石墨烯基复合材料的调控合成及其储锂性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯基复合材料具有独特的物理化学性质,其在电化学储锂等诸多领域具有极大的应用潜力。精细调控石墨烯基复合材料中不同基元材料的结构、形貌和界面耦合形态,进而优化复合材料电极的导电性、结构稳定性和电极界面性能,对开发高能量密度、大功率密度和循环稳定的新型储锂材料具有重要意义。本论文以石墨烯基复合材料的可控制备与电化学储锂性能为主线,分别从石墨烯材料的储锂机制、石墨烯对过渡金属化合物材料储锂性能的影响、石墨烯基复合材料的调控合成及其电化学性能,以及高含量氮掺杂对石墨烯电化学性能的影响等方面进行了研究。
     使用电化学阻抗谱(EIS)法系统地研究了石墨烯材料电极的首次阴极极化过程,分析了锂离子嵌入过程中的SEI膜阻抗和电荷传递电阻随电极极化电位的变化。研究表明,石墨烯材料电极表面的SEI膜主要在0.95~0.7V之间形成,石墨烯电极在较低电极电位下的嵌锂反应具有较好的可逆性,测得锂离子在石墨烯材料电极中的电化学嵌入反应的对称因子α为0.446。
     直接使用氧化石墨烯为原料,采用水热-自组装法制备了石墨烯基纳米Fe2O3复合材料。该复合材料中的石墨烯和Fe2O3纳米晶均具有可逆储锂功能,还会发挥协同储锂效应,贡献额外的储锂容量,从而实现较高的可逆容量、优异的循环性能,复合材料电极在100mA g-1电流密度下的可逆容量为1052mAh g-1,在100周循环过程中的可逆容量始终保持在1000±50mAh g-1,此外,复合材料电极还具有优异的倍率性能。
     分别使用矿化剂和热处理调控石墨烯基复合材料的结构和形貌,优化复合材料的导电性能、结构稳定性和电极界面性能。研究表明,石墨烯表面负载NiO纳米盘复合材料具有较好的结构稳定性,能有效抑制电极表面SEI膜的破损和反复生成过程,该复合材料电极的可逆转化反应过程分两步进行。石墨烯包裹Cu2+1O/Cu复合材料电极在50mA g1电流密度下的可逆容量438mAh g1,60周的容量保持率为84%;同时也具有优良的倍率性能。
     采用自下而上法制备了高含量氮掺杂石墨烯,研究了氮掺杂和缺陷结构对石墨烯的电化学性能影响,发现氮掺杂石墨烯的储锂反应在低倍率下兼具锂离子电池和法拉第电容器的特征,在大倍率下为单纯的法拉第电容特征。氮掺杂石墨烯电极100mAg-1电流密度下具的首周可逆容量为832.4mAh g-1,第108周的可逆容量为750.7mAh g-1,电流密度提升到10000mAg-1,可逆容量为333mAh g-1。
By virtue of their extraordinary physicochemical properties, graphene-basedcomposites (GBC) have been intensively explored for electrochemical lithium-storageand other applications. Artful control of the structure, morphology, and coupling ofthe units should be a key importance to improve the conductance, structure stability,and electrode interface of the composites, and pave the way to the design andfabrication of novel GBC with high energy, high power density and long life. In thisdissertation, mechanism of lithium storage in graphene nanosheets (GNS), effects ofGNS to the lithium storage performances of transition metal compounds, controlledsynthesis and electrochemical performances of GBC, and effects of nitrogen dopantsto the electrochemical performances of GNS have been investigated.
     The first cathode polarization of the GNS electrode has been systematicallyinvestigated by using electrochemical impedance spectroscopy. Variations of solidelectrolyte interphase films resistance and charge transfer resistance with the electrodepotential have been studied, relational kinetic parameters of the lithium intercalationin GNS electrode have been calculated.
     Fe2O3-graphene hybrid materials have been fabricated by a hydrothermal strategy,graphene oxide has been directly utilized without any reduction. In the fabricatedmaterials, both graphene sheets and Fe2O3nanoparticles play roles in lithium storage,moreover, extra capacity could also been given due to the synergetic effect. Enhancedreversible capacity, perfect cycling stability and excellent rate capability have beenachieved accordingly.
     Appropriate mineralizers and heat processing have been explored respectively totailoring the morphologies and structures of GBC, and consequent improving theconductance, structure stability, and electrode interface performances of thecomposite. Enhanced capacity and superior cycling stability of GBC have beenachieved, effects of morphologies and structures to the lithium storage in GBC havebeen clarified.
     High concentration nitrogen doped graphene sheets (NGS) have been synthesized,effects of nitrogen dopants and structure defects to the electrochemical performancesof graphene sheets have been investigated. It have been found that the NGS presented a superior lithium storage performance with a hybrid feature of lithium ion batteryand faradic capacitor at a low rate and a faradic capacitor feature at a high rate.
引文
[1]黄彦瑜.锂电池发展简史[J].物理,2007,36(8):643-651.
    [2]陈军,李亚栋.专辑:锂电池关键科技(I)—编者按[J].科学通报,2013,58(31):3107-3107.
    [3] Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materialsfor Li ion batteries[J]. Chemical reviews,2013,113(7):5364-5457.
    [4] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
    [5] Balakrishnan P G, Ramesh R, Prem Kumar T. Safety mechanisms in lithium-ion batteries[J].Journal of Power Sources,2006,155(2):401-414.
    [6] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science,1976,192(4244):1126-1127.
    [7] Whittingham M S. Chalcogenide battery: U.S. Patent4,009,052[P].1977-2-22.
    [8] Armand M B, Chabagno J M, Duclot M. The2nd international conference on solidelectrolytes[C]. St. Andrews, Scotland,1978, abstract No.65.
    [9] Armand M B. Mixed conductors of graphite, processes for their preparation and their use,notably for the production of electrodes for electrochemical generators, and newelectrochemical generators: U.S. Patent4,041,220[P].1977-8-9.
    [10] Armand M. Materials for advanced batteries[M]. New York: Plenum Press,1980.
    [11] Nagaura T, Tozawa K. Lithium ion rechargeable battery[J]. Prog. Batteries Solar Cells,1990,9(2):209-217.
    [12] Wu M S, Chiang P C J, Lin J C. Electrochemical investigations on capacity fading ofadvanced lithium-ion batteries after storing at elevated temperature[J]. Journal of theElectrochemical Society,2005,152(6): A1041-A1046.
    [13] Goodenough J B, Abruna H D, Buchanan M V. Basic research needs for electrical energystorage[C]. Report of the basic energy sciences workshop for electrical energy storage.2007,186.
    [14]于锋,张敬杰,王昌胤,等.锂离子电池正极材料的晶体结构及电化学性能[J].化学进展,2010,22(1):9-18.
    [15] Asakura K, Shimomura M, Shodai T. Study of life evaluation methods for Li-ion batteries forbackup applications[J]. Journal of power sources,2003,119:902-905.
    [16]郑洪河.锂离子电池电解质[M].北京.化学工业出版社,2007.
    [17]王兆翔,陈立泉,黄学杰.锂离子电池正极材料的结构设计与改性[J].化学进展,2011,23(2):284-301.
    [18] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0    [19] Thackeray M. Lithium-ion batteries: An unexpected conductor[J]. Nature materials,2002,1(2):81-82.
    [20]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613.
    [21] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrodematerials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [22] Liu H, Wang Y, Wang K, et al. Synthesis and electrochemical properties of single-crystallineLiV3O8nanorods as cathode materials for rechargeable lithium batteries[J]. Journal of PowerSources,2009,192(2):668-673.
    [23] Wu X L, Guo Y G, Su J, et al. Carbon-nanotube-decorated nano-LiFePO4@C cathodematerial with superior high-rate and low-temperature performances for lithium-ionbatteries[J]. Advanced Energy Materials,2013,3(9):1155-1160.
    [24] Zhang Q, Zhuang Q, Xu S, et al. Synthesis and characterization of pristine Li2MnSiO4andLi2MnSiO4/C cathode materials for lithium ion batteries[J]. Ionics,2012,18(5):487-494.
    [25]张倩倩,庄全超,徐守冬,等. Li2MnSiO4/C复合材料的制备与性能表征[J].硅酸盐通报,2011,30(4):755-758.
    [26]吴承仁,赵长春,王兆翔,等.锂离子电池用富锂层状正极材料[J].化学进展,2011,23(10):2038-2044.
    [27] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ionbatteries[J]. Carbon,2000,38(2):183-197.
    [28] Tirado J L. Inorganic materials for the negative electrode of lithium-ion batteries:state-of-the-art and future prospects[J]. Materials Science and Engineering: R: Reports,2003,40(3):103-136.
    [29]马荣骏.锂离子电池负极材料的研究及应用进展[J].有色金属,2008,60(2):38-45.
    [30]杨立,陈继章,唐宇峰,等.锂离子电池负极材料Li4Ti5O12[J].化学进展,2011,23(2/3):310-317.
    [31] Huggins R A. Lithium alloy negative electrodes[J]. Journal of Power Sources,1999,81:13-19.
    [32] Thackeray M M, Vaughey J T, Johnson C S, et al. Structural considerations of intermetallicelectrodes for lithium batteries[J]. Journal of power sources,2003,113(1):124-130.
    [33]任建国,王科,何向明,等.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597-603.
    [34] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499.
    [35] Cabana J, Monconduit L, Larcher D, et al. Beyond Intercalation-Based Li-Ion Batteries: TheState of the Art and Challenges of Electrode Materials Reacting Through ConversionReactions[J]. Advanced Materials,2010,22(35): E170-E192.
