羟基)型单体合成超支化聚合物。
     通过FTIR和NMR技术研究表明聚合产物带有大量酯键和酰胺键,说明N,N-二羟乙基马来酰胺酸发生聚酯化反应。同时,通过NMR技术还发现聚合物带有大量次甲基。分析认为,与其它超支化聚酯酰胺合成机理一样,N,N-二羟乙基马来酰胺酸的酯化也要经过恶唑啉羧酸根离子对中间态;但与其它超支化聚酯酰胺不同,N,N-二羟乙基马来酰胺酸的酯化反应中间体中,恶唑啉正离子环还与C=C不饱和双键(来自于马来酸酐单体)相连,有利于双键与羟基进行加成反应。加成反应的结果,形成次甲基。总之,N,N-二羟乙基马来酰胺酸聚合过程中有两种主要反应形式,即反应体系中羟基与羧基之间的酯化反应,以及羟基与双键之间的加成反应。
     二、通过GPC技术研究发现,在相同单体配比下由“一步法”合成的聚合物(HUPEA)的相对分子量M要远大于“二步法”合成的聚合物(Hupea)的M,说明聚合反应条件对产物有影响。HUPEA中残留双键的含量以及M,均随乙二醇用量增加而下降。不过,HUPEA的分子量分布(M_w/M_n)随成核分子用量增加而上升,这一点不同于其它超支化合物;而Hupea的M_w/M_n则随成核分子用量增加而下降,这一点又与其它超支化合物相同。
     HUPEA聚合物的特性粘数([η])(以水为溶剂)随M增加而上升。对[η]数据进行线形回归分析,得到Mark-Houwink方程指数α=0.26,该值明显小于0.5,表明HUPEA聚合物具有高的支化结构。
     通过Einstein方程计算了HUPEA聚合物流体力学半径R_h与M之间的关系,得到幂率关系R_h~M_w~(0.42),较高的指数值表明该系列聚合物不如树形聚合物结构密实;假设HUPEA的R_h和旋转半径R_g之间呈正比关系,则可以得到分数维数d_f=2.38,该值小于3表明水不是HUPEA聚合物特别好的溶剂,而且HUPEA大分子在溶剂水中不呈球形形态。。
     三、水溶液流变学研究表明,在所考察的浓度范围(≤65wt%)内超支化聚酯酰胺的水溶液表现出牛顿流体行为,说明HUPEA大分子之间缺乏链缠结;零切粘度随浓度增加而上升,而在相同浓度下HUPEA系列聚合物之间零切粘度相差不大,Hupea系列聚合物之间零切粘度相差也不大,说明零切粘度对分子量的依赖性不大。通过对超支化不饱和聚合物的零切粘度对温度的依赖性研究表明,与传统线性聚合物、文献报道的其它树枝形聚合物不同,在本研究所考察的温度范围(15℃≤T≤60℃)内,HUPEA水溶液零切粘度40℃时有极小值,Hupea水溶液零切粘度25℃时有极小值。分析认为,出现这种现象的原因在于超支化不饱和聚酯酰胺大分子在水溶液中以多分子胶束形式存在,超过一定温度时多分子胶束解体,引起粘度反常升高。
     DSC研究表明,HUPEA在整个升温过程中只在0℃-30℃范围内出现一个与玻璃化转变相似的热转变,并且该转变温度随聚合物分子量增加而上升;HUPEA在空气中的热失重温度在210—240℃之间。超支化不饱和聚酯酰胺易溶于水,溶于二甲基甲酰胺(DMF)、二甲基亚砜(DMSo)中,加热溶于甲醇、乙醇中,不溶于丙酮、丁酮、氯仿、四氯化碳等。
     四、以~(60)Co作为γ-射线源,研究了电离辐射对HUPEA聚合物结构和性能的影响,而有关超支化聚合物辐射效应的研究至今还未见文献报道。在实验条件下,不管是溶液辐照或是本体辐照HUPEA都没有凝胶生成,同时HUPEA热转变温度及热分解温度提高。分析认为,电离辐射作用下HUPEA以辐射交联为主,由于超支化大分子之间缺乏链缠结,交联反应主要在超支化大分子内部进行,即在大分子内部的支链之间形成新的化学链接,而在大分子之间形成化学链接的可能性较低。
     HUPEA本体辐照后,GPC研究发现其M和[η]都随吸收剂量增加而下降,M_w/M_n则随吸收剂量增加而升高。分析认为,由于GPC是按尺寸大小把高分子溶液中聚合物分子分开的,因此M随吸收剂量增加而下降只能说明HUPEA大分子平均尺寸随吸收剂量增加在减小,而不能说明聚合物一定是辐射分解了。根据[η]数据通过Einstein方程计算的HUPEA流体力学半径R_h,也是随吸收剂量增加而下降。
     五、将HUPEA和经γ-射线辐照处理的HUPEA(HUPEA-γ)分别与聚碳酸酯(PC)共混,研究了PC/HUPEA和PC/HUPEA-γ的流动性及力学性能。研究发现HUPEA和HUPEA-γ能显著改善PC流动性,而且HUPEA-γ改性效果更好。与纯PC相比,300℃下PC/HUPEA5(99/1)的MI提高了68%,而PC/HUPEA5-100kGy(99/1)的MI提高了2.2倍。研究还发现,PC/HUPEA5的力学性能要低于纯PC,而高吸收剂量HUPEA5的PC/HUPEA5-γ共混物力学性能要高于纯PC,其中PC/HUPEA-100kGy(99/1)与纯PC相比,拉伸模量和弯曲模量分别提高31%、7%,最大弯曲力提高6.3%,除冲击性能外其它力学性能均有不同程度的提高。研究还发现PC/HUPEA和PC/HUPEA-γ的抗冲击性能均低于纯PC。
The research in this dissertation involves synthesis and characterization of hyperbranched unsaturated polyesteramides and their irradiation effect and application as rheological modificator.
