作为药物载体的两亲性共聚物合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性共聚物在结构上可以划分出亲水部分和疏水部分。由于这种独特的化学结构,在水性介质中能形成具有球形内核-外壳结构的共聚物胶束,疏水部分构成内核,亲水部分形成外壳。在大分子药物、难溶性药物和基因治疗药物载体给药方面具有独特的优势。
     为深入探讨两亲性共聚物及其载药纳米粒子的特性,本文分别以聚天冬氨酸和明胶作为亲水段,通过接枝共聚反应,合成了两亲性聚(天冬氨酸-co-乳酸)接枝共聚物和两亲性明胶-聚乳酸接枝共聚物;此外,又将它们与二棕榈酰磷脂酰乙醇胺(DPPE)反应,合成了两种新型两亲性接枝共聚物——聚(天冬氨酸-co-乳酸)-二棕榈酰磷脂酰乙醇胺接枝共聚物和明胶-聚乳酸-二棕榈酰磷脂酰乙醇胺接枝共聚物。用红外光谱(FT-IR)和核磁共振谱(NMR)表征了两亲性共聚物的结构和组成。荧光光谱分析表明,两种两亲性共聚物均具有较低的临界胶束浓度(CMC)值。动态光散射(DLS)和透射电子显微镜(TEM)结果表明,胶束粒径均一并呈现球形形态。
     为了解两亲性共聚物与药物包合作用的规律和机理,以阿霉素(DOX)、环孢素A(CsA)和紫杉醇(PTX)三种药物作为模型。针对不同药物,采用纳米沉淀法、双乳法和乳化溶剂蒸发法,制备了包载药物的两亲性共聚物载药纳米粒子。利用紫外光谱或高效液相色谱研究了包载条件对药物包封率(EE)、载药量(LC)和粒径的影响,测定了药物的体外释放行为。研究了载药纳米粒子的细胞毒性,结果表明载药纳米粒子的杀伤细胞能力与浓度成正比,并且与单纯药物对细胞的杀伤程度相当。
It is well known that amphiphilic polymers consist of hydrophilic part and hydrophobic part in the structure. Due to this unique chemical structure, it can form a core-shell structure of polymer micelles in aqueous medium. The hydrophobic part forms the core and the hydrophilic part forms shell. They have unique advantages in macromolecular drugs, low water-solubility drugs and gene therapy as drug carriers.
     In order to study the characteristics of amphiphilic polymers and drug-loaded nanoparticles(NPs), we used PAsp and gelatin as hydrophilic segment through copolymerizatinreaction, synthesized amphiphilic poly (L-aspartic acid co-L-lactide) grafted polymer and amphiphilic gelatin-polylactide grafted polymer. Then, we used 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine(DPPE) to synthesize two novel amphiphilic polymers that were poly(L-aspartic acid co-L-lactide)-1,2-dipalmitoyl-sn- glycero-3-phosphoethanolamine and gelatin-polylactide-1,2-dipalmitoyl-sn-glycero-3- phosphorethanolamine. The amphiphilic polymers were characterized by FT-IR and NMR. The fluorescence experiments showed that amphiphilic polymers have a very low critical micelle concentration (CMC).The dynamic light scatter (DLS) and transmission electron microscopy (TEM) experiments indicated that the nanoparticles had uniform particle size and were apt to a spherical shape.
     To understand the molecular interaction mechanism of inclusion complex between amphiphilic polymers and the medicine, Doxorubicin hydrochloride(DOX), cyclosporin A(CsA) and paclitaxel (PTX) were chosen as model drug to study their vitro drug release behavior from nanoparticles. Drug-loaded nanoparticles were prepared by nanoprecipitation, double emulsion and emulsification solvent evaporation methods, respectively. Different factors which influence on particular size,encapsulation efficiency(EE) and drug-loaded content(LC) were investigated, and in vitro released characteristics were investigated by ultraviolet spectrum(UV) or high performance liquid chromatography (HPLC). We studied the cytotoxicity of the DOX-loaded NPs and PTX-loaded NPs. The results showed that the ability of killer cells of the drug-loaded nanoparticles was proportional to the concentration, the drug-loaded nanoparticles was the same on killer cells withthe drugs.
