中国西北越夏区小麦条锈菌分子流行学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由小麦条锈菌(Puccinia striiformis f.sp.tritici)引起的气流传播性病害,是我国小麦上最重要的病害。西北地区特别是甘肃陇南地区是我国小麦条锈菌最重要的越夏区之一,也是我国小麦条锈菌新小种的策源地,该区秋季的菌源可向东部广大冬麦区传播,越冬后春季菌源可向北部和西部麦区蔓延,对周边地区有重要影响。新毒性小种的出现和群体数量的增长,使病原菌群体结构的改变,一些品种的抗病性丧失,导致病害的发生和流行。认识越夏易变区小麦条锈菌自然群体的遗传结构对抗病育种、抗病基因的合理布局以及开发更有效的病害防治策略具有重要的参考价值。本研究采用SSR分子标记技术,对1447个菌系进行了DNA指纹分析,包括甘肃和青海2省20个县市,其中,青海菌系270个,临夏州菌系206个,平凉菌系50个,陇南菌系971个;对西北越夏区的小麦条锈菌群体结构进行全面系统的研究,了解甘肃省小麦条锈菌在地区间的遗传多样性和遗传分化水平,分析陇南地区小麦条锈菌群体结构在季节间和年度间的稳定性,推断西北越夏区小麦条锈菌的传播途径。本研究主要取得如下结果:
     (1)小麦条锈菌毒性变异与DNA多态性的相关性分析。为了了解毒性和DNA多态性之间的相关性,对90个代表性的菌系进行了毒性和DNA多态性分析。毒性分析发现了14种致病类型或生理小种, SSR分子标记分析发现了75个基因型, DNA指纹的多态性远比毒性的多态性丰富。不同的小种有相同或相近的DNA指纹,同一小种可能有不同的DNA指纹。因此,毒性特征和DNA多态性之间并不存在相关性。
     (2)菌系数量对条锈菌群体遗传结构的影响。为了确定一个群体或亚群体的菌系数量,即能反映条锈菌遗传结构的真实水平,也不要增加额外的工作量,分析了菌系数量对条锈菌遗传结构的影响。结果表明,当菌系的数量小于10时,反映的遗传结构偏离真实水平,菌系的数量大于20时,基本接近真实水平,当菌系的数量大于30时,反映的遗传结构无限接近真实水平。因此,分析小麦条锈菌群体遗传结构时,一个群体或亚群体的菌系数量应大于30个,不少于20个。
     (3)甘肃省小麦条锈菌群体空间遗传结构的SSR分析。为了了解甘肃小麦条锈菌群体遗传多样性水平,明确地区间存在广泛的菌源交流,测试陇南地区是甘肃小麦条锈菌的菌源中心这一假说,对甘肃省小麦条锈菌群体结构进行了分析。结果表明甘肃省小麦条锈菌遗传多样性比较丰富,在亚群体之间,遗传多样性有显著的差异,其中,天水种群(H =0.28,I =0.41)和陇南种群(H =0.26,I =0.42 )的遗传多样性最高,临夏种群(H =0.22,I =0.36)次之,平凉种群(H =0.18,I =0.28)最低,表明陇南和天水地区是甘肃省小麦条锈菌的中心。SSR标记系统揭示甘肃小麦条锈菌群体遗传分化程度较小(Gst=0.15),地区间的遗传变异仅占1.38%,群体间的遗传变异占总变异的15.57% (P<0.001),群体内遗传变异占83.5%,遗传变异主要存在于群体内部。甘肃小麦条锈菌群体的基因流(Nm)为1.38,表明小麦条锈菌在甘肃各地区间存在广泛的交换。因此,甘肃小麦条锈菌群体遗传多样性丰富,遗传分化较小,各地区内和地区间存在广泛的菌源交流。
     (4)陇南地区不同海拔区域内小麦条锈菌群体遗传多样性的分析。为了了解不同海拔高度区域内小麦条锈菌群体的遗传结构和分化程度,明确海拔高度对小麦群体遗传多样性的影响,测试小麦条锈菌在陇南地区可以完成周年循环的假说,对陇南地区不同海拔高度的地区内小麦条锈菌群体遗传多样性进行了研究。结果表明陇南地区小麦条锈菌遗传多样性比较丰富,各亚群体存在显著差异,高山种群和半山种群的多样性最丰富,川道种群的相对较低。不同生态区域内,小麦条锈菌群体遗传分化程度不同,高山区和半山区遗传分化程度大,川道区群体遗传分化程度比较小。不同海拔区域的条锈菌群体之间有基因流的存在,从分子水平证实了小麦条锈菌在高海拔山区与川地之间进行移动,可就地完成周年循环这一假说。
     (5)陇南地区小麦条锈菌群体结构的季节性变化。为了了解小麦条锈菌群体遗传多样性的季节性变化规律和分化程度水平,评价小麦条锈菌群体结构的稳定性,对陇南地区小麦条锈菌群体结构的季节性变化进行了研究,结果表明,不同季节间,小麦条锈菌群体间遗传多样性没有显著的差异,群体遗传分化程度不同,越夏种群遗传分化程度较大,越冬和春季流行群体遗传分化程度比较小。陇南地区小麦条锈菌群体结构的季节性变化分析,表明陇南地区小麦条锈菌群体结构虽有局部的变化,但整体保持稳定。
     (6)陇南地区小麦条锈菌群体结构的周年时空变化。为了了解不同年度间小麦条锈菌群体的遗传多样性变化和分化程度水平,评价小麦条锈菌群体结构的稳定性,对陇南地区小麦条锈菌群体结构的年度时空变化进行了研究。结果表明,不同年度间,小麦条锈菌群体间遗传多样性和遗传分化没有显著的差异,陇南地区小麦条锈菌群体结构的年度间时空变化分析,表明陇南地区小麦条锈菌群体结构虽有局部的变化,但整体保持稳定。
     (7)西北越夏区小麦条锈菌长距离传播的分子证据。为了探索西北越夏区小麦条锈菌的传播途径,对西北越夏区小麦条锈菌群体结构进行了分析。结果表明,西北越夏区小麦条锈菌群体遗传多样性比较丰富,地区之间有显著的差异,陇南地区小麦条锈菌遗传多样性明显比临夏和青海地区的高。西北越夏区小麦条锈菌群体的基因流(Nm)为1.37,表明小麦条锈菌在西北越夏区各地区间存在广泛的交换或长距离的移动。我们的分子数据证实了在西北越夏区各地区之间有基因流的存在或病原菌的传播,陇南到青海的传播路线,是陇南直接传播到青海为主,辅助临夏到青海的传播。
     (8)小麦条锈菌体细胞遗传重组的分子证据。11对SSR引物中4对能够检测到陇南地区小麦条锈菌群体存在体细胞遗传重组,而且重组体出现的频率不同,CPS15揭示的条锈菌重组体出现的频率为20.0%, CPS34揭示的条锈菌重组体出现的频率为18.5%,RJ20揭示的条锈菌重组体出现的频率为12.8%, RJ18揭示的条锈菌重组体出现的频率为15.0,陇南地区小麦条锈菌群体重组体出现频率平均为16.6%。本文揭示的遗传重组现象表明陇南地区条锈菌体细胞结合十分普遍,由此推测我国小麦条锈菌在自然条件下通过遗传重组而导致毒性变异的可能性。
Stripe rust (or yellow rust), caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is one of the most important diseases of wheat (Triticum aestivum L.) worldwide. In China, stripe rust has been considered the most important disease of wheat since the first major epidemic in 1950. Gansu province, located in northwestern China, is one of the largest and the most important over-summering areas in China. The region provides inoculum to the major wheat-growing regions to the east. Almost all Chinese races of P. striiformis f. sp. tritici were first detected in the Longnan regions of Gansu, which serve as sources of new races and inoculum for rust development in the other regions of China because of their unique geographic topography and ideal environmental and cropping conditions. The objectives of this study were to (1) characterize genetic diversity of P. striiformis f. sp. tritici , (2)determine the levels