    [36]吴超,崔永丽,庄全超,等.基于转化反应机制的锂离子电池电极材料研究进展[J].化学通报,2011,74(11).
    [37] Noel M, Suryanarayanan V. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes[J]. Journal of Power Sources,2002,111(2):193-209.
    [38]童颂云,宋怀河.中间相沥青炭微球的嵌锂模型[J].电源技术,2002,26(3):176-190.
    [39] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics andcomposites[J]. Electrochimica Acta,1999,45(1):31-50.
    [40] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeablelithium batteries[J]. Advanced materials,1998,10(10):725-763.
    [41] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657.
    [42] Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J].Energy&Environmental Science,2010,3(2):174-189.
    [43] Poizot P, Laruelle S, Grugeon S, et al. Searching for new anode materials for the Li-iontechnology: time to deviate from the usual path[J]. Journal of Power Sources,2001,97:235-239.
    [44] Debart A, Dupont L, Poizot P, et al. A transmission electron microscopy study of thereactivity mechanism of tailor-made CuO particles toward lithium[J]. Journal of TheElectrochemical Society,2001,148(11): A1266-A1274.
    [45] Larcher D, Sudant G, Leriche J B, et al. The electrochemical reduction of Co3O4in a lithiumcell[J]. Journal of the Electrochemical Society,2002,149(3): A234-A241.
    [46] Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacitydisplayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society,2002,149(5): A627-A634.
    [47] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of3d-metal-based inorganic compounds toward Li[J]. Journal of the Electrochemical Society,2002,149(9): A1212-A1217.
    [48] Fu Z W, Wang Y, Yue X L, et al. Electrochemical reactions of lithium with transition metalnitride electrodes[J]. The Journal of Physical Chemistry B,2004,108(7):2236-2244.
    [49] Wang Y, Fu Z W, Yue X L, et al. Electrochemical reactivity mechanism of Ni3N withlithium[J]. Journal of The Electrochemical Society,2004,151(4): E162-E167.
    [50]陈敬波,胡国荣,彭忠东,等.锂离子电池氧化物负极材料研究进展[J].电池,2003,33(3):183-186.
    [51]张颖,张海芳,韩恩山,等.锂离子电池氧化物负极材料的研究进展[J].无机盐工业,2009,41(1):1-4.
    [52] Maier J. Nanoionics: ion transport and electrochemical storage in confined systems[J]. Naturematerials,2005,4(11):805-815.
    [53] Jamnik J, Maier J. Nanocrystallinity effects in lithium battery materials Aspects ofnano-ionics. Part IV[J]. Physical Chemistry Chemical Physics,2003,5(23):5215-5220.
    [54] Amatucci G G, Pereira N. Fluoride based electrode materials for advanced energy storagedevices[J]. Journal of Fluorine Chemistry,2007,128(4):243-262.
    [55] Boyanov S, Womes M, Monconduit L, et al. Mossbauer spectroscopy and magneticmeasurements as complementary techniques for the phase analysis of FeP electrodes cyclingin Li-ion batteries[J]. Chemistry of Materials,2009,21(15):3684-3692.
    [56] Maier J. Size effects on mass transport and storage in lithium batteries[J]. Journal of PowerSources,2007,174(2):569-574.
    [57] Doe R E, Persson K A, Meng Y S, et al. First-pinciples investigation of the Li Fe F phasediagram and equilibrium and nonequilibrium conversion reactions of iron fluorides withlithium[J]. Chemistry of Materials,2008,20(16):5274-5283.
    [58] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J].Advanced Materials,2009,21(45):4593-4607.
    [59] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [60] Hu J, Li H, Huang X, et al. Improve the electrochemical performances of Cr2O3anode forlithium ion batteries[J]. Solid State Ionics,2006,177(26):2791-2799.
    [61] Hu J, Li H, Huang X. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemicaland solid-state letters,2005,8(1): A66-A69.
    [62] Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathinanatase TiO2nanosheets with nearly100%exposed (001) facets for fast reversible lithiumstorage[J]. Journal of the American Chemical Society,2010,132(17):6124-6130.
    [63] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energyconversion and storage devices[J]. Nature materials,2005,4(5):366-377.
    [64] Reddy M V, Yu T, Sow C H, et al. α-Fe2O3nanoflakes as an anode material for Li-IonBatteries[J]. Advanced Functional Materials,2007,17(15):2792-2799.
    [65] Huang X, Zhao X, Wang Z, et al. Facile and controllable one-pot synthesis of an orderednanostructure of Co(OH)2nanosheets and their modification by oxidation forhigh-performance lithium-ion batteries[J]. Journal of Materials Chemistry,2012,22(9):3764-3769.
    [66] Liu S, Wang Z, Yu C, et al. A flexible TiO2(B)-based battery electrode with superior powerrate and ultralong cycle life[J]. Advanced Materials,2013,25(25):3462-3467.
    [67] Pan A, Wu H B, Yu L, et al. Template-free synthesis of VO2hollow microspheres withvarious interiors and their conversion into V2O5for lithium-ion batteries[J]. AngewandteChemie,2013,125(8):2282-2286.
    [68] Liu B, Soares P, Checkles C, et al. Three-dimensional hierarchical ternary nanostructures forhigh-performance Li-ion battery anodes[J]. Nano letters,2013,13(7):3414-3419.
    [69] Gao J, Lowe M A, Abruna H D. Spongelike nanosized Mn3O4as a high-capacity anodematerial for rechargeable lithium batteries[J]. Chemistry of Materials,2011,23(13):3223-3227.
    [70] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications[J]. Nature materials,2006,5(7):567-573.
    [71] Xiang J Y, Tu J P, Yuan Y F, et al. Electrochemical investigation on nanoflower-like CuO/Nicomposite film as anode for lithium ion batteries[J]. Electrochimica Acta,2009,54(4):1160-1165.
    [72] Guo J, Liu Q, Wang C, et al. Interdispersed amorphous MnOx–carbon nanocomposites withsuperior electrochemical performance as lithium-storage material[J]. Advanced FunctionalMaterials,2012,22(4):803-811.
    [73] Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/carbon nanotube arrayelectrodes for high-performance lithium batteries[J]. Nano Letters,2009,9(3):1002-1006.
    [74] Ji L, Zhang X. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anodematerials for high-performance lithium-ion batteries[J]. Electrochemistry Communications,2009,11(4):795-798.
    [75] Wu W, Wang Y, Wang X, et al. Structure and electrochemical performance of FeF3/V2O5composite cathode material for lithium-ion battery[J]. Journal of Alloys and Compounds,2009,486(1-2):93-96.
    [76] Wu W, Wang X, Wang X, et al. Effects of MoS2doping on the electrochemical performanceof FeF3cathode materials for lithium-ion batteries[J]. Materials Letters,2009,63(21):1788-1790.
    [77] Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials,2007,6(3):183-191.
    [78] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet familiesfor use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [79] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithiumion batteries[J]. Carbon,2009,47(8):2049-2053.
    [80] Stankovich S, Piner R D, Nguyen S B T, et al. Synthesis and exfoliation of isocyanate-treatedgraphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347.
    [81] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J].Nature,2006,442(7100):282-286.
    [82] Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Diracfermions in graphene[J]. Nature,2005,438(7065):197-200.
    [83] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phaseexfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568.
    [84] Banhart F, Ajayan P M. Carbon onions as nanoscopic pressure cells for diamond formation[J].Nature,1996,382(6590):433-435.
    [85] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity andinclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527.
    [86] Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of graphene[J]. NanoLetters,2008,9(1):220-224.
    [87] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphenedevices on SiO2[J]. Nature nanotechnology,2008,3(4):206-209.
    [88] Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films afterheat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J].Carbon,2009,47(1):145-152.
    [89] Jung I, Dikin D A, Piner R D, et al. Tunable electrical conductivity of individual grapheneoxide sheets reduced at “low” temperatures[J]. Nano Letters,2008,8(12):4283-4287.
    [90] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [91] Partoens B, Peeters F M. From graphene to graphite: electronic structure around the Kpoint[J]. Physical Review B,2006,74(7):075404.
    [92] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensionalnanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [93] Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J].Nanotechnology,1999,10(3):269.
    [94] Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transportmeasurements of mesoscopic graphite devices[J]. Applied Physics Letters,2005,86(7):073104-073104-3.
    [95] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms[J]. Science,2004,306(5696):666-669.
    [96] Cai M, Thorpe D, Adamson D H, et al. Methods of graphite exfoliation[J]. Journal ofMaterials Chemistry,2012,22(48):24992-25002.
    [97] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3(2):101-105.
    [98] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [99] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [100] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of theRoyal Society of London,1859:249-259.
    [101] Staudenmaier L. Verfahren zur darstellung der graphits ure[J]. Berichte der deutschenchemischen Gesellschaft,1898,31(2):1481-1487.
    [102] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation oflithium ions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [103] Bourlinos A B, Gournis D, Petridis D, et al. Graphite oxide: chemical reduction tographite and surface modification with primary aliphatic amines and amino acids[J].Langmuir,2003,19(15):6050-6055.
    [104] Chattopadhyay J, Mukherjee A, Hamilton C E, et al. Graphite epoxide[J]. Journal of theAmerican Chemical Society,2008,130(16):5414-5415.
    [105] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheetsderived from splitting graphite oxide[J]. The Journal of Physical Chemistry B,2006,110(17):8535-8539.
    [106] Wu Z S, Ren W, Gao L, et al. Synthesis of graphene sheets with high electricalconductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. Acs Nano,2009,3(2):411-417.
