载阿霉素PLGA纳米微球的制备及其对肝癌细胞的毒性作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是常见的病死率较高的恶性肿瘤,全身化疗是中晚期癌症患者的主要治疗方法,但全身化疗药物选择性低,毒副反应大,疗效差。载药纳米药物投递系统是近年来新兴的药物靶向运送制剂,它借助于安全无毒的各种运送载体,采用特殊工艺方法制备纳米级别的药物微球;纳米药物微球具有靶向传递、可控缓慢释放、增强药效及降低毒副反应等特点,有望成为癌症组织的靶向化疗制剂。本课题旨在制备载阿霉素纳米微球,研究探讨其性质表征、制备工艺及体外细胞毒作用,为纳米药物载体制剂的研究及开发提供一定的实验基础。
     目的
     制备载阿霉素乳酸羟基乙酸共聚物PLGA纳米微球(ADM-PLGA-NP),分析表征其一般理化性质及缓释特点,探讨研究其对体外培养的肝癌细胞系HepG2的细胞毒作用。
     方法
     1.采用改良的W/O/W复乳溶剂蒸发法制备ADM-PLGA-NP,场发射扫描电镜观察微球形态,激光衍射粒度分析仪检测微球粒径分布及多分散性,紫外分光光度法计算载药率及包封率,体外药物释放实验考察微球对ADM的缓释规律;
     2. HepG2细胞分别与ADM原药和载药纳米微球ADM-PLGA-NP(根据体外药物释药曲线计算出释药量)共培养一定时间后,相差倒置显微镜观察给药后的细胞形态的变化,噻唑蓝(MTT)比色法评价ADM-PLGA-NP的细胞毒作用,荧光显微镜观察细胞对ADM-PLGA-NP的吞噬摄取,流式细胞术半定量细胞内的阿霉素药物含量,研究ADM原药和载药纳米微球ADM-PLGA-NP的细胞摄取量及细胞毒性差异。
     结果
     1.制备的ADM-PLGA-NP外观呈圆整球形,无明显粘连;平均粒径约237±12.7nm,大小均匀,分布范围窄,多分散性指数为0.022;载药量及包封率分别为1.42±0.67 %和23.82±8.34 %;药物在体外缓慢释放,12h内呈突释,突释量达药物总量的55%,5d累积释放量达85%。
     2.ADM原药和载药纳米微球ADM-PLGA-NP分别与HepG2细胞共培养后,相差倒置显微镜观察示细胞贴壁能力减弱,胞质固缩,甚至死亡;MTT实验示空白微球对HepG2细胞的平均增殖抑制率为5.98±2.96%;ADM-PLGA-NP和ADM原药均能抑制HepG2细胞增殖,ADM原药的细胞抑制增殖率较ADM-PLGA-NP低(p<0.05);荧光显微镜观察到ADM-PLGA-NP被细胞吞噬后ADM发出红色荧光;流式细胞术半定量显示,ADM-PLGA-NP较ADM原药在细胞内有更强的ADM药物分子荧光强度。
     结论
     利用复乳溶剂蒸发法制备的ADM-PLGA-NP性质稳定,表征满意,具有药物缓释性。ADM-PLGA-NP可以被HepG2细胞吞噬摄取,ADM从微球中缓慢释放,较ADM原药可更有效地抑制肝癌细胞的生长。ADM-PLGA-NP有望成为一种新型的药物化疗制剂。
HCC is a common malignant tumor with a high mortality rate, but the main treatment in advanced HCC patients, systemic chemotherapy, has a poor efficacy due to the low selectivity and toxicity of chemotherapy drugs. Drug-loaded nanoparticle delivery system is very popular in transporting drug-targeting agents in recent years. The system is prepared by incorporating drugs with a variety of non-toxic carriers, producing nano-level microspheres with targeted delivery. With controlled drug release, enhanced efficacy, reduced side effects and low toxicity characteristics, the system is expected to be a efficient targeted anti-cancer chemotherapeutic agents. This study includes the preparation, characterization and in vitro cytotoxicity evaluation of adriamycin-loaded nanoparticles. More importantly, the purpose of this study is to provide some experimental basis for the development of drug-loaded nanoparticle delivery system.
