高密度小麦遗传连锁图谱构建及产量相关性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上重要的粮食作物之一。普通小麦是异源六倍体(2n=6x=42),含有A、B和D 3个染色体组,基因组巨大,而且其中含有80%以上的DNA重复序列,导致遗传标记在不同材料间的多态性较差,小麦的遗传研究落后于玉米、水稻等作物。构建高密度小麦分子标记遗传连锁图,对控制产量相关性状QTL进行精细定位,明确其在染色体上的位置和效应,对于小麦产量相关性状的遗传改良具有重要意义。本研究利用3个关联性作图群体进行高密度遗传连锁图谱的构建,并进行产量相关性状的多元条件和非条件QTL分析,进而在QTL水平揭示产量及产量相关性状的遗传特点。
     本研究获得以下主要结果:
     ⑴利用485个潍济(WJ)RIL家系和229个潍烟(WY)RIL家系进行基于PCR原理的分子标记遗传连锁图谱的构建,最终获得分别包含344和358个位点的分子标记遗传连锁图谱,它们分别覆盖基因组2855.51 cM和3010.72 cM,标记间的平均距离分别为8.30 cM与8.41 cM。由于相邻标记间距大于50.0 cM,潍济与潍烟连锁图谱分别各形成6个连锁断点。两图谱共包含69个公共位点。
     ⑵从潍济和潍烟两个群体中分别随机选择175和172个家系进行基于多样性微阵列技术(Diversity Arrays Technology)的DArT标记的开发,结合DArT标记数据及PCR分子标记数据,进行遗传连锁图谱的加密,最终获得分别包含629和681个位点的潍济与潍烟加密连锁图谱,两图谱分别包含373和406个DArT标记位点,图谱全长分别为2777.54 cM和3004.62 cM,相邻标记间平均距离分别为4.42 cM和4.41 cM。由于相邻标记间距大于50.0 cM,潍济与潍烟连锁加密图谱分别形成8个和13个连锁断点。两图谱共包含270个公共位点。
     ⑶将潍济与潍烟构建的两个加密图谱与另一基于179个家系潍麦8号与洛旱2号的F8:9 RIL家系构建的加密图谱进行整合,最终获得包含1113个位点的高密度整合图谱,其中,536个是基于PCR原理的分子标记位点,575个为DArT标记位点。整合图谱全长2946.98 cM,标记间平均距离为2.65 cM。在1113个位点中,群体间共同位点共494个,覆盖小麦基因组1607.21 cM,被用于基于巢式关联作图群体的QTL联合分析。
     ⑷基于全部485/229个潍济/潍烟RIL家系的QTL分析共检测到533个控制21个产量及相关性状的加性QTL;其中,117个QTL在E1、E2、E3、E4中被至少重复检测到2次, 36个QTL贡献率超过10%,为环境间稳定表达的主效QTL,其中的19个QTL位于1B、1D、2A、2B、2D、5A、5D或6D染色体的同一区段,表现为一因多效,共涉及7个控制产量相关性状稳定表达的QTL富集区。基于175/172个随机选择潍济/潍烟RIL家系的QTL分析共检测到480个控制上述21个产量相关性状的加性QTL,其中75个QTL在E1、E2、E3、E4中被至少重复检测到2次,61个QTL贡献率超过10%,为环境间稳定表达的主效QTL,其中的32个QTL位于1A、1D、2A、2B、2D、3A、4A、5A、5B、6A、6B、7B或7D染色体的同一区段,表现为一因多效,共涉及13个控制产量相关性状稳定表达的QTL富集区。基于潍济与潍烟群体大群体检测到的QTL中,分别有22.22%和32.62%的QTL在基于小群体QTL分析中也被检测到。基于巢式关联作图群体的QTL联合分析共检测到185个控制上述21个产量相关性状的群体间等效QTL。
     ⑸基于全部485/229个潍济/潍烟RIL家系的原因/结果条件QTL分析,首次揭示了籽粒大小与千粒重之间,千粒重、穗部性状与穗粒重之间以及穗长、各节间长与株高之间在单个QTL水平之间的关系。籽粒大小与千粒重之间条件QTL分析结果表明,籽粒宽度在单个QTL水平对千粒重贡献最高,其次是籽粒长度,粒径比在单个QTL水平对千粒重贡献最低;穗长、小穗数、穗粒数和千粒重与穗粒重的条件QTL分析结果表明,穗粒数在单个QTL水平对穗粒重贡献最高,其次是千粒重,小穗数与穗长在单个QTL水平对穗粒重贡献均较低;穗长及各节间长与株高的条件QTL分析结果表明,倒三节间长在单个QTL水平对株高贡献最高,其次是倒二与倒四节间长,而穗长在单个QTL水平对株高贡献最低,其次是穗下节间长。
     ⑹基于大小群体QTL分析的检测结果表明,图谱密度与群体大小均能影响QTL检测的数目,且小群体易于夸大对QTL效应值的估计。
Wheat (Triticum aestivum L.) is a major food crop worldwide. As an allohexaploid carrying the genomes AABBDD (2n = 6x = 42), common wheat owns large genome size, 80% of which is repetitive DNA . Hence, molecular markers show lower level polymorphism in wheat, which makes the genetic research in wheat fall behind other crops such as maize, rice, etc. Knowing the precise position and effect of QTL for yield-related traits will be of great value for genetic improvement in yiled in wheat breeding programs. Thus, it is of importance to construct a high-density wheat molecular map. In present study, high-density wheat molecular genetic maps were constructed based on three related mapping populations. Based on the novel molecular genetic maps above, multivariate conditional and unconditional QTL mapping analysis were conducted to specify the genetic characteristics of yield and yield-related traits at the QTL level. The main results were as follows:
     ⑴Two molecular genetic maps comprising 344 and 358 PCR-based marker loci were constructed based on 485 WJ-derived and 229 WY-derived recombinant inbred line (RIL) populations. The two genetic maps spaned 2855.5 cM and 3010.72 cM, respectively, with an average density of one marker per 8.30 cM and 8.41 cM. Due to the linkage distance > 50 cM between the adjacent loci, there were six linkage gaps each in the two genetic maps. Sixty-nine pairwise molecular marker loci were common to the two genetic maps.
     ⑵To saturate the two genetic maps above, 175 and 172 progenies were randomly selected from 485 WJ-derived and 229 WY-derived RIL populations, respectively, for developing diversity arrays technology (DArT) markers. Combining the novel DArT markers and PCR-based markers, two high-density genetic maps were established, including 629 and 681 loci on the wheat chromosomes, 373 and 406 of which, respectively, were novel DArT marker loci. The two high-density genetic maps covered total lengths of 2777.54 cM and 3004.62 cM, with average densities of one marker per of 4.42 cM and 4.41 cM, respectively. The linkage distances > 50 cM between the adjacent loci resluted in eight and 13 linakage gaps in WJ and WY-derived high-density genetic maps, respectively. The two high-density genetic maps shared 270 common loci.
     ⑶A high-density integrative genetic map was developed by combining the two WJ and WY-derived high-density genetic maps and the third high-density genetic map, which was constructed based on a 179 F8:9 RIL population derived from the cross between Weimai 8 and Luohan 2. It comprised 1113 loci, 536 and 575 of which, respectively, were PCR-based marker loci and novel DArT marker loci, covering a total length of 2946.98 cM, with an average density of one marker per of 2.65 cM. Of the 1113 loci, 494 loci were common among the three individual genetic maps, covering a total length of 1607.21 cM. The common loci were used for joint QTL mapping analysis based on the nested association mapping (NAM) population.
     ⑷In total, up to 533 putative additive QTL for the 21 yield and yield-related traits were detected in the 485/229 WJ/WY RIL populations. Of these, 117 QTL showed significance in at least two different environments of E1, E2, E3 and E4, 36 of which accounted for no less than 10% of the phenotypic variation, being major stable QTL. Of these, 19 QTL showed pleiotropic effects and were co-located on chromosomal regions of 1B, 1D, 2A, 2B, 2D, 5A, 5D or 6D, referring to seven major stable QTL clusters. QTL analysis based on 175/172 WJ/WY RIL populations identified 480 QTL for the 21 yield and yield-related traits. Of these, 75 QTL were verified in at least two different environments of E1, E2, E3 and E4, 61 of which were major stable QTL explaining more than 10% of the phenotypic variation. Of these, 32 QTL showed pleiotropic effects and were co-located on chromosomal regions of 1A, 1D, 2A, 2B, 2D, 3A, 4A, 5A, 5B, 6A, 6B, 7B or 7D, referring to 13 major stable QTL clusters. In the WJ and WY population, 22.22% and 32.62% QTL detected based on large RIL populations have been verified in the QTL analysis based on 175/172 WJ/WY RIL populations, respectively. Joint QTL mapping analysis based on the nested association mapping (NAM) population detected 185 congruent QTL among the three RIL populations.