of migration among different regions , (3) evaluate stability of genetic structure of P. striiformis f. sp. tritici in different seasons and years, (4) infer the pathway of pathogen spread in northwest China, used SSR marker. To determine population structures of P. striiformis f. sp. tritici , a total of 1447 isolates were studied using 11 microsatellite markers, including 270 isolates from Qinghai, 206 isolates from Linxia, 50 isolates from Pingliang and 971 isolates from Longnan, in which two provinces and 20 countries. The main results are summarized as following:
     (1) To determine the relativity between virulence and DNA polymorphism, a total of 90 isolates of Puccinia striiformis f. sp. tritici were studied. 14 pathotypes and 75 genotypes were found, suggesting DNA polymorphism was much more diversity than virulence. Moreover, there were the same or near genotype in different races, and the same race may be had different genotype. Therefore, there was no relativity between virulence and DNA polymorphism.
     (2) To determine the number of isolates for a population or subpopulation, we analyzed the effect of number of isolates to population genetic structure of P. striiformis f. sp. tritici. The result showed that population genetic structure was untrue when isolates less than 10. Which isolates more than 20, population genetic structure were be close to true, when isolates more than 30, population genetic structure was actually ture. Therefore a population should have more than 30 isolates.
     (3) To determine population structures of P. striiformis f. sp. tritici in Gansu, a total of 850 isolates were studied using 11 microsatellite markers. The genetic diversities in the Tianshui and Longnan populations were much higher than those of the Linxia and Pingliang populations. The Nei’s gene diversity and Shannon information index of the Tianshui (H = 0.28; I = 0.41) and Longnan (H = 0.26; I = 0.42) populations were higher than those of the Linxia (H = 0.22; I = 0.36) and Pingliang (H = 0.18; I = 0.28) populations. For the Gansu population, the genetic differentiation was low (Gst = 0.15). Thus, the results suggest there are extensive gene exchanges or short-distance migrations of pathogen among regions in Gansu. The most (83.05%) of the total variation presented within subpopulations; 15.57% was among subpopulations; and only 1.38% was among the four regions. These data supported considerable gene flow and insignificant separation among the regional populations. Our molecular data support the hypothesis that the Longnan regions are the center of wheat stripe rust in Gansu .
     (4) To determine population structures of P. striiformis f. sp. tritici in this region, a total of 330 isolates from 11 collections were studied using SSR markers. The populations of P. striiformis f. sp. tritici possessed relatively high levels of genetic diversity in high mountain area but a low gene flow. Analysis of molecular variation showed that only 1.43% of the total variation presented among areas, 24.21% among collections within areas, and the remaining 74.36% within collections. There is extensive gene exchange within areas and short-distance migration of pathogen among areas in different agro-ecological area in southeast of Gansu, China. The most significant finding of this study is that recombination of P. striiformis f. sp. tritici was detected in the southeast of Gansu. Our molecular data confirmed the hypothesis that the stripe rust pathogen is able to over-winter in the lowland areas and over-summer in high mountain areas, which finish its life cycle in southeast of Gansu .