    [107] Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene[J].Journal of the American Chemical Society,2006,128(24):7720-7721.
    [108] Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets[J]. Journal of the AmericanChemical Society,2008,130(48):16201-16206.
    [109] Worsley K A, Ramesh P, Mandal S K, et al. Soluble graphene derived from graphitefluoride[J]. Chemical Physics Letters,2007,445(1):51-56.
    [110] Chakraborty S, Guo W, Hauge R H, et al. Reductive alkylation of fluorinated graphite[J].Chemistry of Materials,2008,20(9):3134-3136.
    [111] AngeláRodriguez-Perez M, de Saja J A, AngeláLopez-Manchado M. Functionalizedgraphene sheet filled silicone foam nanocomposites[J]. Journal of Materials Chemistry,2008,18(19):2221-2226.
    [112] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-solublenoncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society,2008,130(18):5856-5857.
    [113] Hao R, Qian W, Zhang L, et al. Aqueous dispersions of TCNQ-anion-stabilizedgraphene sheets[J]. Chemical Communications,2008(48):6576-6578.
    [114] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets forpolymer nanocomposites[J]. Nature Nanotechnology,2008,3(6):327-331.
    [115] Si Y, Samulski E T. Exfoliated graphene separated by platinum nanoparticles[J].Chemistry of Materials,2008,20(21):6792-6797.
    [116] Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalentions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano,2008,2(3):572-578.
    [117] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbonnanotubes to form graphene nanoribbons[J]. Nature,2009,458(7240):872-876.
    [118] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J].Nature,2009,458(7240):877-880.
    [119] Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemical vapordeposition[J]. Chemical Physics Letters,2009,467(4):361-364.
    [120] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substratesby chemical vapor deposition[J]. Nano letters,2008,9(1):30-35.
    [121] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes[J]. Nature,2009,457(7230):706-710.
    [122] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphenefilms on copper foils[J]. Science,2009,324(5932):1312-1314.
    [123] Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene andrelated applications[J]. Accounts of Chemical Research,2013,46(10):2329-2339.
    [124] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties anda route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B,2004,108(52):19912-19916.
    [125] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patternedepitaxial graphene[J]. Science,2006,312(5777):1191-1196.
    [126] Ohta T, Bostwick A, Seyller T, et al. Controlling the electronic structure of bilayergraphene[J]. Science,2006,313(5789):951-954.
    [127] Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers byatmospheric pressure graphitization of silicon carbide[J]. Nature Materials,2009,8(3):203-207.
    [128] Pan Y, Zhang H, Shi D, et al. Highly Ordered, Millimeter-Scale, Continuous,Single-Crystalline Graphene Monolayer Formed on Ru (0001)[J]. Advanced Materials,2009,21(27):2777-2780.
    [129] Kuang Q., Xie S.Y., Jiang Z.Y., et al. Low temperature solvothermal synthesis ofcrumpled carbon nanosheets[J]. Carbon,2004,42(8-9):1737-1741.
    [130] Shen J M, Feng Y T. Formation of flower-like carbon nanosheet aggregations and theirelectrochemical application[J]. Journal of Physical Chemistry C,2008,112(34):13114-13120.
    [131] Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based onsolvothermal synthesis and sonication[J]. Nature Nanotechnology,2009,4(1):30-33.
    [132] Clar E, Ironside C T. Proceedings of the chemical society[C], Proceedings of theChemical Society,1958(May):150-150.
    [133] Clar E, Ironside C T, Zander M.28. The electronic interaction between benzenoid ringsin condensed aromatic hydrocarbons.1:12-2:3-4:5-6:7-8:9-10:11-hexabenzocoronene,1:2-3:4-5:6-10:11-tetrabenzoanthanthrene, and4:5-6:7-11:12-13:14-tetrabenzoperopyrene[J]. Journal of the Chemical Society,1959:142-147.
    [134] Halleux A, Martin R H, King G S D. Synthèses dans la série des dérivés polycycliquesaromatiques hautement condensés. L'hexabenzo-1,12;2,3;4,5;6,7;8,9;10,11-coronène,le tétrabenzo-4,5;6,7;11,12;13,14-péropyrène et le tétrabenzo-1,2;3,4;8,9;10,11-bisanthène[J]. Helvetica Chimica Acta,1958,41(5):1177-1183.
    [135] Hendel W, Khan Z H, Schmidt W. Hexa-peri-benzocoronene, a candidate for the originof the diffuse interstellar visible absorption bands?[J]. Tetrahedron,1986,42(4):1127-1134.
    [136] Rabe J P, Stabel A, Herwig P, et al. Diodenartige strom-spannungs-kennlinie durch eineinzelnes molekül-rastertunnelspektroskopie mit submolekularer aufl sung an einemalkylierten, peri-kondensierten hexabenzocoronen[J]. Angewandte Chemie,1995,107(15):1768-1770.
    [137] Müeller M, Kübel C, Müellen K. Giant polycyclic aromatic hydrocarbons[J].Chemistry-A European Journal,1998,4(11):2099-2109.
    [138] Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics[J]. ChemicalReviews,2007,107(3):718-747.
    [139] Wang Z, Tomovic Z, Kastler M, et al. Graphitic molecules with partial “zig/zag”periphery[J]. Journal of the American Chemical Society,2004,126(25):7794-7795.
    [140] Kastler M, Schmidt J, Pisula W, et al. From armchair to zigzag peripheries innanographenes[J]. Journal of the American Chemical Society,2006,128(29):9526-9534.
    [141] Simpson C D, Brand J D, Berresheim A J, et al. Synthesis of a giant222carbon graphitesheet[J]. Chemistry-A European Journal,2002,8(6):1424-1429.
    [142]徐秀娟,秦金贵,李振.石墨烯研究进展[J].化学进展,2009,21(12):2559-2567.
    [143] Zhang W, Cui J, Tao C, et al. A strategy for producing pure single-layer graphene sheetsbased on a confined self-assembly approach[J]. Angewandte Chemie,2009,121(32):5978-5982.
    [144] Sun J, Liu H, Chen X, et al. Synthesis of graphene nanosheets with good control overthe number of layers within the two-dimensional galleries of layered double hydroxides[J].Chemical Communications,2012,48(65):8126-8128.
    [145] Li X H, Kurasch S, Kaiser U, et al. Synthesis of monolayer-patched graphene fromglucose[J]. Angewandte Chemie International Edition,2012,51(38):9689-9692.
    [146] Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anodematerial for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(6):1320-1324.
    [147] Mukherjee R, Thomas A V, Krishnamurthy A, et al. Photothermally reduced graphene ashigh-power anodes for lithium-ion batteries[J]. ACS Nano,2012,6(9):7867-7878.
    [148] Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphenenanosheets[J]. Chemistry of Materials,2009,21(14):3136-3142.
    [149] Wan L, Ren Z, Wang H, et al. Graphene nanosheets based on controlled exfoliationprocess for enhanced lithium storage in lithium-ion battery[J]. Diamond and RelatedMaterials,2011,20(5):756-761.
    [150] Tong X, Wang H, Wang G, et al. Controllable synthesis of graphene sheets with differentnumbers of layers and effect of the number of graphene layers on the specific capacity ofanode material in lithium-ion batteries[J] Journal of Solid State Chemistry,2011,184(5):982-989.
    [151] Han S, Wu D, Li S, et al. Graphene: a two-dimensional platform for lithium storage[J].Small,2013,9(8):1173-1187.
    [152] Li T, Gao L. A high-capacity graphene nanosheet material with capacitive characteristicsfor the anode of lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2012,16(2):557-561.
    [153] Yin S, Zhang Y, Kong J, et al. Assembly of graphene sheets into hierarchical structuresfor high-performance energy storage[J]. ACS Nano,2011,5(5):3831-3838.
    [154] Wu Z S, Xue L, Ren W, et al. A LiF nanoparticle-modified graphene electrode forhigh-power and high-energy lithium ion batteries[J]. Advanced Functional Materials,2012,22(15):3290-3297.
    [155] Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhighrate and large capacity for lithium ion batteries[J]. ACS Nano,2011,5(7):5463-5471.
    [156] Pollak E, Geng B, Jeon K J, et al. The interaction of Li+with single-layer and few-layergraphene[J]. Nano letters,2010,10(9):3386-3388.
    [157] Ferre-Vilaplana A. Storage of hydrogen adsorbed on alkali metal doped single-layerall-carbon materials[J]. The Journal of Physical Chemistry C,2008,112(10):3998-4004.
    [158] Ataca C, Akturk E, Ciraci S, et al. High-capacity hydrogen storage by metallizedgraphene[J]. Applied Physics Letters,2008,93(4):043123-043123-3.
    [159] Yao F, Günes F, Ta H Q, et al. Diffusion mechanism of lithium ion through basal planeof layered graphene[J]. Journal of the American Chemical Society,2012,134(20):8646-8654.
    [160] Shao Y, Sui J, Yin G, et al. Nitrogen-doped carbon nanostructures and their compositesas catalytic materials for proton exchange membrane fuel cell[J]. Applied Catalysis B:Environmental,2008,79(1):89-99.
    [161] Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapordeposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758.
    [162] Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphenefilms for lithium battery application[J]. Acs Nano,2010,4(11):6337-6342.
    [163] Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellentlithium storage properties[J]. Journal of Materials Chemistry,2011,21(14):5430-5434.
    [164] Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene:synthesis, characterization, and its potential applications[J]. Acs Catalysis,2012,2(5):781-794.