     ⑸Possible genetic relationships between kernel dimensions (KD) and thousand-kernel weight (TKW), TKW, spike-related traits (SRT) and kernel weight per spike (KWPS), and plant height components (PHC) and plant height (PH) were detected using both multivariate conditional and unconditional QTL analysis based on 485/229 WJ/WY RIL populations. The results were as follows: at the QTL level,①kernel width (KW) has the strongest influence on TKW, next to kernel length (KL), but kernel diameter ratio (KDR) has the least level contribution to TKW;②kernel number per spike (KNPS) contributes the most to KWPS, next to TKW, both spikelet numbe per spike (SPN) and SL have lower level contribution to KWPS;③spike length (SL) contributes the least to PH, followed by the first internode length from the top (FIITL); the third internode length from the top (TITL) has the strongest influence on PH, followed by the second internode length from the top (SITL) and the fourth internode length from the top (FOITL).
     ⑹Based on comparison of the QTL detected based on large/small populations using moderate/high-density genetic maps, we concluded that:①both density of the genetic map and population size have great influence on the estimation of QTL number; and②the limited population sizes can lead to overestimation of QTL effects
引文
陈海梅,李林志,卫宪云,李斯深,雷天东,胡海州,王洪刚,张宪省.小麦EST-SSR标记的开发、染色体定位和遗传作图.科学通报,2005,50(20):2208–2216
    崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析.作物学报,2007,33(5):744–750
    何慈信,朱军,严菊强,Mebrouk Benmoussa,吴平.水稻穗干物质重发育动态的QTL 定位.中国农业科学,2000,33(1):24–32
    洪义欢,肖宁,张超,苏琰,陈建民. DArT技术的原理及其在植物遗传研究中的应用.遗传,2009,31(4):359–364
    李立会,李秀全.小麦种质资源描述规程和数据标准.北京:中国农业出版社,2006
    李慧慧,张鲁燕,王健康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918–931
    李卫华,尤明山,刘伟,徐杰,刘春雷,李保云,刘广田.小麦GMP含量发育动态的QTL定位.作物学报,2006,32(7):995–1000
    李卫华,刘伟等.利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析.麦类作物学报,2007,27(1):1–6
    李艳秋,苏志芳,王立新,季伟,姚骥,赵昌平.小麦分子遗传图谱的加密.作物学报, 2009,35(5):861?866
    李子先,陈忠权,刘国平等.水稻抽穗期遗传变异得初步研究.作物学报,1980,6(3):179–188
    廖祥政,王瑾,周荣华,任正隆,贾继增.发掘人工合成小麦中千粒重QTL的有利等位基因.作物学报. 2008,34(11):1877?1884
    刘来福,毛盛贤,黄远樟.作物数量溃传.农业出版社,1984.
    刘志勇,孙其信.小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择.遗传学报, 1999,26(6):673?682
    彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624?1633
    石培春,王光利等.小麦SSR连锁图谱的构建及多态性研究.新疆农业科学,2007,44(3):71–76
    王辉,朱建楚,孙道杰.小麦西农1376籽粒干物质累积特点及调控途径.麦类作物学报,1996,24(5):31–34
    王健康.数量性状基因的完备区间作图方法.作物学报,2009,35(2): 239?245
    王瑞霞,张秀英,伍玲,王瑞,海林,游光霞,闫长生,肖世和.不同生态环境下冬小麦籽粒大小相关性状的QTL分析.中国农业科学,2009,42(2):398–407
    王竹林,刘曙东等.百农64×京双16小麦遗传连锁图谱构建.西北植物学报,2006,26(5):886–892
    徐云碧,QTL作图效率胡影响因素—群体大小.浙江农业大学学报,1994,20(6):573–578
    许自成,池振中,贾志强,许时伦.小麦数量性状基因定位及比较基因组研究进展.河南农业大学学报,1997,31(4): 327–333
    严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析.科学通报,2003,48(18):1959–1964
    张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位.作物学报, 2009, 35(2):270?278
    张立平.普通小麦品质性状遗传与QTL分析.中国农业科学院博士学位论文,2003
    张正斌编著.小麦遗传学.北京:中国农业出版社,2001
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析.麦类作物学报,2006,26(4):35–40
    周淼平,张旭,任丽娟,等.用JoinMap3.0初步构建小麦遗传连锁图.江苏农业学报, 2003,19(3):133–138
    朱振东,贾继增.小麦SSR标记的发展及应用.遗传,2003,25 (3): 355–360.
    庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S., Uszynski G., Mohler V., Lehmensiek A., Kuchel H., Hayden M. J., Howes N., Sharp P., Vaughan P., Rathmell B., Huttner E., Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet, 2006, 113: 1409–1420
    Ammiraju J. S. S., Dholakia B. B., Santra D. K., Singh H., Lagu M. D., Tamhankar S. A., Dhaliwal H. S., Rao V. S., Gupta V. S., Ranjekar P. K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726–732
    Beavis W. B. QTL analyses: power, precision, and accuracy. In: Patterson AH (eds) Molecular dissection of complex traits, 1998, CRC Press, Boca Raton
    Bennett M. D., Leitch I. J. Nuclear DNA amounts in angiosperms. Ann Bot. 1995, 76: 113–176
    Bennett M. D., Smith J. B., Heslop-Harrison J. S. Nuclear DNA amounts in angiosperms, Proc R Soc London Ser B, 1982, 216: 179–199
    Bernacchi D., Beck B. T., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D., Tanksley S. Advance backcross QTL analysis in tomato.I.Identification of QTL for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet, 1998a, 97: 381-397
    Bernacchi D., Beck B. T., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D., Tanksley S. Advance backcross QTL analysis in tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable with QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998b, 97: 170?180
    Bernard M. L., Sourdille P., Cadalen T., et al. The Courtot×Chinese Spring wheat population and its interest for QTL detection [A]. US Department of Agriculture. Plant and Animal GenomeⅦConference [C]. Town and Country Hotel, San Diego, CA, January, 2000. 232
    B(o|¨)rner A., Schumann E., Fürste A., C?ter H., Leithold B., R(o|¨)der M. S., Weber W. E. Mapping of quantitative trait locus determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921–936
    Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314–331
    Breseghello F., Sorrells M. E. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Research, 2007, 101: 172–179
    Buckler E. S., Holland J. B., Acharya C. B., et al. The genetic architecture of maize flowering time. Science, 2009, 325: 714–718
    Bullrich L., Appendino M. L., Tranquilli G., Lewis S., Dubcovsky J. Mapping of a thermo-sensitive earliness per se gene on Trticum monococcum chromosome 1Am. Theor Appl Genet, 2002, 105: 585–593
    Cadalen T., Boeuf C., Bernard S., et al. An intervarietal molecular marker mapin Triticum aestivum L and comparison with a map from a wide cross. Theor Appl Genet, 1997, 94: 367–377
    Cadalen T., Sourdille P., Charmet G., Tixier M. H., Gay G., Boeuf C., Bernard S., Leroy P., Bernard M. Molecular markers linked to genes affecting plant height in wheat using a double haploid population. Theor Appl Genet, 1998, 96: 933–940
    Campbell K. G., Bergmem C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G., Fulcher R. G., Sorrells M. E., Finney P. L. Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Sci, 1999, 39: 1184–1195
    Chu C. G., Xu S. S., Friesen T. L., Faris J. D. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding, 2008, 22: 251–266
    Cui F., Li J., Ding A. M., Zhao C. H., Wang L., Wang X. Q., Li S. S., Bao Y. G., Li X. F., Feng D. S., Kong L. R., Wang H. G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat.Theor Appl Genet, 2011, 122: 1517–1536
    Cuthbert J. L., Somers D. J., Brl?-Babel A. L., Brown P. D., Crow G H. Molecular mappingof quantitative trait loci for yield and yield components in spring wheat (Triticumaestivum L.). Theor Appl Genet, 2008, 117: 595–608
    Dholakia B. B., Ammiraju J. S. S., Singh H., et al. Molecular marker analysis of kernel sizeand shape in bread wheat. Plant Breeding, 2003, 122: 392–395
    Dubcovsky J., Lijavetzky D., Appendino L., Tranquilli G. Comparative RFLP mapping ofTriticum monococcum genes controlling vernalization requirement. Theor Appl Genet,1998, 97: 968–975
    Dubcovsky J., Luo M. C., Zhong G. Y., et al. Genetic map of diploid wheat, Triticummonoccum L, and its comparison with maps of Hordeum vulgare L. Genetics, 1996, 143:983–999
    Dudley J. W., Lamkey K. R., Geadelmann J. L. Evaluation of populations for their potential toimprove three maize hybrids. Crop Sci, 1996, 36: 1553–1559
    Fayyaz E., Shanejat-Bushehri A., Tabatabel B. E. S., Adel J. Constructing a preliminary wheatgenetic map using RGA and AFLP Markers. International Journal of Agriculture andBiology, 2007, 9 (6): 863–867