     (5) To determine the change of population genetic diversity and evaluate stability of genetic structure of P. striiformis f. sp. tritici in different seasons, a total of 685 isolates were studied using SSR markers. There was no significant difference of genetic diversity in different seasons. While genetic differentiation was significant difference in different seasons. Although there was a little change, the population genetic structure of P. striiformis f. sp. tritici was stability in different seasons in Longnan.
     (6) To determine the change of population genetic diversity and evaluate stability of genetic structure of P. striiformis f. sp. tritici in different years, a total of 728 isolates were studied using SSR markers. There was no significant difference of genetic diversity and genetic differentiation in different years. Although there was a little change, the population genetic structure of P. striiformis f. sp. tritici was stability in different seasons in Longnan.
     (7) Interregional long-distance spread of wheat stripe rust and the pathway in the Northwest China were inferred by disease surveys and molecular markers. Thirteen genotypes in Linxia and 12 genotypes in Qinghai were also found in Longnan, where 17 genotypes were identified. The genetic diversity in the Longnan population was much higher than those in the Linxia and Qinghai populations. The low genetic differentiation (Gst = 0.15) and the extensive gene flow (Nm=1.37) were found among these regions. The most important molecular finding was that collections from different regions were clustered together and isolates from different regions shared the same DNA fingerprinting. Therefore, the most important conclusion of this study is that the stripe rust inoculum in Qinghai can from both Longnan and Linxia, but mainly directly from Longan in the spring.
     (8) The somatic genetic recombination of P. striiformis f. sp. tritici in Longnan of Gansu Province was detected by 4 of 11 SSR marker. Recombinant frequency of P. striiformis f. sp. tritici was different. Recombinant frequency were 20.0%, 18.5%, 12.8% and 15.0% detected by RJ CPS15, CPS34, RJ20 and RJ18. The average recombinant frequency of P. striiformis f. sp. tritici was 16.6% in Longnan. This study revealed genetic recombination by molecular markers and thus strongly suggests that genetic recombination is another way of producing a new race of P. striiformis f. sp. tritici and lead to virulence variation.
引文
[1]李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    [2]李振岐,刘汉文.陕、甘、青小麦条锈病发生发展规律之初步研究[J].西北农学院学报.1956, (4)∶1-18,1957,(1)∶33~47
    [3]王吉庆,戴书坤.甘肃地区小麦条锈病病菌越夏规律的初步研究[J].植物病理学报.1965,8(1):1-8
    [4]曾士迈,张树榛.植物抗病育种的流行学研究[M].北京:科学科学出版社,1998.
    [5]汪可宁,吴立人,孟庆玉,等.1975~1984年我国小麦条锈菌生理专化研究[J].植物病理学报,1986,16(2):79-85.
    [6]李振岐,商鸿生.小麦锈病及其防治[M].上海:上海科技出版社, 1989.
    [7]刘孝坤,洪锡午.陇南南部小麦条锈菌越夏的初步研究[J].植物病理学报,1984,14(1):9-15.
    [8]姜瑞中,商鸿生.甘肃南部小麦条锈病越夏考察[J].西北农业大学学报,1993,21(2):9-11.
    [9]谢水仙,陈杨林.陇东小麦条锈病发生规律调查[J].甘肃农业科技,1995,(5):34-36.
    [10]林晓民,李振岐.我国小麦条锈菌寄主范围的研究[J].植物病理学报,1990,20(4):265-269.
    [11]陆师义.小麦及禾草条锈病菌的研究[J].植物病理学报,1958,4(2):137-143.
    [12]李振岐,夏普.美国蒙大那地区禾本科杂草对小麦条锈菌感病性的初步研究[J].西北农学院学报,1983,3:33-38.
    [13]李振岐,王美楠,贾明贵,等.陇南地区小麦条锈病的流行规律及其控制策略研究[J].西北农业大学学报,1997,25(2):1-5.
    [14] Guo Y,Ma ZH. Molecular epidemiology of plant disease[M].2005.中国农业大学出版社.
    [15] Adhikari,TB, Zhang, Q, Nelson, R. Genetic diversity of Xanthomonas oryzae pv.oryzae in Asia.Appl.Environ[J]. Microbiology, 1995,61:966-971.
    [16] Ardales,EY, Leung,H., and Nelson, R.J. Hierarchical analysis of spatial variation of the rice bacterial blight pathogen across diverse agroecosystems in the Phiippines[J].Phytopathology,1996, 86:241-252.
    [17] Brown,J.K.M.,Jessop,A.C.,and Rezanoor,H.N.Genetic uniformity in barley and its powdery mildew pathogen[J].Process Rearch Soc.Lond.Ser.B.1991, 246:83-90.
    [18] Cheng, S.,Fockler,C.,Barnes,W.M.,and Higuchi,R.Effective amplification of long targets from cloned inserts and human genomic DNA[J]. Process Natural Academic Science U.S.A. 1994,91:5695-5699.
    [19] de Bruijn,F.J..Use of repetitive(repetitive extragenic palindromic and enterobacterial intergeneric consensus)sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria[J]. Applied Environment Microbiology,1992,58:2180-2187.