引文
1 A. Robert, J. Freitas. Who in nanomedicine Nanomedicine: Nanotechnology, Biology and Medicine. 2005, 1: 2~9
    2 J. Panyam, V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews. 2003, 55(3): 329~347
    3 M. Asif, M. S. Arayne, N. Sultana. F. Hussain. Fabrication of nanoparticles with- in polymeric pores for controlled release of drug. Pakistan Journal of Pharmace- utical Sciences. 2006, 19(1): 73~84
    4 K. Na, K. H. Park, S. W. Kim, H. B. You. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line(HepG2). Journal of Controlled Release. 2000, 69(2): 225~236
    5殷香保,王捷,陈汝福,伍衡,汤志华,廖洪映.丝裂霉素纤维蛋白胶凝胶化疗的缓释特性.中山大学学报. 2004, 25(71): 67~69
    6 K. Kataoka, A. Harada, Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews. 2001, 47(1): 113~131
    7秦建民,李荫太.顺铂可降解淀粉微球兔胃动脉栓塞的实验研究.中华普通外科杂志. 2000, 15(2): 91~94
    8 C. Weber, C. Coester, J. Kreuter, K. Langer. Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics. 2001, 194(1): 91~102
    9元英进,刘名言,董岸杰.中药现代化生产关键技术.北京:化学工业出版社. 2002: 203
    10 M. Ajioka, K. Enomoto, K. Suzuki. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. Journal of Environmental Degradation. 1995, 3: 225~234
    11 X. H. Peng, L. Zhang. Self-assembled micelles of N-phthaloyl- carboxy- methychitosan for drug delivery. Colloid Surface A. 2009, 337: 21~25
    12 J. N. Zhang, M. Y. Wu, J. J.Yang, Q.Y. Wu, Z. L. Jin. Anionic poly (lactic acid)- polyurethanemicelles as potential biodegradable drug delivery carriers. Colloid Surface A. 2009, 337: 200~204
    13马光辉,苏志国.高分子微球材料.北京:化学工业出版社. 2005: 76~77
    14 A. Hill, F. Candau, S. Joseph. Properties of hydrophobically associating poly-acrylamides: influence of the method of synthesis. Macromolecules. 1993, 26: 4521~4532
    15王海平,海霞,李春梅,谷宁.聚天冬氨酸的研究及应用进展.河北师范大学学报,自然科学版. 2008, 32(4): 517~522
    16郭艳玲,赵军,任翔宇,张明.两亲性接枝聚天冬氨酸的合成与降解性能研究.天津科技大学学报. 2008, 23(3): 49~51
    17方莉,谭天伟.聚天门冬氨酸的合成及其应用.化工进展. 2001, 3: 24~28
    18 C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, M. J. Alonso. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release. 2001, 75: 211~224
    19 H. Suh, Y.S. Hwang, J. E. Lee, C. D. Han, J. C. Park. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane. Biomaterial. 2001, 22: 219~230
    20 V. S. Trubetskoy, V. P. Torchilin. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Advanced Drug Delivery Reviews. 1995, 16: 311~320
    21张宏娟,张灿,平其能.共聚物胶束作为药用载体的研究与应用.药学进展. 2002, 26(6): 326~329
    22 A.G沃德., A.考茨,李文渊.明胶的科学与工艺学.轻工业出版社. 1982
    23 E. Leo, R. Cameroni, F. Forni. Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticles conjugates. International Journal Pharma- ceutics. 1999, 180(3): 23~30
    24赵晶,王立新.明胶微球乙肝疫苗动物免疫效果研究.中华微生物学和免疫学杂志. 2000, 2(3): 236
    25孙瑞雪.明胶微球和明胶基复合微球的制备与性能研究.中国科学院研究生院博士学位论文. 2009, 6
    26张莉,潘俊.氧化葡聚糖交联明胶微球的制备及性质.中国医药工业杂志. 2003, 5: 34~36
    27 M. Ajioka, K. Enomoto, K. Suzuki. Basic properties of polylactic acid produced by the direct condensation Polymerization of lactic acid. Bulletin of the Chemical Society Japan. 1995, 68: 2125~2131
    28 I. Kaur, T. C. Bhalla. Biodegradation and Swelling Studies of Gelatin-Grafted Polyethylene. Journal of Applied Polymer Science. 2008, 107: 3878~3884
    29 U. G. Spizzirri, F. Iemma. Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules. 2009, 10: 1923~1930
    30杨秀英,封禄田,王晓波,张德庆,高志博.新型绿色生物可降解高分子材料—聚乳酸.高师理科学刊. 2009, 29(3): 84~87