     In this research, hyper- branched unsaturated polyesteramides were successfully synthesized from maleic anhydride and diethanolamine with ethylene glycol as a core monomer through a one-step and a two-step polycondensation reactions, respectively. The one-step synthesis was achieved with by-product water removed by strong N_2 stream (the resulting polymer labeled by HUPEA), and thetwostep with by-product water removed by xy!ene refluxing (the resulting polymer labeled by Hupea). At the initial stage of polymerization in the one-step and the two-step methods, the amine group in diethanolamine reacted fast with maleic anhydride, predominantly generating an AB2-type intermediate, i.e. N, N-diethanol maleamic acid monoamide. Further polymerization of the compound formed in situ gave a soluble polymerrather than a gel, which is different from the polymerization of diethanolamine with other cyclic anhydrides in which a strongly discolored, partially crosslinked, or even gelled product was obtained, and also which indicates that these polymerization processes in this research are effective methods for preparing hyperbranched polyesteramide.
     The obtained polymers were characterized by using FTIR and NMR spectroscopies as well as GPC. FTIR and NMR spectra indicated the presence of esterification of N, N-diethanol maleamic acid monoamide in the processes of polymerization, but fast esterification without any catalysts indirectly indicated the presence of an oxazolinium intermediate as discovered in other hyperbranched polyesteramides. But ~(13)C dept135 NMR spectra indicated the presence of methane (CH) carbon which suggested that the hyperbranched polyesteramides formed via a mechanism in a combination of esterification and addition reactions. The addition of the hydroxyl group to the -CH=CH- in maleic anhydride unit results in a formation of CH methine group. The ratio of-CH=CH- to CH in the polymers increased as the decreasing content of ethylene glycol charged, which was estimated from ~1H NMR spectrum. The molecular weights of HUPEA and their polydispersities showed reverse dependences on the feed ratio of ethylene glycol to diethanolamine, which is in disagreement with other works in which the presence of a core molecule decreases the molecular weight of hyperbranched polymers with a concurrent reduction in the molecular weight distributions.