    [20] Edel,V.,Steinberg,C.,Avelange,I., and Alabouvette,C..Comparison of three molecular methods for the characterization of Fusarium oxysporum strains[J].Phytopathology,1995 ,85:579-585.
    [21] Fry,W.E.,Goodwin,S.B., Milgroom,M.G.. Population genetics and intercontinental migrations of Phytophthora infestans[J]. Annual Review Phytopathology, 1992,30:107-129.
    [22] Nelson,R.J.,Baraoidan,M., and Leung,H..Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice[J].Applied Environment Microbiology[J]. 1994,60:3275-3283.
    [23] Palittapongarnpim,P,Chomyc,S,andKunimoto,D. DNAfingerprinting of Mycobacterium tuberculosisisolates by ligationmediated polymerase chain reaction[J]. Nucleic Acids Research, 1993, 21:761-762.
    [24] Stern,M.J.,Ames,G.F.L.,Smith,N.H..Repetitive extragenic palindromic sequences,a major component of the bacterial genome[J].Cell, 1984,37:1015-1026.
    [25] VeraCruz,C.M.,Ardales,E.Y., and Leach,J.E. Measurement of haplotypic variation in Xanthomonas oryzae pvoryzae within a single field by rep-PCR and RFLP analyses[J].Phytopathology, 1996,86:1352-1359.
    [26] Akopyanz, N., Bukanov, N., Westblom, T.U. and Berg, D.E.. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori[J]. Nucleic Acids Research. 1992 ,20: 6221-6225.
    [27] Williams J G K,Kubelik A R ,Livak KJ , et al . DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J ] . Nucleic Acids Research , 1990 ,18 :6531 - 6535.
    [28] Vos PR,Hogers M. Bleeker, et al . AFL P :A new concept for DNA fingerprinting[J ] . Nucleic Acids Res ,1995 ,23 :4407 - 4414.
    [29] Jarman A P, Wells R A. Hypervariable minisatellites: Recombinators on innocent bystanders[J]. Trends Genet, 1989, 5: 367-371.
    [30] . Schloterer C, Tautz D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Research, 1992, 20: 211-215.
    [31] Li G,Quiros CF. Sequence-related amplified polymorpgism (SRAP)a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics,,2001,103:455-461.
    [32] Paran, I., and Michelmore, R.W. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce[J]. Theoretical and Applied Genetics, 1993.85: 985-993.
    [33] Bleeker, M., Vos, P., Hogers, R.,and Zabeau, M. A new technique for DNA fingerprinting[J]. Nucleic Acid Research,1996, 23: 4417-4424.
    [34] Martin, F, Selosse, MA, Le, TF. The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism[J]. Microbiology, 1999, 145: 1605-1611.
    [35]万安民,牛永春,吴立人,等.1991~1996年我国小麦条锈菌生理专化研究[J].植物病理学报,1999,29(1):15-21.
    [36] Taylor A C, Sherwin W B, Wayne R K. Genetic variationof microsatellite loci in a bottlenecked species: The northern hairy-nosed wombatLasiorhinus krefftii[J]. Molecular Ecology, 1994, 3(4): 277-290.
    [37] Newton A C, Caten C E, Johnson R. Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts[J]. Plant Pathology, 1985, 34(2): 235-247.
    [38] Chen X, Line R F, Leung H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis[J]. Phytopathology, 1993, 83(12): 1489-1497.
    [39] Shan W X, Chen S Y, Kang Z S, et al. Genetic diversity in Puccinia striiformis Westend. f. sp. tritici revealed by pathogen genome-specific repetitive sequence[J]. Canadian Journal of Botany, 1998, 76: 587- 595.
    [40]郑文明,陈受宜,康振生,等.PSR(Puccinia striiformis Repeat)序列的基因组特性和指纹遗传稳定性研究[J].植物病理学报,2000,30(3):222-225.
    [41]郑文明,陈受宜,康振生,等.甘肃天水地区小麦条锈菌自然群体DNA指纹分析[J].菌物学报, 24(2):199-206.
    [42] Steele K A, Humphreys E, Wellings C R, et al. Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers[J]. Plant Pathology, 2001, 50 (2): 174-180.
    [43] Zheng W M, Liu F, Kang Z S, et al. AFLP fingerprinting of Chinese epidemic strains of Puccinia striiformis f. sp. tritici[J]. Progress in Natural Sciences, 2001, 11(8): 586-593.
    [44] Roose-Amsaleg C, Vallavieille-Pope C, Brygoo Y, et al. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f. sp. tritici, the causal agent of wheat yellow rust[J]. Mycological Research, 2002, 106: 918-924.
    [45] Enjalbert J, Duan X, Giraud T, et al. Isolation of twelve microsatellite loci, using an enrichment protocol in the phytopathogenic fungus Puccinia striiformis f. sp. tritici[J]. Molecular Ecology Notes, 2002, 2:563-565.
    [46]王风乐,商鸿生,李振岐.中国小麦条锈菌生理小种同工酶分析[J].植物病理学报,1995, 25(2):101-105.
    [47] Dickinson M J, Wellings C R, Pryor A. Variation in the double-strand RNA phenotype between and within different rust species[J]. Canadian Journal of Botany, 1990, 68: 599-604.
    [48] Celine R A, Claude V P, Yves B, Caroline L. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f. sp. tritici, the causal agent of wheat yellow rust[J]. Mycology Research, 2002, 106(8): 918-924.