    Francki M. G., Walker E., Crawford A. C., Broughton S., Ohm H. W., Barclay I., Wilson R.E., McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat(Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics, 2009, 281:181–191
    Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jiu J., Li Q. Y., Devos K. M.Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat GenetSymp. China Agricultural Scientech Press, 1995, Beijing, pp 29–40
    Gale M. D., Cho S., Sharp P. J. RFLP mapping in wheat-progress and problems.In: GustafsonJP (ed) Gene manipulation in plant improvement II. Plenum Press, NY.1990, pp.353–363
    Gao L. F., Jing R. L., Huo N. X., Li. Y., Li X. P., Zhou R. H., Chang X. P., Tang J. F., Ma Z.Y., Jia J. Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs)in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400
    Garland T., Midford P. E., Ives A. R. An introduction to phylogenetically based statisticalmethods, with a new method for confidence intervals on ancestral values. AmericanZoologist, 1999, 39(2): 374–388
    Gegas V. C., Nazari A., Griffiths S., et al. A genetic framework for grain size and shapevariation in wheat. The Plant Cell, 2010, 22: 1046–1056
    Giura A., Saulescu N. N. Chromosomal location of genes controlling grain size in a largegrained selection of wheat (Triticum aestivum L.). Euphytica, 1996, 89: 77–80
    Glazier A. M., Nadeau J. H., Aitman T. J. Finding genes that underlie complex traits. Science, 2002, 298: 2345–2349
    Golabadi M., Arzani A., Mirmohammadi-Maibody S. A. M., Sayed-Tabatabaei B. E., Mohammadi S. A. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica, 2010, 177: 207–221
    Guo L. B., Xing Y. Z., Mei H. W., Xu C. G., Shi C. H., Wu. P., Luo L. J. Dissection of component QTL expression in yield formation in rice. Plant Breed, 2005, 124: 127–132
    Gupta P. K., Mir R. R., Mohan A., Kumar J. Wheat genomics: present status and future prospects. International Journal of Plant Genomics, 2008. doi:10.1155/2008/896451
    Hai L., Guo H. J., Wagner C., Xiao S. H., Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 2008, 175: 226–232
    Hao Y. F., Liu A. F., Wang Y. H., Feng D. S., Gao J. R., Li X. F., Liu S. B., Wang H. G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205–1212
    Huang X. Q., Cloutier S., Lycar L., et al. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753–766
    Huang X. Q., C?ster H., Ganal M. W., R?der M. S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379–1389
    Huang X. Q., Kempf H., Ganal M. W., R?der M. S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theor Appl Genet, 2004, 109: 933–943
    Ishiimaru K., Ono K., Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta, 2004, 218(3): 388–395
    Iwaki K., Nishida J., Yanagisawa T., Yoshida H. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 104: 571–576
    Jaccoud D., Peng K., Feinstein D., Kilian A. Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res, 2001, 29 (4): e25.
    Jensen J. Estimation of recombination parameters between a quantitative traits locus (QTL) and two marker gene loci. Theor Appl Genet, 1989, 78: 613–618
    Kato K., Miura H., Sawada S. Mapping QTL controlling grain yield and its components onchromosome 5A of wheat. Theor Appl Genet, 2000, 101: 1114–1121
    Keller M., Keller B., Schachermayr G., Winzeler M., Schmid J. E., Stamp P., Messmer M. M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat×spelt population. Theor Appl Genet, 1999, 98: 903–912
    Kheiralla A. I., Whittington W. J. Genetic analysis of growth in tomato: the F1 generation. Ann Bot, 1962, 26: 489–504
    Kirigwi F. M., Ginkel M. V., Brown-Guedira G., Gill B. S., Paulsen G. M., Fritz A. K. Markers associated with a QTL for grain yield in wheat under drought. Mol Breeding, 2007, 20: 401–413
    Knapp S. J., Bridges W. C., Birkes D. Mapping trait loci using molecular linkage maps. Theor Appl Genet, 1990, 79: 583–592
    Kumar N., Kulwal P. L., Balyan H. S., Gupta P. K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breeding, 2007, 19: 163–177
    Lander E. S., Botstein S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199
    Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
    Law C. N., Sutka J., Worland A. J. A genetic study of daylength response in wheat. Heredity, 1978, 41: 185–191
    Lee D. DNA markers in plant breeding programs. Adv Agron, 1995, 55: 265–344
    Li G., Quiros C. F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461