     In the investigated M_w range in this research, HUPEA polymers exhibited a steady increase of [η] with increasing M_w, and the Mark-Houwink exponent for these polymers was 0.26, which is much lower than 0.5 and suggested that the polymers possess a highly branched architecture. R_h~M_w~(0.42) for HUPEA was determined from [η] by using Einstein's equation for a hard sphee.
     Hyperbranched unsaturated polyesteramides solutions showed a Newtonian behavior with steady shear viscosities independent of shear rate, which indicated the absence of physical entanglement. Solution viscosity dependence on the temperature was also investigated over a temperature range 20- 60℃for HUPEA and 15-50~C for Hupea. The general trend seemed to indicate that solution viscosities of HUPEA at 40℃yield lower values, and that solution viscosities of Hupea at 25℃yield lower values. The above-mentioned rheological behavior also strongly suggested that these polymers possess a highly branched architecture.
     For the first time, ionizing irradiation effect on hyperbranched polymers was studied. The results showed that the gel was absent in irradiated HUPEA polymers at the investigated absorbed dose range and that the chemical structure of the polymers changed byγray radiation. The [η] of the polymers irradiated in solution form showed no dependence on radiation dose, but the [η] of the polymers irradiated in solid decreased with the increasing dosage. The temperatures of thermal transition and weight loss of HUPEA polymers irradiated in solid increased with the increasing dosage. The mechanical properties of the blends of HUPEA and their irradiated copies respectively with polycarbonate had been studied in this research. The results showed that the properties of PC/HUPEA were lower than that of PC, but that the properties of the blends of HUPEA irradiated at 100 kGy with polycarbonate were more higher than PC and PC/HUPEA, especially the tensile modulus, the flexural modulus and the maximum flexural strength increased 31%, 7 % and 6.3 % respectively.
引文
1 Hawker C J, Lee L, Fréchet J M J. J Am Chem Soc, 1991, 113: 4583-4588
    2 邱藤,唐黎明,张晓龙,刘德山,超支化聚合物的合成、性能和应用,化学通报,2001,64(9),w76
    3 Holter D, Burgath A, Frey H. Degree of branching in hyperbranched polymers. Acta Polym 1997, 48: 30-35
    4 Holter D, Frey H. Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: scope and limitations. Acta Polym 1997, 48: 298-309
    5 Kim Y H. J Polym Sci, Part A: Polym Chem, 1998, 36: 1685-1698
    6 Mansfield M L. Macromolecules, 1993, 26: 3811-3814
    7 Voit B. New developments in hyperbranched polymers. J Polym Sci, Part A: Polym Chem, 2000, 38: 2505-2525
    8 Fréchet J M, Hawker C J, Gitsov I, Leon J W. J Macromol Sci, Pure Appl Chem, 1996, A33: 1399