    [49] Hovm?ller, M.S., & Justesen, A.F. Appearance and interpretation of atypical phenotypes of Puccinia striiformis f. sp. tritici in NW-Europe[J]. Australian Journal of Agricultural Research, 2007, 58:518–524.
    [50] Hovm?ller, M. S., Justesen, A. F., & Brown, J. K. M. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe[J]. Plant Pathology,2002, 51: 24–32.
    [51] Hovm?ller, M. S., Yahyaoui, A. H., Milus, E. A., & Justesen, A. F. Rapidglobal spread of two aggressive strains of wheat rust fungus[J]. Molecular Ecology ,2008, 17:3818-3826.
    [52] Lorys, M. M. A., Christian, L., de Vallavieille-Pope, C., and Neema, C. Geneticvariability in Puccinia striiformis f. sp. tritici populations sampled on a local scale duringnatural epidemics[J]. Applied Environment Microb, 2002,12:6138-6145.
    [53] Enjalbert, J., Duan, X., Giraud, T., Vautrin, D., de Vallavieille-Pope, C., and Solignac, MIsolation of twelve microsatellite loci, using an enrichment protocol, in thephytopathogenic fungus Puccinia striiformis f. sp. tritici[J]. Molecular Ecology Notes, 2002,2:563-565.
    [54]单卫星,陈受宜,吴立人,等.中国小麦条锈菌流行小种的RAPD分析[J].中国农业科学,1995, 28:1-7.
    [55]曹丽华,康振生,郑文明,等.小麦条锈菌条中31号生理小种SCAR检测标记的建立[J].菌物学报24(1):98~103,2005.
    [56]单卫星,陈受宜,张耕耘,等.小麦条锈菌一个中度重复DNA序列家族的鉴定[J].中国科学(C辑),1997,27:241-246.
    [57]贾瑞祥.中国小麦条锈菌主要流行小种DNA多态性分析[D].中国农业大学硕士论文,2006.
    [58]韩冰.中法两国小麦条锈菌群体遗传多样性分析[D].沈阳农业大学硕士论文,2006..
    [59]陈长卿.中国小麦条锈菌分子群体遗传结构研究[D].西北农林科技大学博士论文,2008.
    [60] Ibrahim K M, Nichols R A, Hewitt G M. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion[J]. Heredity, 1996, 77: 282-291.
    [61] Bayles R A, Flath K, Hovm?ller M S, et al. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe-A case study by the yellow rust sub-group of COST817[J]. Agronomie, 2000, (20): 805-811.
    [62] Dickinson M J, Wellings C R, Pryor A. Variation in the double-strand RNA phenotype between and within different rust species[J]. Canadian Journal of Botany, 1990, 68: 599-604.
    [63]李振岐.我国小麦品种抗条锈性丧失原因及其解决途径[J].中国农业科学,1980, 13(3):72-76.
    [64] Stubbs R W. Roelfs A P, Bushnell W R, et al. The Cereal Rusts, Vol.2, Diseases, Distribution, Epidemiology, and Control[M]. Orlando: Academic Press, 1985.
    [65] Wellings C R, Mc Intosh R A. Puccinia striiformis f. sp. tritici in Australia: Pathogenic changes during the first 10 years[J]. Plant Pathology, 1990, 39: 316-325.
    [66] Travison M, Lenski R E. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation[J]. Genetics, 1996, 143: 15-26.
    [67]康振生,李振岐,商鸿生.小麦条锈菌异核新菌系的筛选及核游离试验研究[J].植物病理学报1994,24 (2):101-105.
    [68]康振生,李振岐,商鸿生.小麦条锈菌夏抱子阶段核相状况的研究.植物病理学报[J],1994,24(1):26-32.
    [69]吴立人,牛永春.我国小麦条锈病持续控制的策略[J].中国农业科学,2000,33(5):46-54.
    [70]王保通.中国小麦条锈菌优势种群预测及主要流行菌系的AFLP指纹分析[D].西北农林科技大学博士论文,2007.
    [71] Taylor J W, Jacobson D J, Fisher MC. The evolution of asexual fungi: Reproduction, speciation and classification[J]. Annual Review of Phytopathology, 1999, 37:197-246.
    [72] Gottelli D, Sillero-Zubiri C, Applebaum G D, et al. Molecular genetics of the most endangered canid: The Ethiopian wolf Canissi mensis[J]. Molecular Ecology, 1994, 3(4): 301-312.
    [73] Wimmer B, Kappeler P M. The effects of sexual selection and life history on the genetic structure of red fronted lemur, Eulemur fulvus rufus groups[J]. Animal Behaviour, 2002, 64(4): 557-568.
    [74]张惠文,张倩茹,周启星,等.分子微生物生态学及其研究进展[J].应用生态学报, 2003, 14(2):286-292.
    [75] Dracatos P M, Dumsday J L, Olle R S, et al., Development and characterization of EST-SSR markers for the crown rust pathogen of ryegrass (Puccinia coronata f.sp. lolii)[J]. Genome, 2006, 49: 572-583.
    [76] Litt M, Luty J. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. American Journal Human Genetic, 1989, 44: 397- 401.
    [77] Oetting W S, Lee H K, Flanders D J, et al. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers[J]. Genomics, 1995, 30: 450-458 .
    [78] Schuelke M. An economic method for the fluorescent labeling of PCR fragments[J]. Nature Biotechnology, 2000, 18: 233-234.