    31 H. Eroqlu, H. S. Kas, L. Oner, O. F. Turkqlu, M. F. Sarqon, N. Ozer. The in-vitro and in- vivo characterization of PLGA: L- PLA microspheres containing dexame- thasone sodium phosphate. Journal of Microencapsulation. 2001, 18(5): 603~612
    32 S. B. Zhou, X. Y. Liao, X. H. Li, X. M. Deng, H. M. Li. Poly-D, L-lactide- co-poly(ethylene glycol)microspheres as potential vaccine delivery systems. Journal of Controlled Release. 2003, 86(17): 195~205
    33 J. Slager, A. J. Domb. Stereocomplexes based on poly(lactic acid)and insulin: formulation and release studies. Biomaterials. 2002, 23(22): 4389~4396
    34 V. Langlois, K. Vallee- Rehel, J. J. Peron, A. Borgne, M. Walls, P. Guerin. Synth- esis and hydrolytic degradation of graft copolymers containing poly(lactic acid) side chains: in vitro release studies of bioactive molecules. Polymer Degradation and Stability. 2002, 76(3): 411~417
    35 C. Perez, A. Sanchez, D. Putnam, D. Ting, R. langer, M. L. Alonso. Poly(lactic acid)- poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release. 2001, 75(2): 211~224
    36 E. Kiss, I. Bertoti, E. I. Vargha-Butler. XPS and wettability characterization of modified poly(lactic acid)and poly(lactide/glycolic acid)films. Journal of Colloid and Interface Science. 2002, 245(1): 91~98
    37 G. Ruan, S. S. Feng. Preparation and characterization of poly (lactic acid)- poly (ethylene glycol)-poly(lactic acid)(PLA- PEG- PLA)microspheres for controlled release of paclitaxel. Biomaterials. 2003, 24(27): 5037~5044
    38 Y. Wu, Y. L. Zheng, W. L. Yang, C. C. Wang, J. H. Hu, S. K. Fu. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydrate Polymers. 2005, 59: 165
    39 W. W. Zou, C. X. Liu, Z. J. Chen, N. Zhang. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA. Nanoscale Research Letters. 2009, 4: 982~992
    40 Z. G. Hu, X. S. Fan, G. S. Zhang. Synthesis and characterization of glucose- grafted biodegradable amphiphilic glycopolymers P(AGE- glucose)- b-PLA. Carbohydrate Polymers. 2010, 79: 119~124
    41 Z. G. Gao, N. A. N. Lukyanov, A. Singhal , V. P.Torchilin. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano letters. 2002, 2(9): 979~982
    42 H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. Tumor vascular permeability nd the EPR effect in macromolecular therapeutics : a review. Journal of Controlled Release. 2000, 65(1):271~284
    43 M. L. Adams, A. Lavasanifar, G. S. Kwon. Amphiphilic block copolymers for drug delivery. Journal of Pharmaceutical Sciences. 2003, 92(7): 1343~l355
    44 S. C. Kim, D. W. Kim, M. H. Shim. In vivo evaluation of polymeric micelarpaclitaxel formulation: toxicity and efficacy. Journal of Controlled Release. 2001, 72(1-3): 191~202
    45 Y. Kakizawa, K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews. 2002, 54(2): 203~223
    46 V. Weissig, K. R. Whiteman, V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharmaceutical Research. 1998, 15(10): l552~l556
    47 H. S. Yoo, T.G. Park. Folate receptor targeted biodegradable polymeric do- xorubicin micelles. Journal of Controlled Release. 2004, 96(2): 273~283
    48 Y. Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, K. Kataoka. Long-circulating poly(ethylene glycol) poly(D,L lactide) block copolymer micelles with modulated surface charge. Journal of Controlled Release. 2001, 77(1): 27~38
    49 E. S. Lee, K. Na, Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. Journal of Controlled Release. 2005, 103 (2): 405~418