    [165] Georgakilas V, Otyepka M, Bourlinos A B, et al. Functionalization of graphene: covalentand non-covalent approaches, derivatives and applications[J]. Chemical Reviews,2012,112(11):6156-6214.
    [166] Xu C, Xu B, Gu Y, et al. Graphene-based electrodes for electrochemical energystorage[J]. Energy&Environmental Science,2013,6(5):1388-1414.
    [167]周冠蔚,何雨石,杨晓伟,等.石墨烯及其复合材料在锂离子电池中的应用[J].化学进展,2012,24(2/3):235-245.
    [168] Tian L, Zhuang Q, Li J, et al. The production of self-assembled Fe2O3-graphene hybridmaterials by a hydrothermal process for improved Li-cycling[J]. Electrochimica Acta,2012,65:153-158.
    [169] Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials forenergy storage[J]. Nano Energy,2012,1(1):107-131.
    [170] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacityof SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexiblestructure[J]. Nano Letters,2008,9(1):72-75.
    [171] Evanoff K, Magasinski A, Yang J, et al. Nanosilicon-Coated Graphene Granules asAnodes for Li‐I on Batteries[J]. Advanced Energy Materials,2011,1(4):495-498.
    [172] Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures forenhanced Li-ion insertion[J]. ACS Nano,2009,3(4):907-914.
    [173] Ji F, Li Y L, Feng J M, et al. Electrochemical performance of graphene nanosheets andceramic composites as anodes for lithium batteries[J]. Journal of Materials Chemistry,2009,19(47):9063-9067.
    [174] He Y S, Bai D W, Yang X, et al. Co(OH)2-graphene nanosheets composite as a highperformance anode material for rechargeable lithium batteries[J]. ElectrochemistryCommunications,2010,12(4):570-573.
    [175] Sun Y, Hu X, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene asa high-capacity and long-life anode material for lithium ion batteries[J]. Advanced FunctionalMaterials,2013,23(19):2436-2444.
    [176] Kim H K, Bak S M, Kim K B. Li4Ti5O12/reduced graphite oxide nano-hybrid materialfor high rate lithium-ion batteries[J]. Electrochemistry Communications,2010,12(12):1768-1771.
    [177] Zhu N, Liu W, Xue M, et al. Graphene as a conductive additive to enhance the high-ratecapabilities of electrospun Li4Ti5O12for lithium-ion batteries[J]. Electrochimica Acta,2010,55(20):5813-5818.
    [178] Shi Y, Wen L, Li F, et al. Nanosized Li4Ti5O12/graphene hybrid materials with lowpolarization for high rate lithium ion batteries[J]. Journal of Power Sources,2011,196(20):8610-8617.
    [179] Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene-encapsulated oxidenanoparticles: towards high-performance anode materials for lithium storage[J]. AngewandteChemie International Edition,2010,49(45):8408-8411.
    [180] Wang H, Robinson J T, Diankov G, et al. Nanocrystal growth on graphene with variousdegrees of oxidation[J]. Journal of the American Chemical Society,2010,132(10):3270-3271.
    [181] Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2nanoplates grown on graphene asadvanced electrochemical pseudocapacitor materials[J]. Journal of the American ChemicalSociety,2010,132(21):7472-7477.
    [182] Tian L L, Wei X Y, Zhuang Q C, et al. Chiseled nickel hydroxide nanoplates growth ongraphene sheets for lithium ion batteries[J]. Nano,2013,8(6):1350068.
    [183]田雷雷,魏贤勇,庄全超,等.石墨烯包裹Cu2+1O/Cu复合材料的制备及其储锂性能[J].化学学报,2013,71(09):1270-1274.
    [184] Zhou X, Wang F, Zhu Y, et al. Graphene modified LiFePO4cathode materials for highpower lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(10):3353-3358.
    [185] Liu H, Gao P, Fang J, et al. Li3V2(PO4)3/graphene nanocomposites as cathode materialfor lithium ion batteries[J]. Chemical Communications,2011,47(32):9110-9112.
    [186] Wang H, Yang Y, Liang Y, et al. LiMn1-xFexPO4nanorods grown on graphene sheets forultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie,2011,123(32):7502-7506.
    [187] Zhao X, Hayner C M, Kung H H. Self-assembled lithium manganese oxidenanoparticles on carbon nanotube or graphene as high-performance cathode material forlithium-ion batteries[J]. Journal of Materials Chemistry,2011,21(43):17297-17303.
    [188] Bak S M, Nam K W, Lee C W, et al. Spinel LiMn2O4/reduced graphene oxide hybrid forhigh rate lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(43):17309-17315.
    [189] Shaju K M, Bruce P G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: a high-power andhigh-energy cathode for rechargeable lithium batteries[J]. Advanced Materials,2006,18(17):2330-2334.
    [190] Venkateswara Rao C, Leela Mohana Reddy A, Ishikawa Y, et al.Li(Ni1/3Co1/3Mn1/3)O2-graphene composite as a promising cathode for lithium-ion batteries[J].ACS Applied Materials&Interfaces,2011,3(8):2966-2972.
    [191] Ju J H, Cho S W, Hwang S G, et al. Electrochemical performance ofLi[Co0.1Ni0.15Li0.2Mn0.55]O2modified by carbons as cathode materials[J]. Electrochimica Acta,2011,56(24):8791-8796.
    [192] Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: areview[J]. Journal of Power Sources,2013,240:66-79.
    [1]庄全超,锂离子电池电极界面特性研究[D].厦门.厦门大学,2007.
    [2] Wang J. Analytical electrochemistry[M]. John Wiley&Sons,2006.
    [3]陈体衔.实验电化学[M].厦门:厦门大学,1993.
    [4]庄全超,徐守冬,邱祥云,等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1057.
    [5] Zhuang Q C, Tian L L, Wei G Z, et al. Two-and three-electrode impedance spectroscopicstudies of graphite electrode in the first lithiation[J]. Chinese Science Bulletin,2009,54(15):2627-2632.
    [6]史美伦编著.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [7]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [1] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithiumion batteries[J]. Carbon,2009,47(8):2049-2053.
    [2] Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anodematerial for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(6):1320-1324.
    [3] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithiumions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [4] Mukherjee R, Thomas A V, Krishnamurthy A, et al. Photothermally reduced graphene ashigh-power anodes for lithium-ion batteries[J]. ACS Nano,2012,6(9):7867-7878.
    [5] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet familiesfor use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [6] Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J].Chemistry of Materials,2009,21(14):3136-3142.
    [7] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [8] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [9] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms[J]. Science,2004,306(5696):666-669.
    [10] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derivedfrom splitting graphite oxide[J]. The Journal of Physical Chemistry B,2006,110(17):8535-8539.
    [11] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensionalnanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [12] Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes usedin lithium batteries[J]. Chemistry of Materials,2009,21(13):2604-2606.
    [13] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties ofgraphene[J]. Nature Nanotechnology,2013,8(4):235-246.
    [14] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J].Physical Review Letters,2006,97(18):187401.
    [15]庄全超,田雷雷,魏国祯,等.石墨电极首次阴极极化过程的两电极和三电极电化学阻抗谱研究[J].科学通报,2009(9):1233-1237.
    [16]庄全超,陈作锋,董全峰,等.锂离子电池电解液中甲醇杂质对石墨电极性能影响机制的电化学阻抗谱研究[J].高等学校化学学报,2005,26(11):2073-2076.
    [17] Wu Z S, Ren W, Gao L, et al. Synthesis of graphene sheets with high electrical conductivityand good thermal stability by hydrogen arc discharge exfoliation[J]. Acs Nano,2009,3(2):411-417.
    [18] Falcao E H L, Blair R G, Mack J J, et al. Microwave exfoliation of a graphite intercalationcompound[J]. Carbon,2007,45(6):1367-1369.
    [19] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation intographitized carbons[J]. Journal of The Electrochemical Society,2000,147(1):50-58.
    [20] Holzapfel M, Martinent A, Alloin F, et al. First lithiation and charge/discharge cycles ofgraphite materials, investigated by electrochemical impedance spectroscopy[J]. Journal ofElectroanalytical Chemistry,2003,546:41-50.
    [21] Levi M D, Aurbach D. Distinction between energetic inhomogeneity and geometricnon-uniformity of ion insertion electrodes based on complex impedance and complexcapacitance analysis[J]. The Journal of Physical Chemistry B,2005,109(7):2763-2773.
    [22] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemicalimpedance and the cyclic voltammetric characteristics of graphite electrodes doped withlithium[J]. The Journal of Physical Chemistry B,1997,101(23):4630-4640.
    [23] Aurbach D, Levi M D, Levi E, et al. Common electroanalytical behavior of Li intercalationprocesses into graphite and transition metal oxides[J]. Journal of The Electrochemical Society,1998,145(9):3024-3034.
    [24] Aurbach D, Gamolsky K, Markovsky B, et al. The study of surface phenomena related toelectrochemical lithium intercalation into LixMOyhost materials (M=Ni, Mn)[J]. Journal ofThe Electrochemical Society,2000,147(4):1322-1331.
    [25] Markovsky B, Levi M D, Aurbach D. The basic electroanalytical behavior of practicalgraphite-lithium intercalation electrodes[J]. Electrochimica Acta,1998,43(16):2287-2304.
    [26] Aurbach D. Review of selected electrode-solution interactions which determine theperformance of Li and Li ion batteries[J]. Journal of Power Sources,2000,89(2):206-218.
    [27]庄全超,陈作锋,董全峰,等.石墨负极首次阴极极化过程的电化学阻抗谱研究[J].科学通报,2006,51(1):17-20.