    [79]刘志斋,王天宇,黎裕.TP-M13-SS技术及其在玉米遗传多样性研究中的应用[J].玉米科学, 2007,15(6):10-15.
    [80]汪可宁,洪锡午等,我国小麦条锈菌生理专化研究[J].植物保护学报,1963, 2(1):23-36.
    [81]陆师义,范桂芳.小麦条锈病研究,1.小麦条锈菌的专化性研究[J].植物病理学报,1956,2(2):153-166.
    [82]吴立人.洛夫林10和山前麦等品种抗条锈性变异研究[J].中国农业科学,1985,18(1):60-63.
    [83]吴立人,杨华安.小麦条锈菌新小种流行预测研究[J].中国农业科学, 1991,24(5):59-63.
    [84]吴立人,杨华安.1985~1990年我国条锈菌生理专化研究[J].植物病理学报,1993,23(3):269-274.
    [85]吴立人,王凤乐.绵阳系小麦品种抗条锈性变异研究初报[J].西南农业学报,1993,6(1):71-74.
    [86]杨华安.绵阳系小麦品种抗条性分析[J].中国农业科学, 1990,23(6):1-5.
    [87]杨华安.我国小麦条锈菌生理小种毒性基因及致病性特点分析[J].植物病理学报,1990,20(3):213-217.
    [88] Wan A M, Zhao Z H, Chen X M, et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. Tritici in China in 2002[J]. Plant Disease, 2003, 88(8): 896-904.
    [89]万安民.小麦条锈菌鉴别寄主和小种命名现状[J].植物病理学报,2003,33(6):481-486.
    [90]万安民,牛永春,吴立人,等.1991~1996年我国小麦条锈菌生理专化研究[J].植物病理学报,1999,29(1):15-21.
    [91] Yeh F C., Yang R C., Boyle T B J, et al. POPGENE, the User-friendly Sharew are for Population Genetic Analysis[J]. Molecular Biology Biotechnology Center, 1997, 24.
    [92] Nei M. Analysis of gene diversity in subdivided populations[J]. Process Natural Academic Science, 1993, 70, 3321-3323.
    [93] Nei M. Molecular Evolutionary Genetics[J]. New York: Columbia University Press, 1987.
    [94]张富民,,葛颂.群体遗传学研究中的数据处理方法Ⅰ.—RAPD数据的AMOVA分析[J].生物多样性,2002,10(4):438-444.
    [95] Excoffier L G, Laval, Schneider. Arlequin ver. 3.0: An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    [96] Rohlf, F. J. 1993. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System.State University of New York, Stony Brook, NY, Version 1.8
    [97] Felsenstein J(1989)phylip,phylogeny inferenc package (version3.2). Cladistics, 5,164–166
    [98] de Vallavieille-Pope C,Picard-Formery H,Radulovic S,Johnson R. Specific resistance factors to yellow rust in seedlings of some French wheat varieties and races of Puccinia striiformic Westend in France[J].Agronomie, 1990,10:103–113.
    [99] de Vallavieille-Pope C,Rouzet J,Leconte M,Delos M,Mistou MN. La rouille jaune du bléen France:desépidémies déclenchées par une nouvelle race,un hiver doux et un printemps humide[J].Phytoma-la Défense des Végétaux,2000,527:22–29.
    [100] Justesen AF,Ridout CJ,Hovmoller MS.The recent history of Puccinia striiformis f.sp.tritici in Denmark as revealed by disease incidence and AFLP markers[J].Plant Pathology,2000,51:13–23.
    [101] Keiper FJ,Hayden MJ,Park RF,Wellings CR.Molecular genetic variability of Australian isolates of five cereal rust pathogens[J].Mycological Research,2003,107:545–556.
    [102] Hovmoller MS.Disease severity and pathotype dynamics of Puccinia striiformis f.sp.tritici in Denmark[J].Plant Pathology,2001,50: 181–189.
    [103] Boshoff WHP,Pretorius ZA,Niekerk BDV.Establishment, distribution,and pathogenicity of Puccinia striiformis f.sp.tritici in South Africa[J].Plant Disease,2002,86:485–492.
    [104] Brown JKM.The choice of molecular marker methods for population genetic studies of plant pathogens[J]. New Phytopathologist, 1996,133: 183–195.
    [105] Brown JKM,Hovmoller MS.Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease[J].Science,2002,297:537–541.
    [106] Hovmoller,M.S. Disease severity and pathotype dynamics of Puccinia striiformis f.sp.tritici in Denmark[J].Plant Pathology, 2001.50:181–189.
    [107] Johnson,R.,R.W.Stubbs,E.Fuchs. No-menclature for physiologic races of Puccinia striiformis infecting wheat[J]. Transactions of the British Mycological Society,1972, 58:475–480.
    [108] Justesen,A.F.,C.J.Ridout,and M.S.Hovmoller. The recent history of Puccinia striiformis f.sp.tritici in Denmark as revealed by disease incidence and AFLP markers[J].Plant Pathology, 2002,51:13–23.
    [109]井金学.紫外线诱导小麦条锈病菌毒性突变的研究[D].西北农业大学博士论文,1992.
    [110]井金学,商鸿生,李振岐.60C0λ射线对小麦条锈病菌夏孢子的生物学效应[J].核农学报,1992,6(2):116-120.
    [111]井金学,商鸿生,李振岐.紫外线照射对小麦锈菌生物学效应的研究[J].植物病理学报,1993,24(4):299-304.