    9 Kim Y H, Webster O W. Hyperbranched Polyphenylenes. Macromolecules, 1992, 25: 5561-5572
    10 Kim Y H. J Am Chem Soc, 1992, 114: 4947-4948
    11 Muzafarov A M, Golly M, Moiler M. Macromolecules, 1995, 28: 8444-8446
    12 Gao C, Yan D. Progress in Polymer Science, 2004, 29: 183-275
    13 Percec V, Kawasumi M. Macromolecules, 1992, 25: 3843-3850
    14 Percec V, Ch P, Kawasumi M. Macromolecules, 1994, 27: 4441-4453
    15 Kim Y H, Webster O W. J Am Chem Soc, 1990, 112: 4592-4597
    16 Hult A, Malmtrom E, Johansson M. Polymer, 2000, 41 (9): 3193—3203
    17 施文芳.可光固化星形超支化聚酯的合成与表征,高分子学报,1997,10 (5):549—554
    18 Yan D Y, Hou J, Zhu X Y, Kosinan J J, Wu H S. A new approach to control crystallinity of resulting polymers: self-condensing ring opening polymerization. Macromol Rapid Commun, 2000, 21: 557-561
    19 Yan D Y, Zhou Z. Macromolecules, 1999, 32, 819-824
    20 Zhou Z, Yan D Y. Polymer, 2000, 41, 4549-4558
    21 Radke W, Litvinenko G., Muller A H E. Macromolecules, 1998, 31, 239-248
    22 Yan D Y, Zhou Z. Macromolecules, 1999, 32, 245-250
    23 Bharathi P, Moore J S. Macromolecules,2000,33,3212-3217
    24 Hanselmann R, Holter D, Frey H. Macromolecules,1998,31,3790-3801
    25 Galina H, Lechowicz J B, Walczak M. Macromolecules, 2002, 35(8), 3261-3265
    26 Flory P J. J Am Ctiem Soc, 1952, 74(3): 2718-2723
    27 周志平,颜德岳.高等学校化学学报,1999,20:1978-1981
    28 Miravet J F, Frechet J M J. Macromolecules, 1998, 31: 3461-3468
    29 Malmstrom E, Hult A. Macromolecules, 1996, 29, 1222
    30 Malmstrom E, Johansson M, Hult A. Macromolecules 1995, 28, 1698
    31 Ihre H, Hult A, Soderlind E. J. Am. Chem Soc, 1996, 118, 27, 6388
    32 Magnusson H,Malmstrom E,Hult A.Macromolecules,2000,33,3099-3104
    33 Nunez C M,Chiou B S,Andrady A L,Khan S A.Macromolecules,2000,33:1720-1726
    34 Kricheldorf H R,Zang Q-Z,Schwarz G.Polymer,1982,23:1821
    35 Wooly K L,Hawker C J,Lee R,Frechet JMJ.Polym J,1994,26,187-197
    36 Mock A, Burgath A, Hanselmann R, Frey H.Macromolecules,2001,34,7692-7698
    37 Turner S R,Voit B I,Mourey T H.Macromolecules,1993,26,4617
    38 Turner S R,Walter F,Voit B I,Mourey T H.Macromolecules,1994,27,1611
    39 Kumar A,Ramakrishnan S.Macromolecules,1996,29,2524-2530
    40 Parker D,Feast W J.Macromolecules,2001,34,2048-2059
    41 Parker D,Feast W J.Macromolecules,2001,34,5792-5798
    42 Chu C F,Hawker C J,Pomery P J,et al.J Polym Sci,Part A:Polym Chem,1997,35;1627-1633
    43 Kricheldorf H R,Studenbrock T.Polymer,1997,38,3373-3383
    44 Wooly K L,Frechet JMJ,etal.Polymer,1994,35,4489-4495
    45 Mulmstrom E,Hult A,Gedde U W.Polymer,1997,38,4873-4879
    46 Kricheldorf H R,Bolender O,Wollhein T.Macromolecules,1999,32(12) :3878-3882