    [28] Zhang S, Shi P. Electrochemical impedance study of lithium intercalation into MCMBelectrode in a gel electrolyte[J]. Electrochimica Acta,2004,49(9):1475-1482.
    [29] Barral G, Diard J P, Montella C. Etude d'un modele de reaction electrochimique d'insertion-I.Resolution pour une commande dynamique a petit signal[J]. Electrochimica Acta,1984,29(2):239-246.
    [30] Yongfang L, Haoquing W. Theoretical treatment of kinetics of intercalation electrodereaction[J]. Electrochimica Acta,1989,34(2):157-159.
    [31] Levi M D, Aurbach D. Frumkin intercalation isotherm-a tool for the description of lithiuminsertion into host materials: a review[J]. Electrochimica Acta,1999,45(1):167-185.
    [1] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657.
    [2] Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J].Energy&Environmental Science,2010,3(2):174-189.
    [3] Meduri P, Pendyala C, Kumar V, et al. Hybrid tin oxide nanowires as stable and high capacityanodes for Li-ion batteries[J]. Nano Letters,2009,9(2):612-616.
    [4] Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage[J]. Angewandte ChemieInternational Edition,2010,49(45):8408-8411.
    [5] Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4nanoparticles as anode oflithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194.
    [6] Reddy M V, Yu T, Sow C H, et al. α-Fe2O3nanoflakes as an anode material for Li-ionbatteries[J]. Advanced Functional Materials,2007,17(15):2792-2799.
    [7] Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithium intercalation intoα-Fe2O3[J]. Journal of The Electrochemical Society,2003,150(1): A133-A139.
    [8] Hang B T, Watanabe I, Doi T, et al. Electrochemical properties of nano-sized Fe2O3-loadedcarbon as a lithium battery anode[J]. Journal of Power Sources,2006,161(2):1281-1287.
    [9] Wu C, Yin P, Zhu X, et al. Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shapeeffects on their applications in magnetism, lithium ion battery, and gas sensors[J]. The Journalof Physical Chemistry B,2006,110(36):17806-17812.
    [10] Larcher D, Bonnin D, Cortes R, et al. Combined XRD, EXAFS, and M ssbauer studies of thereduction by lithium of α-Fe2O3with various particle sizes[J]. Journal of The ElectrochemicalSociety,2003,150(12): A1643-A1650.
    [11] Cheng Z, Xu J, Zhong H, et al. Self-assembly of α-Fe2O3nanoparticles into rice ball shapedmicrostructures via a pyrolytic route[J]. Superlattices and Microstructures,2010,47(2):253-258.
    [12] Almeida T P, Fay M, Zhu Y, et al. Process map for the hydrothermal synthesis of α-Fe2O3nanorods[J]. The Journal of Physical Chemistry C,2009,113(43):18689-18698.
    [13] Wang S, Wang L, Yang T, et al. Porous α-Fe2O3hollow microspheres and their application foracetone sensor[J]. Journal of Solid State Chemistry,2010,183(12):2869-2876.
    [14] Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material forlithium ion batteries[J]. Journal of the American Chemical Society,2010,132(40):13978-13980.
    [15] Varghese B, Reddy M V, Yanwu Z, et al. Fabrication of NiO nanowall electrodes for highperformance lithium ion battery[J]. Chemistry of Materials,2008,20(10):3360-3367.
    [16] Amatucci G G, Pereira N. Fluoride based electrode materials for advanced energy storagedevices[J]. Journal of Fluorine Chemistry,2007,128(4):243-262.
    [17] Hang B T, Doi T, Okada S, et al. Effect of carbonaceous materials on electrochemicalproperties of nano-sized Fe2O3-loaded carbon as a lithium battery negative electrode[J].Journal of Power Sources,2007,174(2):493-500.
    [18] Liu H, Wang G, Park J, et al. Electrochemical performance of α-Fe2O3nanorods as anodematerial for lithium-ion cells[J]. Electrochimica Acta,2009,54(6):1733-1736.
    [19] Chun L, Wu X, Lou X, et al. Hematite nanoflakes as anode electrode materials forrechargeable lithium-ion batteries[J]. Electrochimica Acta,2010,55(9):3089-3092.
    [20] Doe R E, Persson K A, Meng Y S, et al. First-principles investigation of the Li-Fe-F phasediagram and equilibrium and nonequilibrium conversion reactions of iron fluorides withlithium[J]. Chemistry of Materials,2008,20(16):5274-5283.
    [21] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J].Advanced Materials,2009,21(45):4593-4607.
    [22] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [23] Hu J, Li H, Huang X, et al. Improve the electrochemical performances of Cr2O3anode forlithium ion batteries[J]. Solid State Ionics,2006,177(26):2791-2799.
    [24] Hu J, Li H, Huang X. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemicaland Solid-state Letters,2005,8(1): A66-A69.
    [25] Bui, T. H.; Izumi, W.; Takayuki, D.; Shigeto, O.; Yamaki, J., Electrochemical properties ofnano-sized Fe2O3-loaded carbon as a lithium battery anode [J]. Journal of Power Sources,2006,161:1281-1287.
    [26]吴超,庄全超,徐守冬,等. α-Fe2O3/C复合材料的制备及性能研究[J].化学学报,2012,70(1):51-57.
    [27] Yu, W. J.; Hou, P. X.; Li, F.; Liu, C., Improved electrochemical performance of α-Fe2O3nanoparticles confined in carbon nanotubes [J]. Journal of Materials Chemistry,2012,22:13756-13761.
    [28] Cao, Z. Y.; Wei, B. Q., α-Fe2O3/single-walled carbon nanotube hybrid films ashigh-performance anodes for rechargeable lithium-ion batteries [J]. Journal of Power Sources,2013,241:330-340.
    [29] Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite asanode materials for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(10):1849-1852.
    [30] Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with3D architecture forenhanced reversible lithium storage in lithium ion batteries[J]. Journal of Materials Chemistry,2009,19(44):8378-8384.
    [31] Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in a nanosizesilicon/graphene composite[J]. Electrochemistry Communications,2010,12(2):303-306.
    [32] Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures forenhanced Li-ion insertion[J]. ACS Nano,2009,3(4):907-914.
    [33] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithiumions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [34] Kamat P V. Graphene-based nanoarchitectures. Anchoring semiconductor and metalnanoparticles on a two-dimensional carbon support[J]. The Journal of Physical ChemistryLetters,2009,1(2):520-527.
    [35] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity ofSnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexiblestructure[J]. Nano Letters,2008,9(1):72-75.
    [36] Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3composite as ahigh-performance anode material for lithium ion batteries[J]. Acs Nano,2011,5(4):3333-3338.
    [37] Xue X Y, Ma C H, Cui C X, et al. High lithium storage performance of α-Fe2O3/graphenenanocomposites as lithium-ion battery anodes[J]. Solid State Sciences,2011,13(8):1526-1530.
    [38] Wang G, Liu T, Luo Y, et al. Preparation of Fe2O3/graphene composite and its electrochemicalperformance as an anode material for lithium ion batteries[J]. Journal of Alloys andCompounds,2011,509(24): L216-L220.
    [39] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [40] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [41] Tian L, Zhuang Q, Li J, et al. The production of self-assembled Fe2O3-graphene hybridmaterials by a hydrothermal process for improved Li-cycling[J]. Electrochimica Acta,2012,65:153-158.
    [42] Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anodematerial for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(6):1320-1324.
    [43] Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes usedin lithium batteries[J]. Chemistry of Materials,2009,21(13):2604-2606.
    [44] Zhang Z, Hossain M F, Takahashi T. Self-assembled hematite (α-Fe2O3) nanotube arrays forphotoelectrocatalytic degradation of azo dye under simulated solar light irradiation[J].Applied Catalysis B: Environmental,2010,95(3):423-429.
    [45] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [46] Gu J, Li S, Wang E, et al. Single-crystalline α-Fe2O3with hierarchical structures: controllablesynthesis, formation mechanism and photocatalytic properties[J]. Journal of Solid StateChemistry,2009,182(5):1265-1272.
    [47] Zhukovskii Y F, Kotomin E A, Balaya P, et al. Enhanced interfacial lithium storage innanocomposites of transition metals with LiF and Li2O: comparison of DFT calculations andexperimental studies[J]. Solid State Sciences,2008,10(4):491-495.
    [48] Jamnik J, Maier J. Nanocrystallinity effects in lithium battery materials: aspects ofnano-ionics. Part IV[J]. Physical Chemistry Chemical Physics,2003,5(23):5215-5220.
    [49] Xu S D, Zhuang Q C, Tian L L, et al. Impedance spectra of nonhomogeneous, multilayeredporous composite graphite electrodes for li-ion batteries: experimental and theoreticalstudies[J]. The Journal of Physical Chemistry C,2011,115(18):9210-9219.
    [50] Zou Y, Kan J, Wang Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithiumion storage[J]. The Journal of Physical Chemistry C,2011,115(42):20747-20753.
    [51] Qiong Z, Jian-Tao Z, Ping L, et al. Synthesis and lithium storage properties of hollowFe2O3/graphene nanocomposites[J]. Chemical Journal of Chinese Universities,2011,32(3):630-634.
    [1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2009,22(3):587-603.
    [2] Doe R E, Persson K A, Meng Y S, et al. First-principles investigation of the Li-Fe-F phasediagram and equilibrium and nonequilibrium conversion reactions of iron fluorides withlithium[J]. Chemistry of Materials,2008,20(16):5274-5283.
    [3] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J].Advanced Materials,2009,21(45):4593-4607.