     Objective
     This study is aimed to prepare and characterize adriamycin-loaded PLGA copolymer nanoparticles(ADM-PLGA-NP) and investigate the cytotoxicity of released adriamycin on human hepatocellular carcinoma cell line HepG2.
     Methods
     1. PLGA nanoparticles containing adriamycin were formulated by w/o/w improved emulsification-solvent evaporation method. The morphology was observed by scanning electron microscopy (SEM) and the size distribution was investigated by laser diffraction analyzer. The encapsulating efficiency of ADM was determined by ultraviolet spectrophotometry. ADM-PLGA-NP was put in a dialysis bag to observe the releasing characteristics of ADM from ADM-PLGA nanoparticles in vitro.
     2. Hepatocellular carcinoma cell line HepG2 was cultured with ADM-PLGA nanoparticles of different concentrations (the released drug doses were calculated according to the release curve in vitro) and the original ADM drug for a certain amount of time. Then, the morphology of HepG2 cells were photographed by using phase-contrast microscope. MTT assay was used to observe the cell growth inhibition rate. The cellular uptake of nanoparticles was evaluated by fluorescence microscopy. Flow cytometry was employed to quantify red fluorescence intensity in HepG2 cells.
     Results
     1. The prepared ADM-PLGA nanoparticles were of spherical or elliptical shape with average size of 237±12.7nm. The loading efficiency and entrapment efficiency were about 1.42±0.67% and 23.82±8.34%, respectively. The releasing test in vitro manifested that over 85 percent of ADM encapsulated in ADM-PLGA nanoparticles was sustained released in about 5 days, with a burst release in the first 12 hours.
     2. Co-culture of HepG2 cells with ADM-PLGA-NPs showed that the cells were extremely spreaded with weakening cell adhesion and cytoplasmic condensation. MTT test showed that the average cell growth inhibition rate of blank nanoparticles was 5.98±2.96%; while the cell growth inhibition rate of ADM-PLGA-NP was higher than that of original drug (p <0.05). The cellular uptake of nanoparticles was observed by fluorescence microscopy. Flow cytometry illustrated that red fluorescence intensity in HepG2 cells incubated with ADM-PLGA-NP was stronger than that of incubated with original drug.
     Conclusions
     The ADM-loaded PLGA nanoparticles formulated by w/o/w emulsification solvent evaporation method had satisfactory characterization with sustained release of ADM drugs. ADM-PLGA-NP can be swallowed by HepG2 cells and showed more significant effects in inhibiting the growth of HepG2 cells than the original ADM drug did. ADM-PLGA-NPs are expected to become a new targeting chemotherapy agents.
引文
[1] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
    [2] He J, Gu D, Wu X, et al. Major causes of death among men and women in China. N Engl J Med, 2005, 353(11):1124-1134.
    [3]汤钊猷.开展肝癌转移复发研究的意义和途径.中华普通外科杂志. 2006,11: 761-763.
    [4] Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med, 2010, 61, 359-373.
    [5] Wang X, Yang L, Chen Z, et al. Application of Nanotechnology in Cancer Therapy and Imaging. CA Cancer J Clin, 2008, 58:97-110.
    [6]陈汝福,陈积圣.纳米技术在肿瘤诊断与治疗中的作用.癌症. 2004, 23 (12) :1714-1716.
    [7] Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract, 2008, 17(2): 89-101.
    [8] Abou-Alfa GK. Current and novel therapeutics for hepatocellular Carcinoma. 40th ed. AM Soc Clin Oncol Educational Book.2004:192.
    [9] Bruix J. Treatment of hepatocellular carcinoma. Hepatology, 1997, 25(2):59-62.
    [10] Feng SS, Chien S. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci, 2003, 58(40): 87-l14.