    Li H. H., Bradbury P., Buckler E. S., Wang J. K. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PloS One, 2011, 6(3). doi: 10.1371/journal.pone.0017573
    Li H. H., Ye G., Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007a, 175: 361?374
    Li H., Ribaut J. M., Li Z., Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008a, 116: 243?260
    Li S. S., Jia J. Z., Wei X. Y., et al. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breeding, 2007b, 20: 167–178
    Li Y. L., Dong Y. B., Cui D. Q., Wang Y. Z., Liu Y. Y., Wei M. G., Li X. H. The geneticrelationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica, 2008b, 162: 345–351
    Li Y., Song Y., Zhou R., Branlard G., Jia J.. Detection of QTL for bread-making quality in wheat using a recombinant inbred line population. Plant Breeding, 2008c, 128: 235–243
    Liu D. C., Gao M. Q., Guan R. X., Li R. Z., Cao S. H., Guo X. L., Zhang A. M. Mapping quantitative trait loci for plant height in wheat(Triticum aestivum L.) using a F2:3 population. Acta Genet Sinic, 2002, 29(8): 706–711
    Liu G. F., Yang J., Xu H. M., Hayat Y., Zhu J. Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Australian Journal of Agricultural Research, 2008a, 59: 189–195
    Liu Y. G., Tsumewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheatⅡ. Linkage maps of the RFLP sites in common wheat. Jpn J Genet, 1991, 66: 617–633
    Liu Z. H., Anderson J. A., Hu J., Friesen T. L., Rasmussen J. B., Faris J. D. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet, 2005, 111: 782–794
    Ma Z. Q., Zhao D. M., Zhang C. Q., Zhang Z. Z., Xue S. L., Lin F., Kong Z. X., Tian D. G., Luo Q. Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics, 2007, 277: 31–42
    Mace E. S., Rami J. F., Bouchet S., Klein P. E., Klein R. R., Kilian A., Wenzl P., Xia L., Halloran K., Jordan D. R. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biology, 2009, 9: 13. doi:10.1186/1471-2229-9-13
    Mace E. S., Xia L., Jordan D. R. Halloran K, Parh D K, Hunttner E, Wenzl P, Kilian A. DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics, 2008, 9: 26, doi:10.1186/1471-2164-9-26
    Mansur L. M., Orf J., Lark K. G. Determining the linkage of quantitative trait loci to RFLP marker using extreme phenotypes of recombinant inbreds of Soybean (Glycine max L. Merr). Theor Appl Genet, 1993, 86: 914–918
    Mantovani P., Maccaferri M., Sanguineti, M. C., Tuberosa R., Catizone I., Wenzl P., Thomson B., Carling J., Huttner E., Ambrogio E. D., Kilian A. An integrated DArT-SSR linkage map of durum wheat. Mol Breeding, 2008, 22: 629–648
    Marino C. L., Nelson J. C., Lu Y. Z., et al. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat. Genome, 1996, 39: 359–366
    Marza F., Bai G. H., Carver B. F., Zhou W. C. Quantitative trait locus for yield and relatedtraits in the wheat population Ning7840×Clark. Theor Appl Genet, 2006, 112: 688–698
    McCartney C. A., Somers D. J., Humphreys D. G., Lukow O., Ames N., Noll J., Cloutier S., McCallum B. D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452בAC Domain’. Genome, 2005, 48: 870–883
    Mei Y. J., Ye Z. H., Xu Z. Genetic impacts of fiber sugar content on fiber characters in Sea Island cotton, Gossypium barbadense L. Euphytica, 2007, 154: 29–39
    Michelmore R. W., Shaw D. V. Quantitative genetics: Character dissection. Nature, 1988, 335: 672–673
    Miura H., Worland A. J. Genetic control of vernalization, day length response ,and earliness per se by homoeologous group-3 chromosomes in wheat. Plant Breed, 1994, 113: 160–169
    Mullan D. J., Platteter A., Teakle N. L., Appels R., Colmer T. D., Anderson J. M., Francki M. G. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005, 48: 811–822
    Nachit M. M., Elouafi I., Pagnotta M. A., et. al. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet, 2001, 102: 177–186
    Nagaoka T., Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet, 1997, 94: 597–602
    Narasimhamoorthy B., Gill B. S., Fritz A. K., Nelson J. C. Brown-Guedira G. L. Advanced backcross QTL analysis of a hard winter wheat×synthetic wheat population. Theor Appl Genet, 2006, 112: 787–796
    Nelson J. C., Sorrells M. E., Deynze A. E., et al. Molecular mapping of wheat: major genes and rearrangement in homoeologous group 4, 5 and 7. Genetics, 1995a, 141: 721–731
    Nelson J. C., Deynze A. E., Sorrells M. E., Autrique E., Lu Y. H., Neqre S., Bernard M., Leroy P. Molecular mapping of wheat homoeologous group 3. Genome, 1995b, 38: 525–533