    47 Bolton D H,Wooley K L.Macromolecules,1997,30,1890-1896
    48 Yang G,Jiker M,Kakimoto M.Macromolecules,1998,3 1:5964
    49 Yang G,Jikei M,Kakimoto M.Macromolecules,1999,32(7) :2215-2220
    50 Ishida Y,Sun A C F,Jikei M,Kakimoto M.Macromolecules,2000,33(8) :2832-2838
    51 Jikei M,Chon S H,Kakimoto M,Kawauchi S,Imase T,Watanebe J.Macromolecules,1999,32(6) ,2061-2064
    52 Yamanaka K,Jikei M,Kakimoto M.Macromolecules,2000,33(4) ,1111-1114
    53 Yamanaka K, Jikei M, Kakimoto M.Macromolecules,2000,33(19) ,6937-6944
    54 Fang J,Kita H,Okamoto K.Macromolecules,2000,33(13) ,4639-4646
    55 Thompson D S,Markoski L J,Moore J S.Macromolecules,2000,33(17) ,6412-6415
    56 Thompson D S, Markoski L J, Moore J S.Macromolecules,1999,32(5) ,4764-4768
    57 Hawker C J,Chu F.Macromolecules,1996,29,4370-4380
    58 Morikawa A.Macromolecules,1998,31(1 8) ,5999-6009
    59 Kwak S Y,Lee H Y.Macromolecules,2000,33(15) ,5536-5543
    60 Miraret J F,Frechet JMJ.Macromolecules,1998,31,3461-3468
    61 Paulasaari J K,Weber W P.Macromolecules,2000,33(6) ,2005-2010
    62 Gao C,Yan D Y.J Chem Soc,Chem Commun,2001,(1) ,107-108
    63 Yan D Y,Gao C.Macromolecules,2000,33(21) ,7693-7699
    64 Lu P,Paulasaari J K,Weber W R.Macromolecules,1996,29(27) ,8583-8586
    65 Londergan T M,You Y J,Thompson M E,Weber W P.Macromolecules,1998,3 1(9) :2784-2788
    66 Murtuza S, Harkins S B, Long G. S, Sen A. J Am Chem Soc, 2000, 122(9): 1867-1872
    67 Frechet J M J, Henmi M, Gitsov I, etal. Science, 1995, 269, 1080-1083
    68 Hawker C J, Frechet J M J, etal. J Am Chem Soc, 1995, 117, 10763-10764
    69 Paulo C, Puskas J E. Macromolecules, 2001, 34(4), 734-739
    70 Gaynor S G., Edelman S, Matyjaszewski K. Macromolecules, 1996, 29(3): 1079-1081
    71 Sakamoto K, Aimiya T, Kira M. Chem Lett, 1997, 1245-1246
    72 Sunder, A, Hanselmann R, Frey H, Mulhaupt R. Macromolecules, 1999, 32: 4240-4246
    73 Sunder A, Bauer T, Mulhaupt R, Frey H. Macromolecules, 2000, 33(4), 1330-1337
    74 Suzuki M, Yoshida S. Macromolecules, 1998, 31, 1716-1719
    75 Trollsas M, Hedrick J L. J Am Chem Soc, 1998, 120, 4644-4651
    76 Trollsas M, Atthoff B, Claesson H, Hedrick J L. Macromolecules, 1998, 31(11): 3439-3445
    77 Chang H T, Fréchet J M J. J Am Chem Soc, 1999, 121: 2313-2314
    78 Gong C G., Fréchet J M J. Macromolecules, 2000, 33: 4997-4999
    79 Yuichi I, Mitsutoshi J, Masaaki K. Kobunshi Ronbunshu, 1997, 54(12): 891-895
    80 Van Genderen M H P, Baars M W P L,Blissen-Roman C,de Brabander-van den Berg E M M, Meijer E W. Polym Mater Sci Eng, 1995, 73: 336-337
    81 Atsushi Morikawa, Masaaki Kakimoto, Yoshio Imai.. Macromolecules, 1991, 24(12): 3469-3474
    82 Christophe G, Christophe L, Anne-Marie C, Jean-Pierre M. Science, 1997, 277: 1981-1984