    [11]蔡建强,毕新宇.进一步重视原发性肝癌的个体化治疗.外科理论与实践. 2010, 15(3): 217-219.
    [12]程树群,吴孟超.原发性肝癌综合治疗进展.中华肝胆外科杂志, 2009, 15(4): 241-243.
    [13] Das, M. et al. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv. 2009, 6, 285–304.
    [14] Parveen, S. and Sahoo, S.K. Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin. Pharmacokinet. 2006, 45, 965–988.
    [15] Parveen, S. and Sahoo, S.K. Polymeric nanoparticles for cancer therapy. Drug Target. 2008, 16, 108–123.
    [16] McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2009, 1(3):264-271.
    [17] Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small, 2005, 1(2):172-179.
    [18] Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer, 2007, 120(12):2527-2537.
    [19] Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn, 2009, 9(4):325-341.
    [20] Jain KK. Advances in the field of nanooncology. BMC Med, 2010, 8: 83.
    [21] Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today, 2010, 15(19-20): 842-850.
    [22] Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007, 53: 2002-2009.
    [23] El-Sayed IH, Huang X, El-Sayed M. Selective laser photo-thermaltherapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006, 239:129-135.
    [24] Choi JS, Jun YW, Yeon SI, Kim HC, Shin JS, Cheon J. Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 2006, 128: 15982-15983.
    [25] Gaster RS, Hall DA, Nielsen CH, Osterfeld SJ, Yu H, Mach KE, Wilson RJ, Murmann B, Liao JC, Gambhir SS, Wang SX. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med 2009,15: 1327-1332.
    [26] Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 2009, 4: 855-860.
    [27] Ross RW, Zietman AL, Xie W, Coen JJ, Dahl DM, Shipley WU, Kaufman DS, Islam T, Guimaraes AR, Weissleder R, Harisinghani M. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin Imaging 2009, 33:301-305.
    [28] Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436, 568–572.
    [29] Hofheinz, R.D. et al. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 2005, 16, 691–707
    [30] Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347–360
    [31] Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006 6, 688–701
    [32] Matsumura, Y. and Kataoka, K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009, 100, 572–579
    [33] Bharali, D.J. et al. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine, 2009, 4, 1–7.
    [34] Farokhzad, O.C. and Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16–20.
    [35] Sparreboom, A. et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 2005, 11, 4136–4143.
    [36] Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond), 2010, 5(4):597-615.
    [37] Hobbs SK, Monsky WL, Yuan F. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA. 1998, 95(8): 4607–4612.
    [38] Rubin P, Casarett G: Microcirculation of tumors I. Anatomy, function, and necrosis. Clin. Radiol.1966, 17(3), 220–229.
    [39] Shubik P: Vascularization of tumors: a review. Cancer Res. Clin. Oncol. 1982, 103(3), 211–226.
    [40] Yuan F, Dellian M, Fukumura D. Vascular permeability in a human tumor xenograft: molecular size dependence and cut off size. Cancer Res. 1995, 55(17): 3752–3756.
    [41] Matsumura, Y, Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation ofproteins and the antitumor agentsmancs. Cancer Res. 1986, 46, 6387–6392.
    [42] Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK: Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000, 60(16), 4324–4327.
    [43] Padera TP, Stoll BR, Tooredman JB, Capen D, Di Tomaso E, Jain RK: Pathology: cancer cells compress intratumour vessels. Nature, 2004, 427 (6976), 695.
    [44] Padera TP, Kadambi A, Di Tomaso E et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002, 296(5574), 1883–1886.
    [45] Thanou M, Duncan R. Polymer-protein and polymer-drug conjugates in cancer therapy. Curr Opin Investig Drugs, 2003; 4: 701-709.
    [46] Nomura, T. et al. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissueisolated tumors. Pharm. Res. 1998, 15, 128–132.
    [47] Hu-Lieskovan, S. et al. Sequence-specific knockdown of EWSFLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005, 65, 8984–8992.
    [48] Saijo N. Chemotherapy: the more the better? Overview. Cancer Chemother. Pharmacol. 1997, 40 (Suppl.), S100–S106.