    [112]商鸿生,井金学,李振岐.紫外线诱导小麦条锈菌毒性突变的研究[J].植物病理学报,1994,25(4):347-351.
    [113] Line R F,Sharp E L,Powelson R L. A system for differentiating races of Puccinia striiformis in the United States[J]. Plant Disease Report, 1970, 54: 992-994.
    [114]康振生,李振岐,商鸿生.小麦条锈菌异核作用产生的一新菌系[J].西北农业大学学报,1991,19(增):97—99.
    [115]马青,康振生,李振岐,等.小麦叶表小麦条锈菌夏孢子芽管结合现象的观察[J].西北农业大学学报,1993,21(2):45-48.
    [116]马青,康振生,李振岐.小麦条锈菌夏孢子芽管在小麦叶片上结合现象的研究[J].西北农业大学学报,1993,21(2):97-99.
    [117] Wright S. The genetical structure of population[J]. Annual Eugen., 1951, 15: 323-354.
    [118] Wright S. Evolution in Mendelian populations[J]. Genetics, 1931, 16: 97-159.
    [119] Malcolm L, Hunter J R. Foundments of Conservation Biology[M]. London: Blackwell Science Inc, 1996, 79.
    [120] Mayr E. Change of genetic environment and evolution. In J. Huxley, A. C. Hardy, and E. B. Ford (eds.) [M]. Evolution as a Process. Allen and Unwin, London, 1954, 157-180.
    [121] Hamrick J L. Isozymes and the analysis of genetic structure in plant populations. In D. E. Soltis, and P. S. Soltis (eds.), Isozyme in plant biology[M]. Dioscorides press. Portland. Oregon, 1989, 87-105.
    [122] Futuyma D J. Evolutionary biology[M]. Sinauer Associates, Inc. Sunderland, Massachusettes, 1986.
    [123] Schaal, BA. Measurement of gene flow in Lupinus texensis[J]. Nature, 1980, 284: 450-451.
    [124] Slatkin M. Gene flow and the geographic structure of natural population[J]. Science, 1987, 236: 787-792.
    [125] Anderson N O. The distribution of the genus Lilium with reference to its evolution[J]. Herbertia, 1986, 42: 1-18.
    [126] Mayr E. Mechanisms of evolution. In N. A. Campbell, Biology[M]. The Benjamin/Cummings. Publishing Compancy, 1993, 416.
    [127] Hedrick P W. Population biology: The evolution and ecology of populations[M]. Jones And Bartlett, U.S.A. 1984, 445.
    [128] Lehman N. Conservation biology: genes are not enough[J]. Current Biology, 1998, 8(20): 722-724.
    [129]肖悦岩,曾士迈,张万义,等.小麦条锈病流行的简要模拟模型[J].植物病理学报,1985,13(1):1-13.
    [130]肖悦岩,曾士迈.小麦条锈病三种显症率预测式的比较研究[J].中国科学(B辑),1985, (2)∶151-157.
    [131]黄光明.陕、甘、川三省毗邻地区小麦秋苗条锈菌源考察[J].植物保护,1983,(2):14-15.
    [132]曾士迈.小麦条锈病春季流行规律的数理分析[J].植物保护学报,1962,1(1):35- 48 .
    [133]曾士迈.小麦条锈病的大区流行规律和流行区系[J].植物保护, 1963,(1)∶1-13.
    [134]曾士迈,张万义,肖悦岩.小麦条锈病的电算模拟研究初报[J].北京农业大学学报, 1981,7(3)∶1-12.
    [135]曾士迈,杨演.植物病害流行学[M].北京:农业出版社,1986.
    [136]曾士迈,孙平.华北西北长江中下游小麦条锈病流行区划的研究[M].北京农业大学出版社,1995.
    [137] LuoYong & Zeng Shimai. An epidemic simulation model of stripe rust (Puccinia striiformis) on slow rusting cultivars of wheat(II) [J]. Scientia Sinica,1988, 31(4):457-468.
    [138] Yang Xiaobing and Zeng Shimai. Detecting patterns of wheat stripe rust pandemics in time and space[J]. Phytopathology, 1992, 82(5):571-576.
    [139]谢水仙,陈杨林.陇东小麦条锈病发生规律调查[J].甘肃农业科技,1995.(5):34-36.
    [140]曾士迈.小麦条锈病的电算模拟研究初报-春季流行的一个简要模型[J].北京农大学报, 1981, 7(3):1-12.
    [141]骆勇,曾士迈.小麦多病害综合防治中品种布局决策模型[J].北京农业大学学报,1990,16:96-115.
    [142] Teng P S. Simulation of the barley leaf rust epidemic: Structure and validtion of BARSIM- 1[J]. Agriculture System, 1980,5:55-73.
    [143]曾士迈.小麦条锈病传播距离预测方法的初步探讨[J].植物病理学报, 1985, 15(2):95-10.
    [144]赵美琦,肖悦岩,曾士迈.小麦条锈病病害流行空间动态电算模拟的初步探讨[J].植物病理学报,1985,15(4):199-204.
    [145]张进文,曾士迈.小麦条锈病菌夏孢子一次传播的空间分布[J].北京农业大学学报,1985,12(1):47-55.
    [146]肖悦岩,曾士迈.小麦条锈病流行空间动态电算模拟的初步探讨II[J].植物病理学报,1986,16(1):3-10.
    [147]肖悦岩. SIMYR—小麦条锈病流行间模拟模型[J].植物病理学报,1983 ,13(1):1-13.