    [4] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [5] Hu J, Li H, Huang X, et al. Improve the electrochemical performances of Cr2O3anode forlithium ion batteries[J]. Solid State Ionics,2006,177(26):2791-2799.
    [6] Hu J, Li H, Huang X. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemicaland Solid-state Letters,2005,8(1): A66-A69.
    [7] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity ofSnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexiblestructure[J]. Nano Letters,2008,9(1):72-75.
    [8] Wang D, Choi D, Li J, et al. Self-assembled TiO2–graphene hybrid nanostructures forenhanced Li-ion insertion[J]. ACS Nano,2009,3(4):907-914.
    [9] Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage[J]. Angewandte ChemieInternational Edition,2010,49(45):8408-8411.
    [10] Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2–graphene nanocomposite asanode materials for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(10):1849-1852.
    [11] Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material forlithium ion batteries[J]. Journal of the American Chemical Society,2010,132(40):13978-13980.
    [12] Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4nanoparticles as anode oflithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194.
    [13] He Y S, Bai D W, Yang X, et al. A Co(OH)2graphene nanosheets composite as a highperformance anode material for rechargeable lithium batteries[J]. ElectrochemistryCommunications,2010,12(4):570-573.
    [14] Tian L, Zhuang Q, Li J, et al. The production of self-assembled Fe2O3–graphene hybridmaterials by a hydrothermal process for improved Li-cycling[J]. Electrochimica Acta,2012,65:153-158.
    [15] Sun Y, Hu X, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as ahigh-capacity and long-life anode material for lithium ion batteries[J]. Advanced FunctionalMaterials,2013,23(19):2436-2444.
    [16] Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials forenergy storage[J]. Nano Energy,2012,1(1):107-131.
    [17] Huang X, Zhao X, Wang Z, et al. Facile and controllable one-pot synthesis of an orderednanostructure of Co(OH)2nanosheets and their modification by oxidation forhigh-performance lithium-ion batteries[J]. Journal of Materials Chemistry,2012,22(9):3764-3769.
    [18] Huang X, Chai J, Jiang T, et al. Self-assembled large-area Co(OH)2nanosheets/ionic liquidmodified graphene heterostructures toward enhanced energy storage[J]. Journal of MaterialsChemistry,2012,22(8):3404-3410.
    [19] Xu C, Xu B, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage[J].Energy&Environmental Science,2013,6(5):1388-1414.
    [20] Li B, Cao H, Shao J, et al. Improved performances of β-Ni(OH)2@reduced-graphene-oxidein Ni-MH and Li-ion batteries[J]. Chemical Communications,2011,47(11):3159-3161.
    [21] Qiu D, Xu Z, Zheng M, et al. Graphene anchored with mesoporous NiO nanoplates as anodematerial for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2012,16(5):1889-1892.
    [22] Zheng M, Qiu D, Zhao B, et al. Mesoporous iron oxide directly anchored on a graphenematrix for lithium-ion battery anodes with enhanced strain accommodation[J]. RSC Advances,2013,3(3):699-703.
    [23] Kamat P V. Graphene-based nanoarchitectures, anchoring semiconductor and metalnanoparticles on a two-dimensional carbon support[J]. The Journal of Physical ChemistryLetters,2009,1(2):520-527.
    [24] Huang X, Zhou X, Zhou L, et al. A facile one-step solvothermal synthesis of SnO2/graphenenanocomposite and its application as an anode material for lithium-ion batteries[J].ChemPhysChem,2011,12(2):278-281.
    [25] Yang Y, Liu T. Fabrication and characterization of graphene oxide/zinc oxide nanorodshybrid[J]. Applied Surface Science,2011,257(21):8950-8954.
    [26] Yan J, Fan Z, Sun W, et al. Advanced asymmetric supercapacitors based onNi(OH)2/graphene and porous graphene electrodes with high energy density[J]. AdvancedFunctional Materials,2012,22(12):2632-2641.
    [27] Su D, Kim H S, Kim W S, et al. Mesoporous nickel oxide nanowires: hydrothermal synthesis,characterisation and applications for lithium-ion batteries and supercapacitors with superiorperformance[J]. Chemistry-A European Journal,2012,18(26):8224-8229.
    [28] Zhu L P, Liao G H, Yang Y, et al. Self-assembled3D flower-like hierarchical β-Ni(OH)2hollow architectures and their in situ thermal conversion to NiO[J]. Nanoscale ResearchLetters,2009,4(6):550-557.
    [29] Chang J, Xu H, Sun J, et al. High pseudocapacitance material prepared via in situ growth ofNi(OH)2nanoflakes on reduced graphene oxide[J]. Journal of Materials Chemistry,2012,22(22):11146-11150.
    [30] Xia Y, Zhang W, Xiao Z, et al. Biotemplated fabrication of hierarchically porous NiO/Ccomposite from lotus pollen grains for lithium-ion batteries[J]. Journal of MaterialsChemistry,2012,22(18):9209-9215.
    [31] Yan J, Sun W, Wei T, et al. Fabrication and electrochemical performances of hierarchicalporous Ni(OH)2nanoflakes anchored on graphene sheets[J]. Journal of Materials Chemistry,2012,22(23):11494-11502.
    [32] Zou Y, Wang Y. Microwave-assisted synthesis of porous nickel oxide nanostructures as anodematerials for lithium-ion batteries[J]. Rare Metals,2011,30(1):59-62.
    [33] Xing W, Li F, Yan Z, et al. Synthesis and electrochemical properties of mesoporous nickeloxide[J]. Journal of Power Sources,2004,134(2):324-330.
    [34] Cheng M Y, Hwang B J. Mesoporous carbon-encapsulated NiO nanocomposite negativeelectrode materials for high-rate Li-ion battery[J]. Journal of Power Sources,2010,195(15):4977-4983.
    [35] Needham S A, Wang G X, Liu H K. Synthesis of NiO nanotubes for use as negativeelectrodes in lithium ion batteries[J]. Journal of Power Sources,2006,159(1):254-257.
    [36] Kottegoda I R M, Idris N H, Lu L, et al. Synthesis and characterization of graphene–nickeloxide nanostructures for fast charge–discharge application[J]. Electrochimica Acta,2011,56(16):5815-5822.
    [37] Huang X H, Tu J P, Zhang B, et al. Electrochemical properties of NiO–Ni nanocomposite asanode material for lithium ion batteries[J]. Journal of Power Sources,2006,161(1):541-544.
    [38] Yao Y, Zhang J, Wei Z, et al. Hydrothemal synthesis of porous NiO nanosheets andapplication as anode material for lithium ion batteries[J]. International Journal ofElectrochemical Science,2012,7(2),1433-1442.
    [39] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499.
    [40] Amatucci, G. G.; Pereira, N., Fluoride based electrode materials for advanced energy storagedevices [J]. Journal of Fluorine Chemistry,2007,128:243-262.
    [41] Wang H, Robinson J T, Diankov G, et al. Nanocrystal growth on graphene with variousdegrees of oxidation[J]. Journal of the American Chemical Society,2010,132(10):3270-3271.
    [42] Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemicallyderived graphene oxide[J]. Nature Chemistry,2010,2(7):581-587.
    [43] Liu J, Liu X W. Two-dimensional nanoarchitectures for lithium storage[J]. AdvancedMaterials,2012,24(30):4097-4111.
    [44] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [45] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithiumions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [46] Tian L L, Wei X Y, Zhuang Q C, et al. Chiseled nickel hydroxide nanoplates growth ongraphene sheets for lithium ion batteries[J]. Nano,2013,8(06).
    [47]傅玲,刘洪波,邹艳红,等. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2006(4):10-14.
    [48] He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. ChemicalPhysics Letters,1998,287(1):53-56.
    [49]万臣,彭同江,孙红娟,等.不同氧化程度氧化石墨烯的制备及湿敏性能研究[J].无机化学学报,2012,28(5):915-921.
    [50] Hontoria-Lucas C, Lopez-Peinado A J, López-González J D, et al. Study ofoxygen-containing groups in a series of graphite oxides: physical and chemicalcharacterization[J]. Carbon,1995,33(11):1585-1592.
    [51] Titelman G I, Gelman V, Bron S, et al. Characteristics and microstructure of aqueouscolloidal dispersions of graphite oxide[J]. Carbon,2005,43(3):641-649.
    [52] Szabó T, Berkesi O, Dékány I. DRIFT study of deuterium-exchanged graphite oxide[J].Carbon,2005,43(15):3186-3189.
    [53] Mermoux M, Chabre Y, Rousseau A. FTIR and13C NMR study of graphite oxide[J]. Carbon,1991,29(3):469-474.
    [54]张琼,贺蕴秋,陈小刚,等.氧化钛/氧化石墨烯复合结构及其光催化性能[J].科学通报,2010(7):620-628.
    [55] Zhao Y, Zhou Y, Xiong B, et al. Facile single-step preparation of Pt/N-graphene catalysts withimproved methanol electrooxidation activity[J]. Journal of Solid State Electrochemistry,2013,17(4):1089-1098.
    [56] Meng L Y, Park S J. Preparation and characterization of reduced graphene nanosheets viapre-exfoliation of graphite flakes[J]. Bull. Korean Chem. Soc,2012,33(1):209-214.
    [57] Bosch-Navarro C, Coronado E, Martí-Gastaldo C, et al. Influence of the pH on the synthesisof reduced graphene oxide under hydrothermal conditions[J]. Nanoscale,2012,4(13):3977-3982.
    [58] Cao J, Wang Y, Xiao P, et al. Hollow graphene spheres self-assembled from graphene oxidesheets by a one-step hydrothermal process[J]. Carbon,2013,56:389-391.