    [49] Reed JC. Bcl-2: Prevention of apoptosis as a mechanism of drug resistance. Hematol. Oncol. Clin. North Am. 1995, 9(2), 451–473.
    [50] Morrow CS, Cowan KH. Glutathione s-transferases and drug resistance. Cancer Cells. 1990, 2(1), 15–22.
    [51] Arao S, Suwa H, Mandai M et al. Expression of multidrug resistance gene and localization of P-glycoprotein in human primary ovarian cancer. Cancer Res. 1994, 54(5), 1355–1359.
    [52] Arceci RJ. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood, 1993, 81(9), 2215–2222.
    [53] Bell DR, Gerlach JH, Kartner N, Buick RN, Ling V. Detection of P-glycoprotein in ovarian cancer: a molecular marker associated with multidrug resistance. J. Clin. Oncol. 1985, 3(3), 311–315.
    [54] Dalton WS, Grogan TM, Rybski JA. Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: Association with level of drug resistance and drug accumulation. Blood, 1989, 73(3), 747–752.
    [55] Pirker R, Wallner J, Geissler K et al.: MDR1 gene expression and treatment outcome in acute myeloid leukemia. J. Natl Cancer Inst. 1991, 83(10), 708–712.
    [56] Sato H, Preisler H, Day R et al.: MDR1 transcript levels as an indication of resistant disease in acute myelogenous leukaemia. Br. J. Haematol. 1990, 75(3), 340–345.
    [57] Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm. 2005, 2(5), 373–383.
    [58] Barraud L, Merle P, Soma E et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J. Hepatol. 2005, 42(5), 736–743.
    [59] Chavanpatil MD, Khdair A, Gerard B et al. Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux. 2007, Mol.Pharm. 4(5), 730–738.
    [60] Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin incorporated in polyisohexylcyanoacrylate nanoparticles against multidrug-resistant tumor cells. Eur. J. Cancer. 1995, 30A(1), 89–93.
    [61] Colin De Verdiere A, Dubernet C, Nemati F, Poupon MF, Puisieux F, Couvreur P. Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother. Pharmacol. 1994, 33(6), 504–508.
    [62] Wong HL, Rauth AM, Bendayan R et al. A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human cancer cells. Pharm. Res. 2006, 23(7), 1574–1585.
    [63] Rawat, M. et al. Nanocarriers: promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006, 29, 1790–1798.
    [64] Singh S, Nalwa HS. Nanotechnology and health safety toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol, 2007, 7(9): 3048-70.
    [65]李玉宝,主编.纳米生物医药材料.北京化学工业出版社. 2004.
    [66] Brigger I, Dubernet C. Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliv Rev, 2002, 54: 631-651.
    [67] Yuan F, Leuning M, Huang SK, Berk DA, Jain RK. Micro-vascular permeability and interstitial penetration of sterically stabilized liposomes in human tumor xenograft. Cancer Res, 1994, 54: 3352-3356.
    [68] Desai MP, Labhasetwar V, Walter E, Amidon GL. The mechanism of uptake of biodegradable nanoparticles in CaCO-2 cells is size dependant.Pharm Res, 1997, 14: 1568-1573.
    [69]顾宁.基于纳米材料与纳米技术的肿瘤靶向治疗.基础医学与临床, 2006, 26(7): 679-683.
    [70] Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol, 2010, 197:3-53.
    [71] Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010, 188:759-768.
    [72] Carrstensen H, Muller RH, Muller BW. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin. Nutr. 1992, 11(5), 289–297.
    [73] Norman ME, Williams P, Illum L. Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials. 1992,13(12), 841–849.
    [74] Soma CE, Dubernet C, Barratt G. Investigation the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5067 cells. J Control Release, 2000, 68: 283-289.
    [75]徐超群,何勤,张志荣等.米托恩醌聚乳酸毫微粒针剂在动物体内的靶向性研究.华西药学杂志, 2000, 15 (3): 164-169.