    O'Brien S. J. Genetic Maps. Locus Maps of Complex Genomes. 6th Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y 1993
    Paran I., Michelmore R. W. Development of reliable PCR based markers linked to down mildew resistance genes inlettuce. Theor Appl Genet, 1993, 85: 985–993
    Peat W. E., Whittington W. J. Genetic analysis of growth in tomato:segregating generations. Ann Bot, 1965, 29: 725–738
    Peleg Z., Saranga Y., Suprunova T., Ronin Y. W., R?der M. S., Kilian A., Korol A. B., Fahima T. High-density genetic map of durum wheat×wild emmer wheat based on SSRand DArT markers. Theor Appl Genet, 2008, 117: 103–115
    Peng J. H., Lapitan N. L. V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics, 2005, 5: 80–96
    Penner. An AFLP based genome map of wheat (Triticum aestivum) [A]. US Department of Agriculture. Plant and Animal Genome VI Conference [C]. San Diego CA January, 1998, 163
    Pestsova E., Ganal M. W., R?der M. S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–699
    Price A. H. Believe it or not, QTL are accurate!. Trends Plant Sci., 2006, 11: 213–217
    Ramya P., Chaubal A., Kulkarni K., Gupta L., Kadoo N., Dhaliwal H. S., Chhuneja P., Lagu M., Gupta V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet, 2010, 51(4): 421–429
    Risterucci A. M., Hippolyte I., Perrier X., Xia L., Caig V., Evers M., Huntter E., Kilian A., Glaszmann J. C. Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa. Theor Appl Genet, 2009, 119: 1093–1103
    R?der M. S., KorzunV., Gill B. S., et al. The physical mapping of microsatellite markers in wheat. Genome, 1998, 41(2): 278–283
    R?der M. S., Huang X. Q., B?rner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics, 2008, 8: 79–86
    Salvi S., Tuberose R. To clone or not to clone plant QTL: present and future challenges. Trends Plant Sci., 2005, 10: 297–304
    Scarth R., Law C. N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat. Heredity, 1983, 51: 607–619
    Schlegel R., Meinel A. A quantitative trait locus (QTL) on chromosome arm 1RS of rye and its effect on yield performance of hexaploid wheat. Cereal Res Commun, 1994, 22: 7–13
    Sch?n C. C., Utz H. F., Groh S., Truberg B., Openshaw S., Melchinger A. E. Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics, 2004, 167: 485–498
    Sears E. R. The aneuploids of common wheat. Univ M Res Bull, 1954, 572:1–58
    Semagn K., Bjornstad A., Skinnes H., Maroy A. G., Tarkegne Y., William M. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome, 2006, 49: 545–555
    Snape J. W., Butterworth K., Whitechurch E., Worland A. J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119:185–190
    Snape J. W., Quarrie S. A., Laurie D. A. Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 1996, 89: 27–31
    Somers D. J., Isaac P., Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114
    Sourdille P., Cadalen T., Guyomarc’h H., Snape J. W., Perretant M. R., Charmet G., Boeuf C., Bernard S., Bernard M. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530–538
    Staub J. E., Serquen F. C., Gupta M. Genetic markers, map construction and their application in plant breeding. Hort Sciences, 1996, 31(5): 729–741
    Stephenson P., Bryan G., Kirby G., et al. Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet, 1998, 97: 946–949
    Stuber C. W. Mapping and manipulating quantitative traits in maize. Trends Genet, 1995, 11: 477?481
    Suenaga K., Khairallah M., William H. M., Hoisington D. A. A new intervarietal linkage map and its application for quantitative trait locus analysis of gigas features in bread wheat. 2005a, 48(1), ProQuest Biology Journals
    Suenaga K., Khairallah M., William H. M., Hoisington D. A. A new intervarietal linkage map and its application for quantitative trait locus analysis of‘‘gigas’’features in bread wheat. Genome, 2005b, 48: 65–75
    Sun X. Y., Wu K., Zhao Y., Kong F. M., Han G. Z., Jiang H. M., Huang X. J., Li R. J., Wang H. G., Li S. S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615–624
    Tanksley S. D., McCouch S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063?1066
    Torada A., Koike M., Mochida K., Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet, 2006, 112: 1042?1051
    Toth B., Galiba G., Feher E., Sutka J., Snape J. W. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet, 2003, 107: 509–514
    Tsilo T. J., Hareland G. A., Simsek S., Chao S., Anderson J. A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet, 2010, 121: 717–730