    50 G. S. Kwon. Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews in Therapeutic Drug Carrier Systems. 2003, 20(5): 357~403
    51 S. A. Hagan, A. G. A. Coombes, M. C. Garnett, S. E. Dunn, M. C. Davies, L. Illum, S. S. Davis. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. Characterization of water dispersible micelle-forming systems. Langmui. 1996, 12: 2153~2161
    52 K. Yasugi, Y. Nagasaki, M. Kato, K. Kataoka. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(d,l-lactide)block copolymer as potential drug carrier. Journal of Controlled Release. 1999, 62:8 9~100
    53 A. Harada, K. Kataoka. Chain length recognition: core-shell supermolecular assembly from oppositely charged block copolymers. Science. 1999, 283: 65~67
    54 T. K. Bronich, A. V. Kabanov, V. A. Kabanov. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules. 1997, 30:3519~3525
    55 N. Nishiyama, M. Yokoyama, T. Aoyagi, T. Okano, Y. Sakurai, K. Kataoa.Preparation and characterization of self-assembled polymer-metal complexmicelle from cisdichlorodiamine platinum(II)and poly(ethylene glycol)-poly(α,β-aspartic acid)block copolymer in an aqueous medium. Langmuir.1999,15: 377~383
    56 K. Kataoka, A. Ishihara, A. Harada, H. Miyazaki. Effect of secondary structure of poly(L-lysine)segments on the micellization of poly(ethylene glycol)-poly(L-lysi- ne)block copolymer partially substituted with hydrocinnamoyl-group at the Nε-position in aqueous milieu. Macromolecules. 1998, 31: 6071~6076
    57 C. Allen, D. Maysinger, A. Eisenberg. Nano-engineering block copolymeraggregates for drug delivery. Colloids and Surfaces B:Biointerfaces. 1999, 16: 3~27
    58 S. Hosei, A. Yukik., S. Akio, T. Kimiko. Synthesis and Characterization of Amphiphilic Biodegradable Copolymer, Poly(aspartic acid-co-lactic acid). Macromolecular Bioscience. 2003, 3: 34~43
    59 C. L. Zhang, N. Tang, X. J. Liu, W. Liang, W. Xu. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. Journal of Controlled Release. 2006, 112: 229~239
    60 V. P. Torchilin, T.S. Levchenko, A.N. Lukyanov, B.A. Khaw, A.L. Klibanov, R. Rammohan, G.P. Samokhin, K.R. Whiteman. p-Nitrophenylcarbony-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonylgroups. Biochimica et Biophysica Acta. 2001, 151: 397~411
    61 K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G. S. Kwon. Doxorubicin-loaded poly(ethylene glycol)–poly(b- benzyl-Laspartate)copolymer micelles: their pharmaceutical characteristics and biological significance. Journal of Controlled Release. 2000, 64: 143~153
    62 T. Ooya, N. Yui. Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release. 1999, 58: 251~269
    63 T.Govender, S. Stolnik, M. C. Garnett, L. Illum, S. S. Davis. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release. 1999, 57: 171~185
    64杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度.石化技术与应用. 2007, 25(1): 48~54
    65 J. B. Ma, H. H. Cao, Y. H. Li, Y. X. Li. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers. Journal of Biomaterials Science, Polymer Edition. 2002, 13(14): 67~80
    66 H. S. Yoo, E. A. Lee, T. G. Park. Doxorubicin conjugated biodegradable polymeric micelles having acid-cleavable linkages. Journal of Controlled Release, 2002. 82: 17~27
    67 H. S. Yoo, T. G. Park. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. Journal of Controlled Release. 2001, 70: 63~70