    [76] Carino GP, Jacob JS. Nanospheres based on oral insulin delivery. J Control Release, 2000, 65: 261-269.
    [77] Na K, Park KH, Shin EK, Lee YB. Self-assembled nanoparticles of hy–drophobically modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci, 2003, 18:165-173.
    [78] Acharya S, et al. Targeted epidermal growth factor receptor nanoparticles bioconjugate for breast cancer therapy. Biomaterials, 2009, 30:5737–5750.
    [79]龚连生,张阳德.磁性化疗纳米微粒治疗大鼠移植性肝癌的研究.中国现代医学杂志,2001, 11: 14-16.
    [80] Shinkai M, Ueda K, Honda H, Kobayashi T. The effect of functional magnetic nanoparticles on radiofrequency capacitive heating: an in vivo study. Japan J Cancer Res, 2002, 93: 103-108.
    [81] Ito A, Shinkai M, Yoshikawa K, Wakabayashi T, Yoshida J, Kobayashi T. Heat shock protein 70 expression induces anti-tumor immunity during intracellular hyperthermia by using magnetite nanoparticles. Cancer Immunol, 2003, 52: 80-88.
    [82] Yoo HS, Lee KH, Park TG. The antitumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release, 2000, 68: 419-431.
    [83] Barroug A. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin. J Orthop Res, 2002, 20: 274-280.
    [84] Kreuter J. Poly (alkyl acrylate) nanoparticles. Methods Enzymol, 1985, 112: 129-138.
    [85] Couvreur C, Roblot Treupel L, Poupon MF. Nanoparticle as a carrier for anti-cancer drugs. Adv Drug Delve Rev, 1990, 5: 209-230.
    [86] Bennis S, Robert J. Enhanced toxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanosphere against multidrug-resistant tumoral cells. Cancer Res, 1992, 33: A2846.
    [87] Hu YP, Toulme N, Bennis S. Doxorubicin incorporation in lipsomes and nanospheres for the reversal of multi-drug resistance. Anticancer Drugs, 1994, 37-38.
    [88] Swarbrick, J. Boylan, J. Encyclopedia of Pharmaceutical Technology 2nd ed. Marcel Dekker, New York. 2002.
    [89] Panyam, J., Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev. 2003, 55, 329-347.
    [90] Kroll, R.A., Pagel, M.A., Muldoon, L.L., Roman-Goldstein, S., Fiamengo, S.A., Neuwelt, E.A. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood–brain and/or blood–tumor barriers. Neurosurgery 1998, 43, 879-886 discussion 886-889.
    [91] Redhead, H.M., Davis, S.S., Illum, L., 2001. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation.Controlled Release 70, 353–363.
    [92] Grislain L. et al. Pharmacokinetics and distribution of a biodegradable drugcarrier.Int. J. Pharm.1983, 15, 335–345.
    [93] Bhadra D, Bhadra S, Jain P, Jain N.K. Pegnology: a review of PEG-ylatedsystems. Pharmazie, 2002, 57, 5-29.
    [94] Olivier, JC. Drug transport to brain with targeted nanoparticles. NeuroRx, 2005, 2, 108-119.
    [95] Couvreur, P., Barratt, G., Fattal, E., Legrand, P., Vauthier, C. Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 99-134.
    [96] Magenheim B, et al. A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int. J.Pharm.1993, 94, 115-123.
    [97] Fresta M, Puglisi G., Giammona G., Cavallaro G., Micali N, Furneri P.M. Pefloxacine mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier preparation. J.Pharm. Sci.1995, 84, 895-902.
    [98] Soppimath KS, Aminabhavi TM, Kulkarni AR. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001, 70(1-2):1-20.
    [99] Singh R, Lillard JW, Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol, 2009, 86(3):215-223.
    [100]王章阳.毫微粒载体材料的体内外降解及毒性研究.中国药学杂志,1999, 34: 73-76.
    [101]修志龙,苏志国.纳米技术在药物制剂中的应用进展.高技术通讯,1996, 9: 56.