    [59] Zhou Y, Bao Q, Tang L A L, et al. Hydrothermal dehydration for the “green” reduction ofexfoliated graphene oxide to graphene and demonstration of tunable optical limitingproperties[J]. Chemistry of Materials,2009,21(13):2950-2956.
    [60] Wang J, Pang H, Yin J, et al. Controlled fabrication and property studies of nickel hydroxideand nickel oxide nanostructures[J]. CrystEngComm,2010,12(5):1404-1409.
    [61] Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes usedin lithium batteries[J]. Chemistry of Materials,2009,21(13):2604-2606.
    [62] Lang J W, Kong L B, Wu W J, et al. A facile approach to the preparation of loose-packedNi(OH)2nanoflake materials for electrochemical capacitors[J]. Journal of Solid StateElectrochemistry,2009,13(2):333-340..
    [63] Annamalai A, Carvalho D, Wilson K C, et al. Properties of hydrothermally synthesizedZn2SnO4nanoparticles using Na2CO3as a novel mineralizer[J]. Materials Characterization,2010,61(9):873-881..
    [64] Huang X H, Tu J P, Zhang C Q, et al. Spherical NiO-C composite for anode material oflithium ion batteries[J]. Electrochimica Acta,2007,52(12):4177-4181.
    [65] Wang X, Yang Z, Sun X, et al. NiO nanocone array electrode with high capacity and ratecapability for Li-ion batteries[J]. Journal of Materials Chemistry,2011,21(27):9988-9990.
    [66] Wang Y, Zhang Y F, Liu H R, et al. Nanocrystalline NiO thin film anode with MgO coatingfor Li-ion batteries[J]. Electrochimica Acta,2003,48(28):4253-4259.
    [67] Debart A, Dupont L, Poizot P, et al. A transmission electron microscopy study of thereactivity mechanism of tailor-made CuO particles toward lithium[J]. Journal of TheElectrochemical Society,2001,148(11): A1266-A1274.
    [1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2009,22(3):587-603.
    [2] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499.
    [3] Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuOnanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistryof Materials,2008,20(11):3617-3622.
    [4]邢雪坤,肖明,李川,等.锂氧化铜电池及其反应机理[J].化学学报,1984,42(3):220-226.
    [5] Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as ahigh-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry,2010,20(47):10661-10664.
    [6] Zhao B, Liu P, Zhuang H, et al. Hierarchical self-assembly of microscale leaf-like CuO ongraphene sheets for high-performance electrochemical capacitors[J]. Journal of MaterialsChemistry A,2013,1(2):367-373.
    [7] Zhang Z, Chen H, Che H, et al. Facile synthesis of high surface area hedgehog-like CuOmicrospheres with improved lithium storage properties[J]. Materials Chemistry and Physics,2013,138(2):593-600.
    [8] Venkatachalam S, Zhu H, Masarapu C, et al. In-situ formation of sandwiched structures ofnanotube/CuxOy/Cu composites for lithium battery applications[J]. ACS Nano,2009,3(8):2177-2184.
    [9] Xiang J Y, Tu J P, Yuan Y F, et al. Improved electrochemical performances of core-shellCu2O/Cu composite prepared by a simple one-step method[J]. ElectrochemistryCommunications,2009,11(2):262-265.
    [10] Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequentoxidation to CuO hollow nanostructures for lithium-ion battery anode materials[J]. AdvancedMaterials,2009,21(7):803-807.
    [11] Xiang J Y, Tu J P, Huang X H, et al. A comparison of anodically grown CuO nanotube filmand Cu2O film as anodes for lithium ion batteries[J]. Journal of Solid State Electrochemistry,2008,12(7-8):941-945.
    [12] Zhang Y, Wang X, Zeng L, et al. Green and controlled synthesis of Cu2O–graphenehierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via anultrasound assisted approach[J]. Dalton Transactions,2012,41(15):4316-4319.
    [13] Xiang J Y, Wang X L, Xia X H, et al. Enhanced high rate properties of ordered porous Cu2Ofilm as anode for lithium ion batteries[J]. Electrochimica Acta,2010,55(17):4921-4925.
    [14]马丽丽,余颖,黄文娅,等.多元醇法制备Cu2O/CNTs复合材料的研究[J].化学学报,2005,63(18):1641-1645.
    [15] Zhang J, Liu J, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparationand applications for sensitive gas sensors[J]. Chemistry of Materials,2006,18(4):867-871.
    [16]周波,刘志国,王红霞,等.花状Cu2O/Cu的水热合成及其光催化性能[J].物理化学学报,2009,25(9):1841-1846.
    [17]徐晨洪,韩优,迟名扬.基于Cu2O的光催化研究[J].化学进展,2010,22(12):2290-2297.
    [18] Pang H, Gao F, Lu Q. Morphology effect on antibacterial activity of cuprous oxide[J].Chemical Communications,2009(9):1076-1078.
    [19] Feng L, Zhang C, Gao G, et al. Facile synthesis of hollow Cu2O octahedral and sphericalnanocrystals and their morphology-dependent photocatalytic properties[J]. NanoscaleResearch Letters,2012,7(1):276-1-276-10.
    [20] Wang X, Hanson J C, Frenkel A I, et al. Time-resolved studies for the mechanism ofreduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen andthe formation of suboxides[J]. The Journal of Physical Chemistry B,2004,108(36):13667-13673.
    [21]徐芬,查玉平,王国秀,等.纳米TiO2-Cu2O复合材料可见光催化杀伤人宫颈肿瘤细胞研究[J].化学学报,2009,67(9):957-963.
    [22]孙都,殷鹏刚,郭林.纳米多级结构枣核型多孔氧化亚铜的合成及拉曼性质[J].物理化学学报,2011,27(06):1543-1550.
    [23] Shang T M, Guan M Y, Sun J H, et al. Cu2O with different morphologies: controlled synthesisand optical properties[J]. Chinese J. Inorg. Chem.2010,26(7):1294-1298.
    [24]景爱华,施萱,董健,等. Cu2O立方体的快速制备及模板法制备CuxS纳米笼子[J].化学学报,2007,65(18):1995-2000.
    [25] Cui Y, Hao Y, Bao W, et al. Synthesis and electrochemical behavior of LiTi2(PO4)3as anodematerials for aqueous rechargeable lithium batteries[J]. Journal of The ElectrochemicalSociety,2013,160(1): A53-A59.
    [26] Shi Y L, Shen M F, Xu S D, et al. Electrochemical impedance spectroscopy investigation ofthe FeF3/C cathode for lithium-ion batteries[J]. Solid State Ionics,2012,222-223:23-30.
    [27] Shi Y L, Shen M F, Xu S D, et al. Electrochemical impedance spectroscopic study of theelectronic and ionic transport properties of NiF2/C composites[J]. International Journal ofElectrochemical Science,2011,6:3399-3415.
    [28] Tian L, Zhuang Q, Li J, et al. The production of self-assembled Fe2O3–graphene hybridmaterials by a hydrothermal process for improved Li-cycling[J]. Electrochimica Acta,2012,65:153-158.
    [29] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithiumions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [30] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [31]李长玉,刘守新,马跃.可见光响应Cu-Cu2+1O复合材料的水热法一步合成[J].物理化学学报,2009,25(8):1555-1560.
    [32]田雷雷,强颖怀,庄全超,等. Li2CO3添加剂对石墨电极性能的影响[J].高等学校化学学报,2010,31(12):2468-2473.
    [33] Zhou W, Zhu J, Cheng C, et al. A general strategy toward graphene@metal oxide core–shellnanostructures for high-performance lithium storage[J]. Energy&Environmental Science,2011,4,4954-4961.
    [1] Zhao X, Hayner C M, Kung M C, et al. In-plane vacancy-enabled high-power Si-graphenecomposite electrode for lithium-ion batteries[J]. Advanced Energy Materials,2011,1(6):1079-1084.
    [2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms[J]. Science,2004,306(5696):666-669.
    [3] Sattayasamitsathit S, Gu Y, Kaufmann K, et al. Highly ordered multilayered3D graphenedecorated with metal nanoparticles[J]. Journal of Materials Chemistry A,2013,1(5):1639-1645.
    [4] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithiumion batteries[J]. Carbon,2009,47(8):2049-2053.
    [5] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet familiesfor use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [6] Zhao X, Hayner C M, Kung M C, et al. Flexible holey graphene paper electrodes withenhanced rate capability for energy storage applications[J]. ACS Nano,2011,5(11):8739-8749.
    [7] Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials forenergy storage[J]. Nano Energy,2012,1(1):107-131.
    [8] Tian L, Zhuang Q, Li J, et al. The production of self-assembled Fe2O3-graphene hybridmaterials by a hydrothermal process for improved Li-cycling[J]. Electrochimica Acta,2012,65:153-158.
    [9] Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage[J]. Angewandte ChemieInternational Edition,2010,49(45):8408-8411.
    [10] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity ofSnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexiblestructure[J]. Nano Letters,2008,9(1):72-75.
    [11] Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material forlithium ion batteries[J]. Journal of the American Chemical Society,2010,132(40):13978-13980.
    [12] Tian L L, Wei X Y, Zhuang Q C, et al. Chiseled nickel hydroxide nanoplates growth ongraphene sheets for lithium ion batteries[J]. Nano,2013,8(06):1350068.
    [13]田雷雷,魏贤勇,庄全超,等.石墨烯包裹Cu2+1O/Cu复合材料的制备及其储锂性能[J].化学学报,2013,71(09):1270-1274.