    83 Lath C, Frey H. Macromolecules, 1998, 31: 2381—2383
    84 Muller A H E, Yan D. Macromolecules, 1997, 30: 7015-7023
    85 Muller A H E, Yan D. Macromolecules, 1997, 30: 7024-7033
    86 魏焕郁,施文芳.高等学校化学学报,2001,22(2):338-344
    87 Kambouris P, Hawker C J. J Chem Soc, Perkin Trans 1, 1993, 2717-2721
    88 洪玲,王新灵,赵喜安,唐小真.多检测凝胶渗透色谱技术在超支化聚氨酯表征中的应用.上海交通大学学报,2003,37:629—631
    89 Sahota H S, Lloyd P M, Yeates S G.. J Chem Soc, Chem Commun, 1994, 2445
    90 Smith Tara J, Mathias L J. Polymer, 2002, 43(26): 7275-7278
    91 Twyman L J, King A S H, Burnett J, Martin I K. Tetrhedron Letters, 2004, 45(2): 433-435
    92 Suzuki M, Ii A, Saegusa T. Macromolecules, 1992, 25: 7071
    93 Hawker CJ, Chu F. Macromolecules, 1996, 29: 4370
    94 Voit B I, Bohme F. High Perform Polym, 2001, 13, 21
    95 Hult A, Malmtrom E, Johansson M. Polymer, 2000, 41(9): 3193-3203
    96 Percec V, Kawasumi M. Macromolecules, 1992, 25: 1164
    97 Percec V, Cho CG, Pugh C. Macromolecules, 1993, 26: 963
    98 Kumar A., Ramakrishnan S.. Macromolecules, 1996, 29: 2524-2530
    99 曹胜光,翁家宝,林雪芳.一种超支化液晶性的研究.液晶与显示,2002,17(5):353—357
    100 贺小华,张海良,王霞瑜.新型超支化聚羟甲基醚液晶的合成.高分子材料科学与工程,2003,19(2):209—212
    101 王国建,颜德岳.高分子通报,1999,2:1-10
    102 Kim YH.U.S.Pat 4857630
    103 Kim YH, Webster OW. Polym Prep, 1988, 29(2): 310-311
    104 Schmaljohann D, Potschke P, Hassler R, Voit B I, Froehling P E, Mostert B, Loontjens J A. Macromolecules, 1999, 32(19), 6333-6339
    105 Sorensen K, Pettersson B, Boogh L, et al. WO9745474, 1997
    106 Jannerfeldt G, Boogh L, Manson J A E. J Polym Sci, Part A: Polym Phys, 1999, 37, 2065-2077
    107 Hong Y, Cooper-white J J, Mackay M E. J Rheol, 1999, 43(3), 781-793
    108 Hong Y, Coombs S J, Cooper-white J J. Polymer, 2000, 41, 7705-7713
    109 施文芳,魏焕郁,黄宏.Cn1248586A,2000
    110 Ran. by, B.; Shi, W. F. WO96107688, 1996
    111 洪啸吟,陈其道,张月梅,刘广容.CN1252413A,2000
    112 Bergbreiter D E, Tao G L, Franchina J G, Sussman L. Macromolecules, 2001, 34(9); 3018-3023
    113 Zhou Y, Bruening M L, Liu Y, Crooks R M, Bergbreiter D E. Langmuir, 1996, 12(23), 5519-5521
    114 Zhou Y, Bruening M L, Bergbreiter D E, Grooks R M, Wells M. J Am Chem Soc, 1996, 118, 3773
    115 Bruening M L, Zhou Y, Aguilar G., Agee R, Bergbreiter D. E, Grooks R M. Langmuir, 1997, 13 (4), 770-778
    116 Liu H B, Uhrich K. Polymer Preprint, 1997, 38(2), 582-583
    117 Iyer J, Fleming K, Hammond P T. Macromolecules, 1998, 31, 8757-8765
    118 Hedrick J L, Hawker C J, Miller R D, et al. Macromolecules, 1997, 30, 7607-7610
    119 Miller L L, Duan R G, Tully D C, et al. J Am Chem Soc, 1997, 119, 1005-1010
    120 Fomina L, Salcedo R. Polymer, 1996, 37, 1723
    121 Dai L, Huang S, Lu J, Mau A, Zhang F. Polym.Prepr (Am Chem Soc, Div Polym Chem)1998, 39(1), 171