    68李魁兴,张钧寿,周建平.环孢素A纳米乳输液剂的制备及含量测定.药学进展. 2008, 32(4): 173~176
    69 B. Zhao, L. J. Yang, J. C. Wang, Q. Zhang. Studies on in vitro release of cyclosporine A-loaded microspheres. Journal of Chinese Pharmaceutical Sciences.2007, 16: 252~256
    70张跃庭,董岸杰,邓联东,元英进.水溶性紫杉醇两亲性共聚物纳米胶束研究.化学工程. 2005, 33(33): 39~43
    71李双明,孙蕊,骆浩,孙愫,王莹,付玉杰.紫外辐射对东北红豆杉鲜叶中紫杉醇及三尖杉宁碱含量的影响.植物研究. 2007, 27(4): 500~508
    72 E. Lemos-Senna, D. Wouessidjwe, S, Lesieur. Evaluation of the hydrophobic drug loading characteristics in nanoprecitated amphiphiliceyclo-dextrin nanospheres. Pharmaceutical Development and Technology. 1998, 3(1): 85~94
    73 Y. Tan, K. Xu, L. Li, C. Liu, C. L. Song, P. X. Wang. Fabrication of Size-Controlled Starch-Based Nanospheres by Nanoprecipitation. Applied materials and interfaces. 2009, 4(1): 956~959
    74 E. Cohen-Sela, M. Chorny, N. Koroukhov, D. Haim, G. Golomb. A new double emulsion solvent diffusion technique for encapsulating hydrophilicmolecules in PLGA nanoparticles. Journal of Controlled Release. 2009, 133: 90~95
    75 S.van der Graaf, C. G. P. H. Schron, R. M. Boom. Preparation of double emulsions by membrane emulsification-a review. Journal of Membrane Science. 2005, 251: 7~15
    76 Y. P. Li, Y. Y. Pei, X. Y. Zhang, Z. H. Gu, Z. H. Zhou, W. F. Yuan, J. J. Zhou, J. H. Zhu, X. J. Gao. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Journal of Controlled Release. 2001, 71: 203~211
    77乔吉超,胡小玲,张团红,管萍.溶剂蒸发法制备药物微胶囊研究进展.化工进展. 2006, 25(8): 885~889
    78刘志挺,吕竹芬,陈燕忠.溶剂蒸发法在微球制备中的应用及研究进展.广东药学院学报. 2007, 23(5): 596~600
    79杨宗发,王苹.两亲性环糊精衍生物在毫微粒给药系统中的应用.中国药业. 2006, 15(19): 60~61
    80叶雪梅,周晓洁,王志强. RP-HPLC法测定全血中环孢素A的血药浓度.海峡药学. 2010, 22(4): 159~160
    81刘丹,李淑斌,鲍洁,郭志福,李明慧,遇娜.注射用紫杉醇脂质纳米粒的制备、体外释放及体内药动学研究.中国药学杂志. 2009, 44(17): 1320~1326
    82 C. K. Huang, C. L. Lo, H. H. Chen, G. H. Hsiue. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging and Anticancer Drug Delivery. Advanced Functional Materials. 2007, 17: 2291~2297
    83 Y. Bae, S. Fukushima, A. Harada, K. Kataoka. Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles that are Responsive toIntracellular pH Change. Angewandte Chemie InternationalEdition. 2003, 42: 4640~4643
    84 Z. Wang, W. K. Chui, P. C. Ho. Design of a Multifunctional PLGA Nanoparticulate Drug Delivery System: Evaluation of its Physicochemical Properties and Anticancer Activityto Malignant Cancer Cells. Pharmaceutical Research. 2009, 26(5): 1162~1171
    85 N. Tang, G. J. Du, N. Wang, C. C. Liu, H. Y. Hang, W. Liang. Improving Penetration in Tumors with Nanoassemblies of Phospholipids and Doxorubicin. JNCI. 2007, 99(13): 1004~1015
    86 Q. H. Miao, D. X. Xu, Z. Wang, L. Xu, T. W. Wang, Y.Wu. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials 2010, 31: 7364~7375
    87 J. A. MacKay, M. Chen, R. M. Jonathan, W. Liu, A. J. Simnick, A. Chilkoti. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Naturematerials. 2009, 8, 993~999
    88 D. Ren, F. Kratz, S. W. Wang. Protein Nanocapsules Containing Doxorubicin as a pH-Responsive Delivery System. Small. 2011, 8(7):1051~1060
    89 W. F. Zhang, X. G. Chen, P. W. Li, Q. Z. He, H. Y. Zhou. Preparation and characterization of theophylline loaded chitosan/β-cyclodextrin microspheres. Journal of Materials Science-Materials in Medecine. 2008, 19:305~310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700