    [14] Yang S, Gong Y, Liu Z, et al. Bottom-up approach toward single-crystalline VO2-grapheneribbons as cathodes for ultrafast lithium storage[J]. Nano Letters,2013,13(4):1596-1601.
    [15] Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J].Chemistry of Materials,2009,21(14):3136-3142.
    [16] Pollak E, Geng B, Jeon K J, et al. The interaction of Li+with single-layer and few-layergraphene[J]. Nano letters,2010,10(9):3386-3388.
    [17] Uthaisar C, Barone V. Edge effects on the characteristics of Li diffusion in graphene[J]. NanoLetters,2010,10(8):2838-2842.
    [18] Lee E, Persson K A. Li absorption and intercalation in single layer graphene and few layergraphene by first principles[J]. Nano Letters,2012,12(9):4624-4628.
    [19] Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials,2009,21(25‐26):2664-2680.
    [20] Liang M, Zhi L. Graphene-based electrode materials for rechargeable lithium batteries[J].Journal of Materials Chemistry,2009,19(33):5871-5878.
    [21] Ferre-Vilaplana A. Storage of hydrogen adsorbed on alkali metal doped single-layerall-carbon materials[J]. The Journal of Physical Chemistry C,2008,112(10):3998-4004.
    [22] Ataca C, Akturk E, Ciraci S, et al. High-capacity hydrogen storage by metallized graphene[J].Applied Physics Letters,2008,93(4):043123-043123-3.
    [23] Yao F, Gu nes F, Ta H Q, et al. Diffusion mechanism of lithium ion through basal plane oflayered graphene[J]. Journal of the American Chemical Society,2012,134(20):8646-8654.
    [24] Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rateand large capacity for lithium ion batteries[J]. ACS Nano,2011,5(7):5463-5471.
    [25] Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithiumion batteries: a first-principles study[J]. Journal of Materials Chemistry,2012,22(18):8911-8915.
    [26] Mao Y, Duan H, Xu B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J].Energy&Environmental Science,2012,5(7):7950-7955.
    [27] Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Synthesis, structure, and properties ofboron-and nitrogen-doped graphene[J]. Advanced Materials,2009,21(46):4726-4730.
    [28] Jin Z, Yao J, Kittrell C, et al. Large-scale growth and characterizations of nitrogen-dopedmonolayer graphene sheets[J]. ACS Nano,2011,5(5):4112-4117.
    [29] Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphene filmsfor lithium battery application[J]. Acs Nano,2010,4(11):6337-6342.
    [30] Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheetsas anodes for lithium ion batteries[J]. Electrochemistry Communications,2011,13(8):822-825.
    [31] Geng D, Yang S, Zhang Y, et al. Nitrogen doping effects on the structure of graphene[J].Applied Surface Science,2011,257(21):9193-9198.
    [32] Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithiumstorage properties[J]. Journal of Materials Chemistry,2011,21(14):5430-5434.
    [33] Deng D, Pan X, Yu L, et al. Toward N-doped graphene via solvothermal synthesis[J].Chemistry of Materials,2011,23(5):1188-1193.
    [34] Kong X, Chen Q. Improved performance of graphene doped with pyridinic N for Li-ionbattery: a density functional theory model[J]. Physical Chemistry Chemical Physics,2013,15(31):12982-12987.
    [35] Veith G M, Baggetto L, Adamczyk L A, et al. Electrochemical and solid-state lithiation ofgraphitic C3N4[J]. Chemistry of Materials,2013,25(3):503-508.
    [36] Yu Y X. Can all nitrogen-doped defects improve the performance of graphene anode materialsfor lithium-ion batteries?[J]. Physical Chemistry Chemical Physics,2013,15(39):16819-16827.
    [37] Wang H, Xie M, Thia L, et al. Strategies on the Design of Nitrogen Doped Graphene[J]. TheJournal of Physical Chemistry Letters,2014,5,119-25.
    [38] Hu T, Sun X, Sun H, et al. Rapid synthesis of nitrogen-doped graphene for a lithium ionbattery anode with excellent rate performance and super-long cyclic stability[J]. PhysicalChemistry Chemical Physics,2014,16(3):1060-1066.
    [39] Shao Y, Zhang S, Engelhard M H, et al. Nitrogen-doped graphene and its electrochemicalapplications[J]. Journal of Materials Chemistry,2010,20(35):7491-7496.
    [40] Ding D, Song Z L, Cheng Z Q, et al. Plasma-assisted nitrogen doping ofgraphene-encapsulated Pt nanocrystals as efficient fuel cell catalysts[J]. Journal of MaterialsChemistry A,2014,2(2):472-477.
    [41] Zhou X, Bao J, Dai Z, et al. Tin nanoparticles impregnated in nitrogen-doped graphene forlithium-ion battery anodes[J]. The Journal of Physical Chemistry C,2013,117(48):25367-25373.
    [42] Long D, Li W, Ling L, et al. Preparation of nitrogen-doped graphene sheets by a combinedchemical and hydrothermal reduction of graphene oxide[J]. Langmuir,2010,26(20):16096-16102.
    [43] Li X H, Kurasch S, Kaiser U, et al. Synthesis of monolayer-patched graphene from glucose[J].Angewandte Chemie International Edition,2012,51(38):9689-9692.
    [44] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light[J]. Nature Materials,2009,8(1):76-80.
    [45] Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithiumions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212.
    [46] Bian S W, Ma Z, Song W G. Preparation and characterization of carbon nitride nanotubes andtheir applications as catalyst supporter[J]. The Journal of Physical Chemistry C,2009,113(20):8668-8672.
    [47] Parvez K, Yang S, Hernandez Y, et al. Nitrogen-doped graphene and its iron-based compositeas efficient electrocatalysts for oxygen reduction reaction[J]. Acs Nano,2012,6(11):9541-9550.
    [48] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improvedphotocatalytic activities[J]. Advanced Functional Materials,2012,22(22):4763-4770.
    [49] Goettmann F, Fischer A, Antonietti M, et al. Chemical synthesis of mesoporous carbonnitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reactionof benzene[J]. Angewandte Chemie International Edition,2006,45(27):4467-4471.
    [50] Yan H, Chen Y, Xu S. Synthesis of graphitic carbon nitride by directly heating sulfuric acidtreated melamine for enhanced photocatalytic H2production from water under visible light[J].International Journal of Hydrogen Energy,2012,37(1):125-133.
    [51] Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalystfor oxygen reduction in fuel cells[J]. ACS Nano,2010,4(3):1321-1326.
    [52] Sun J, Liu H, Chen X, et al. Synthesis of graphene nanosheets with good control over thenumber of layers within the two-dimensional galleries of layered double hydroxides[J].Chemical Communications,2012,48(65):8126-8128.
    [53] Luo Z, Lim S, Tian Z, et al. Pyridinic N doped graphene: synthesis, electronic structure, andelectrocatalytic property[J]. Journal of Materials Chemistry,2011,21(22):8038-8044.
    [54] Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as ananode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(12):3909-3914.
    [55] Cui Y, Zhang J, Zhang G, et al. Synthesis of bulk and nanoporous carbon nitride polymersfrom ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of MaterialsChemistry,2011,21(34):13032-13039.
    [56] Liu Y C, Lu D N. Surface energy and wettability of plasma-treated polyacrylonitrile fibers[J].Plasma Chemistry and Plasma Processing,2006,26(2):119-126.
    [57] Yuan C, Chen W, Yan L. Amino-grafted graphene as a stable and metal-free solid basiccatalyst[J]. Journal of Materials Chemistry,2012,22(15):7456-7460.
    [58] Song J, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemicaladsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptionalcycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24,1243-1250.
    [59] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation ofstructure and morphology and their use as metal-free catalysts[J]. Journal of MaterialsChemistry,2008,18(41):4893-4908.
    [60] Dong F, Wu L, Sun Y, et al. Efficient synthesis of polymeric g-C3N4layered materials asnovel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry,2011,21(39):15171-15174.
    [61] Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as anadditive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta,2002,47(9):1423-1439.
    [62] Wu Z S, Xue L, Ren W, et al. A LiF nanoparticle-modified graphene electrode for high-powerand high-energy lithium ion batteries[J]. Advanced Functional Materials,2012,22(15):3290-3297.
    [63] Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anodematerial for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(6):1320-1324.
    [64] Jiang Z, Pei B, Manthiram A. Randomly stacked holey graphene anodes for lithium ionbatteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A,2013,1(26):7775-7781.
    [65] Yazami R, Deschamps M. High reversible capacity carbon-lithium negative electrode inpolymer electrolyte[J]. Journal of Power Sources,1995,54(2):411-415.
    [66] Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energyproduction and storage applications[J]. Journal of Power Sources,2011,196(11):4873-4885.
    [67] Han S, Wu D, Li S, et al. Graphene: A two-dimensional platform for lithium storage[J]. Small,2013,9(8):1173-1187.
    [68] Fang Y, Lv Y, Che R, et al. Two-dimensional mesoporous carbon nanosheets and their derivedgraphene nanosheets: synthesis and efficient lithium ion storage[J]. Journal of the AmericanChemical Society,2013,135(4):1524-1530.
    [69] Mukherjee R, Thomas A V, Krishnamurthy A, et al. Photothermally reduced graphene ashigh-power anodes for lithium-ion batteries[J]. ACS Nano,2012,6(9):7867-7878.
    [70] Paek E, Pak A J, Kweon K E, et al. On the origin of the enhanced supercapacitor performanceof nitrogen-doped graphene[J]. The Journal of Physical Chemistry C2013,117(11),5610-5616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700