    Vales M. I., Sch?n C. C., Capettini F., Chen X. M., Corey A. E., Mather D. E., Mundt C. C., Richardson K. L., Sandoval-Islas J. S., Utz H. F., Hayes P. M. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet, 2005, 111: 1260–1270
    Varshney R. K., Prasad M., Roy J. K., Kumar N., Harjit-Singh Dhaliwal H. S., Balyan H. S.,Gupta P. K. Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet, 2000, 100: 1290–1294
    Vogel J. M., Powell W., Rafalski A., et al. Application of genetic diagnostics to plant genome analysis and plant breeding. Hort science, 1996, 31(7): 1107–1108
    Vos P., Hogers R., Bleeker M., Reijans M., Van der Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new techniques for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407–4414
    Wang J. S., Liu W. H., Wang H., Li L. H., Wu J., Yang X. M., Li X. Q., Gao A. N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2010a, 177: 277–292
    Wang R. X., Hai L., Zhang X. Y., You G. X., Yan C. S., Xiao S. H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theor Appl Genet, 2009, 118: 313–325
    Wang Z. H., Wu X. S., Ren Q., Chang X. P., Li R. Z., Jing R. L. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 2010b, 174: 447–458
    Welsh J. R., Keim D. L., Pirasteh B., Richards R. D. Genetic control of photoperiod response in wheat. Proc 4th Int Wheat Genet Symp, 1973, pp.879–884
    Wen Y. X., Zhu J. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin, 2005, 32: 289–296
    Wicker T., Yahiaoui N., Guyot R., Schlagenhauf E., Liu Z., Dubcovsky J., Keller B. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell, 2003, 15: 1186–1197
    Williams J., Kubelik A., Livak K., Rafalski J., Tingey S. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990, 18: 6531–6535
    Wu X. S., Wang Z. H., Chang X. P., Jing R. L. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937
    Ye Z. H., Wang J., Liu Q., Zhang M. Z., Zou K. Q., Fu X. S. Genetic relationships among panicle characteristics of Rice (Oryza sativa L.) using unconditional and conditional QTL analyses. J Plant Biol, 2009, 52: 259–267
    Yu J. K., Dake T. M., Singh S., Benscher D., Li W., Gill B., Sorrells M. E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805–818
    Yu J. M., Holland B. J., McMullen M. D., Buckler E. S. Genetic design and statistical powerof nested association mapping in maize. Genetics, 2008, 178: 539–551
    Zabeau M., Vos P. Selective restriction fragment amplification: A general method for DNA fingerprints. European Patent Application. Pub, 1993
    Zeng Z. B. Precision mapping of quantitative trait loc. Genetics, 1994, 136: 1457–1468
    Zhang K. P., Zhao L., Tian J. C., Chen G. F., Jiang X. L., Liu B. A Genetic Map Constructed using a doubled haploid population derived from two elite Chinese common Wheat varieties. Journai of integrative plant biology, 2008a, 50(8): 941–950
    Zhang K. P., Fang Z. J., Liang Y., Tian J. C.. Genetic dissection of chlorophyⅡcontent at different growth stages in common wheat. Journal of Genetics, 2009, 88: 183–189.
    Zhang L., Li H., Li Z., Wang J. Interactions between markers can be caused by the dominance effect of QTL. Genetics, 2008,b 180: 1177?1190
    Zhao C. H., Cui F., Zong H., Wang Y. H., Bao Y. G., Hao Y. F., Du B., Wang H. G. Transmission of the chromosome 1R in winter wheat germplasm Aimengniu and its derivatives revealed by molecular markers. Agricultural Sciences in China, 2009, 8(6): 652–657
    Zhao J. Y., Becker H. C., Zhang D. Q., Zhang Y. F., Ecke W. G. Conditional QTL mapping of oil content in rapeseed with respect to 13 protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33–38
    Zhu J., Weir B. S. Mixed model approaches for genetic analysis of quantitative traits [A]. In: Chen L S, Ruan S G, Zhu J (eds). Advanced topics in biomathematics proceeding of international conference on mathematical biology [C]. Singapore: World Scientific Publishing Co, 1998, 321–330
    Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633–1639
    Zou F., Gelfond J. A. L., Airey D. C., Lu L., Manly K. F., Williams R. W., Threadgill D. W. Quantitative trait locus analysis using ecombinant inbred intercross (RIX): theoretical and empirical onsiderations. Genetics, 2005, 170: 1299–131
    Zuo K., Dong Y., Xu J., Li Z., Luo L., Mei H. Molecular detection of quantitative trait loci for leaf chlorophyⅡcontent at different growth-stages of rice (Oryza sativa L.). Asian Journal of Plant Sciences, 2007, 6(3): 518–52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700