    [148]肖长林,曾士迈.小麦条锈病流行程度趋势预测专家系统刍型[J].北京农业大学学报, 1990,16:126-132.
    [149] Boeger, J. M., Chen, R. S., and McDonald, B. A. Gene flow between geographic populations of Mycosphaerella graminicola (anamorph Septoria tritici) detected with restriction fragment length polymorphism markers[J]. Phytopathology, 1993,83:1148-1154.
    [150] Brown, J. K. M., and Hovm?ller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease[J]. Science, 2002, 297:537-541.
    [151] Burt, A., Carter, D. A., and Taylor, J. W. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis[J]. Proceedings of the National Academy of Sciences of the USA, 1996. 93: 770-73.
    [152] Cortesi, P., Fischer, M., and Milgroom, M. G. Identification and spread of Fomitiporia punctata associated with wood decay of grapevine showing symptoms of esca [J]. Phytopathology, 2000, 90:967-972.
    [153] George, M. L. C., Bustamam, and Nelson, R. J. Movement of Xanthomonas oryzae pv. oryzae in southeast Asia detected using PCR-Based DNA fingerprinting[J]. Phytopathology, 1997,87:302-309.
    [154] Goodwin, S. B. The population genetics of Phytophthora[J]. Phytopathology, 1997, 87:462-473.
    [155] Goodwin, S. B., Fry, B. A., and Fry, W. E. Direct detection of gene flow and probable sexual reproduction of Phytophthora infestans in northern North America[J]. Phytopathology, 1995, 85:473-479.
    [156] Goodwin, S. R., Cohen, B. A., and Fry, W. E. Migration from northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada[J]. Phytopathology ,1994,84:553-558.
    [157] Hamelin, R. C., Allaire, M., Bergeron. Molecular Epidemiology of White Pine Blister Rust: Recombination and Spatial Distribution[J]. Phytopathology, 2005,95:793-799.
    [158] Hamelin, R. C., Lecours, N., and Laflamme, G. Molecular evidence of distinct introductions of the European race of Gremmeniella abietina into North America[J]. Phytopathology, 1998, 88:582-588.
    [159] Hayden, H. L., Carlier, J., and Aitken, E. A. B. The genetic structure of Australian populations of Mycosphaerella musicola suggests restricted gene flow at the continental scale[J]. Phytopathology, 2005, 95:489-498.
    [160] Koh, Y. J., Goodwin, S. B., and Fry, W. E. Migrations and displacements of Phytophthora infestans populations in east Asian countries[J]. Phytopathology ,1994,84:922-927.
    [161] McDermott, J. M., and McDonald, B. A. Gene flow in plant pathosystems[J]. Annual Review Phytopathology, 1993,31:353-373.
    [162] Milgroom, M. G. Recombination and the multilocus structure of fungal populations[J]. Annual Review Phytopathology ,1996, 34:457-477.
    [163] Rosewich, U. L., Pettway, and Kistler, H. C. Population genetic analysis corroborates dispersal of Fusarium oxysporum f. sp. radicis-lycopersici from Florida to Europe[J]. Phytopathology, 1999,89:623-630.
    [164] Salamati, S., Zhan, J., and McDonald, B. A. The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination[J]. Phytopathology , 2000, 90:901-908.
    [165] Templeton, A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history[J]. Molecular Ecology,1998, 7: 381–97.
    [166] Burdon, J. J., Roelfs, A. The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis[J]. Phytopathology ,1985, 75: 1068-73.
    [167] Ceplitis, A. Coalescence times and the Meselson effect in asexual eukaryotes[J]. Genetic Research , 2003, 82:183-190.
    [168] de Mee?s, T., Prugnolle, F., Agnew, P. Asexual reproduction: genetics and evolutionary aspects[J]. Cell Molecular Life Science, 2007, 64:1355-72.
    [169] Goyeau, H., Halkett, F., Lannou, C. Clonality and host selection in the wheat pathogenic fungus Puccinia triticina[J]. Fungi Genetic Biology, 2007, 44: 474-783.
    [170] Little, R, Manners, J. Somatic recombination in yellow rust of wheat (Puccinia striiformis) The production and possible origin of two new physiologic races[J]. Transactions of the British Mycological Society, 1969, 53: 251-258.
    [171] Ma Q,Kang Z S, Li Z Q.The Fusion of urediospore germ tubes in Puccinia striiformis West.on Wheat Leaves[J]. Acta University Agrictual Boreali-occidenhallsm, 1993, 21(2):45-48.
    [172] Kang Z S, Li Z Q and Shang H S. Ultrastructure and cytochemistry of in tercellulay hyphae of wheat stripe rust[J].Acta Mycologica Sinica, 1993,12(3):208-2l3.
    [173] Kang Z S, Li Z Q and Shang H S . Nucleal condition of uredjnial stage of wheat stripe rust[J] .Acta Phytopathologica Sinica , 1994,24(1):26-31 .
    [174] Kang Z S, Li Z Q and Shang H S .A new isolate produced by the Heterokaryosis of wheat stripe rust[J]. Acta University Agrictual Boreali-occidenhallsm, 1993, 21(1):97-99.
    [175] Kang Z S, Li Z Q and Shang H S .On the screening of new heterocaryons of wheat stripe rust and its nucleal dissociation[J]. Acta Phytopathologica Sinica , 1994,24(2):101-105 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700