    122 Wang F, Wilson M S, Rauh R D. Macromolecules, 1999, 32(13), 4272-4278
    123 Tao X. T, Zhang Y D, Tatuso W, et al. Adv Mater, 1998, 10(3), 226-230
    124 Hawker C. J., Chu F., Pomery P. J., Hill D. J. Y.. Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules, 1996, 29: 3831-3838
    125 Zhaoyin Wen, Takahito Itoh, Yoshiaki Ichikawa, MasatakaKubo, Osamu Yamamoto. Solid State Ionics, 2000, 134: 281-289
    126 Takahito Itoh, Nobuyuki Hirata, Zhaoyin Wen, Masataka Kubo, Osamu Yamamoto. Journal of Power Source, 2002, 97-98: 637-640
    127 洪玲,唐小真,王新灵.超支化聚氨酯固体电解质的光谱学研究.高分子学报,2002,6:775—779
    128 陈建军,王新灵,唐小真.聚氨酯/超支化聚醚/碱金属复合体系及其离子导电性.上海交通大学学报,2001,23(4):574—577
    129 陈建军,王新灵,唐小真.聚氨酯/超支化聚醚磺酸盐固体聚合物电解质研究.高分子材料科学与工程,2002,18(3):143—146
    130 Tsubokawa N, Hayashi Shinji, Nishimura Junichi. Progress in Organic Coatings, 2002, 44: 69-74
    131 Guo Z X, Yu J. J Mater Chem, 2002, 12: 468-472
    132 Guo Z X, Li Y, Yu J. Chem J Chinese Universities, 2003, 6: 1139-1141
    133 谭惠民,罗运军.超支化聚合物,2005,北京:化学工业出版社,277—279
    134 Wooly K L, Hawker C J, Frechet J M J. J Chem Soc, Perkin Trans 1, 1991, 1059
    135 Kim Y. H.. Advanced Materials, 1992, 4: 764
    136 Pesak D J, Moore J S. Macromolecules, 1997, 30: 6467
    137 Kim Y H. J Polym. Sci, Part A: Polym Chem, 1998, 36: 1685
    138 Froehling P E. J Polym Sci, Part A: Polym Chem, 2004, 42: 3110-3115
    139 Stanssens D, Hermanns R, Wories H. Prog Org Coatings, 1993, 22, 379
    140 van Benthem R, Rietberg J, Stanssens D.(DSM NV). European Pantent 1036106, October 1, 1997
    141 van Benthem R A T M. Progress in organic coatings, 2000, 40: 203-214
    142 张良均,王治国,童身毅.涂料工业,2004,7:11—13,62
    143 Topchim N V. PCT Patent WO 02/48459, December 11, 2000
    144 谭惠民,罗运军.超支化聚合物,北京:化学工业出版社,2005:178—188
    145 付志伟,唐黎明,郭宝华,刘德山.高分子学报,2003,5:754—756
    146 齐东超,唐黎明,方宇,付志伟,郭宝华,钱震宇.塑料工业,2004,7:18—19
    147 Froehling P E. J Polym Sci, Part A: Polym. Chem, 2004, 42: 3110-3115
    148 Muscat D, Benthem R.. ATM Topic in Current Chemistry, 2001, 212: 41
    149 Shell International Research. PCT Patent WO 01/77270, April 7, 2000
    150 Seiler M, Kohler D, Arlt W. Sep Purif Technol, 2002, 29, 245
    151 Geladé, E.; Goderis, B.; de Koster., C. G.; Meijerink, N.; van Benthem, R. A. T. M.; Fokkens, R.; Nibbering, N. M. M.; Mortensen, K.; Macromolecules 2001, 34, 3552
    152 Young, R. J,; Lovell, P. A.; Introduction to Polymers, 2nd ed.; Chapman & Hall: New York, 1991
    153 Mansfield, M. L.; Klushin, L. I.; Macromolecules 1993, 26, 4262
    154 Chen, Z. Y.; Cui, S. -M.; Macromolecules 1996, 29, 7943
    155 Scherrenberg, R.; Coussens, B.;van Vliet, P.; Edouard, G.; Brackman, J.; de Brabander, E.; Macromolecules 1998, 31, 456.