    [102]刘志挺,吕竹芬,陈燕忠.溶剂蒸发法在微球制备中的应用及研究进展.广东药学院学报, 2007, 23 (5): 596-600.
    [103] Convreur P, Duberner C, Puisieux F. Controlled drug delivery with nanoparticle: the current possibilities and future trends. Eur J Pharm Biopharm, 1995, 41: 21.
    [104] Song CX, Labhaseetwar V, Murphy H. Preparation and characterization of biodegradable nanoparticles for intra-vascular local drug delivery. J Control Release, 1997, 43: 197-212.
    [105] Scholes PD, Coombes AG, Lllum L. Preparation of sub-200 poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release, 1993, 25: 145-153.
    [106] Govender T, Riley T, Ehtezazi T. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm, 2000, 199(1):95-110.
    [107] Coska I, Eros I. Stability of multiple emulsions. Determination of factors influencing the multiple drop breakdown. Int J Pharm, 1997, 156: 119-123.
    [108] Yoshiaka K, Hiromistu Y. Properties of a peptide containing DL-lactide glycolide copolymer nanospheres by novel emulsification solvent diffusion method. Eur J Pharm Biopharm, 1998, 45: 41-48.
    [109] Thiruma G, Snjezata S. Preparation PLGA nanoparticles by nanoprecipitation: the drug loading and release studies of a water soluble drug. J Controll Release, 1999, 57: 171-185.
    [110] Murakami H, Kobayashi M, Takeuchi H. Preparation of poly(DL-lactide-co-glycolide) nanoparticle by modified spontaneous emulsion solvent diffusion method. Int J Pharm, 1999, 187(2):143-152.
    [111] Winnie Y, Tony SM, Benny Z, et al. A Randomized Phase III Study of Doxorubicin Versus Cisplatin/ Interferonα-2b/ Doxorubicin/ Fluorouracil ( PIAF) Combination Chemot herapy for Unresectable Hepatocellular Carcinoma. Journal of the National Cancer Institute, 2005, 97 (20):1532-1538
    [112]陈立娟,郭家彬,彭双清.阿霉素致大鼠心脏氧化损伤及其机制的研究.毒理学杂志, 2006, 20(3):147-149.
    [113] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000, 407 (6801): 249-57.
    [114] Yi Y, Kim JH, Kang HW, et al. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular up take and biodistribution. Pharm Res, 2005, 22 (2): 200- 208
    [115] Jain RA. The manufacturing technique of various drug-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21 (23): 2475-90.
    [116] Reich G. Ultrasound-induced degradation of PLA and PLGA during microsphere processing:influence of formulation varables. Eur J PharmBiohparm, 1998, 45 (2): 165-171.
    [117]卢来春,张蓉,张纲,黄林清,刘同华. ADM-PLGA缓释纳米微球的制备及体外释药的研究.第三军医大学学报, 2007, 29(13): 1280-1281.
    [118]赵刚,平其能,刘拥军.两种聚酯微球的体外降解机制研究.中国药科大学学报, 2004, 35(1): 24-27.
    [119] Cheng Jin, Ling Bai, Kefeng Dou. Cytotoxicity of Paclitaxel Incorporated in PLGA Nanoparticles on Hypoxic Human Tumor Cells. Pharmaceutical Research 2009, 26 (7): 1776-1784.
    [120] Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin loaded PLGA nanoparticle by nano-precipitation: preparation, characterization and in vitro evaluation. Nanomedicine, 2007, 2(2):219-232.
    [121] Xu P, Gullotti E, Tong L, et al. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm, 2009, 6(1):190-201.
    [122] Tania Betancourt, Brandon Brown, Lisa Brannon Peppass. Doxorubicin loaded PLGA nanoparticles by nano-precipitation: preparation, characterization and evaluation. Nanomedicine, 2007, 2 (2): 219-232.
    [123]程洪艳,李素文,李艳平,张鸿卿,薛绍白.抗癌药物阿霉素的荧光发射光谱分析.北京师范大学学报. 1999, 35(2): 261-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700