    156 Stechemesser, S.; Elmer, W. ; Macromolecules 1997, 30, 2204
    157 Murat, M.; Grest, G. S.; Macromolecules 1996, 29, 1278
    158 Mansfield, M; Polymer 1994, 35, 1827
    159 Burchard, W.; Adv. Polym. Sci. 1999, 143, 113
    160 De Luca, E.; Richards, R. W.; J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 1339
    161 Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Frechet, J. M. J.; Hawker. C. J.; Wooley, K. L.; Macromolecules 1992, 25, 2401
    162 Hawker, C. J.; Farrington, P. J.; Mackay, M. E.; Wooley, K. L.; Frechet, J. M. J.; J. Am. Chem. Soc. 1995, 117, 4409
    163 Hobson, L. J.; Feast, W. J.; Polymer 1999, 40, 1279
    164 Widmann, A. H.; Davies, G. R.; Comput. Theor. Polym. Sci. 1998, 8, 191
    165 Aerts, J.; Comput. Theor. Polym. Sci. 1998, 2, 49
    166 Fréchet J M J. The 35th IUPAC Int Syrup on Macromolecules, Ohio, USA: Akron, 1994
    167 Uppuluri, S.; Keinath, S. E.; Tomalia, D. A.; Dvornic, P. R.; Macromolecules 1998, 31, 4498
    168 Kharchenko, S. B.; Kannan, R. M.; Macromolecules 2003, 36, 407
    169 Farrington, P. J., Hawker, C. J.. Macromolecules, 1998, 31: 5043
    170 谭惠民,罗运军.树枝形聚合物,北京:化学工业出版社,2002年,p151-183
    171 Brenner A R, Voit B I, Massa D J, Turner R S. Macromol. Symp., 1996, 102: 47
    172 Schmaljohann D, et al. Macromol. Chem. Phys, 2000, 201: 49
    173 吴季兰,戚生初.辐射化学,北京:原子能出版社,1993年,p156-198
    174 Hsieh T-T, Tiu C, Sion G P. Melt rheology of aliphatic hyperbranched polyesters with various molecular weight. Polymer, 2001, 42: 1931-1939
    175 马瑞德,潘治平,高南,董良昶,周良毅.辐射加工技术,成都:四川科学技术出版社,1984年,p14-34
    176 Massa D J, Shriner K A, Turner S R, Voit B I. Novel Blends of Hyperbranched Polyesters and Linear Polymers. Macromolecules, 1995, 28 (9): 3214—3220
    177 Wu H, Xu J, Liu Y, HEIDEN P. J. Appl. Polym. Sci., 1999, 72: 151-163
    178 Boogh L, Petterson B, Anders J. Dendritic hyperbranched polyers as tougheners for epoxy_resins. Polymer, 1999, 40: 2249-2261
    179 Rolf A T M van Benthem. Progress in Organic Coatings, 2000, 40: 203-214
    180 Burkinshaw S W, Froehling P E, Mignanelli M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres. Dyes and Pigments, 2002, 53: 229-235
    181 Mulken T J, et al. Processing and characterization of reactive polystyrene/ hyperbranched polyester blends. Polymer, 2000, 41(9): 3193-3203
    182 Hsieh T-T, Tiu C, Sion G P. Rheological behavior of polyer blends containing only hyperbranched polyesters of varying generation number. Polymer, 2001, 42: 7635-7638
    183 Viot B. et al. Macromolecules, 1999, 32(19): 6333-6339
    184 赵宝辉.超支化聚合物合成、表征及其对聚氯乙稀改性研究.河北大学硕士论文,2003年
    185 齐东超,唐黎明,方宇,冯吉,邱义鹏.超支化聚(酯-酰胺)对聚碳酸酯的流变改性.高分子材料科学与工程,2005,21(4):205-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700