用户名: 密码: 验证码:
温室气体及其稳定同位素排放通量测量技术和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气中温室气体浓度的增加引起的全球变暖已经成为全世界面临的重要的环境问题。为了控制温室气体的排放,需要更好地理解自然界碳源与碳汇的分布规律,更好地理解生态系统主要温室气体排放的基本过程和变化规律,这就需要温室气体源排放与生态通量的主动测量技术。13C和D等环境稳定同位素在大气圈、水圈和生物圈中广泛存在,可以利用稳定同位素来研究温室气体的形成、转移和消耗等动态过程。因此对于生态通量监测,除了多种温室气体之外,还应该考虑这些稳定同位素的测量。
     论文的研究是基于傅里叶变换红外光谱(FTIR)技术的多组分温室气体测量新方法,发展温室气体源排放与生态通量监测的分析方法和关键技术。研究工作基于开放光程傅里叶变换红外光谱的温室气体分析系统,研究了多种温室气体(CO2、水汽、CH4和N2O)以及CO2和水汽的稳定同位素的浓度实时反演方法;构建了温室气体排放通量反演模型,研究生态系统温室气体排放通量测量技术和稳定同位素通量的测量方法,并对温室气体及其稳定同位素排放通量测量的系统和方法进行了实验验证。
     首先,以气体分子中红外光谱独特的吸收特征为基础,研究温室气体及其大气稳定同位素的测量方法。讨论了温室气体及其稳定同位素浓度反演时光谱波段的选择原则,并确定了反演各成分时选择的红外光谱波段。研究了开放光程FTIR系统测量参数的确定,包括在实验室环境和外场环境下进行的实验和测试,并给出了整个测量系统和方法测量环境大气的准确度和精度。
     在此基础上,把开放光程FTIR系统和基于后向拉格朗日随机扩散(bLS)模式的逆扩散技术相结合,构建了温室气体排放通量反演模型。在模型构建的基础上,进行了实验仿真和高纯度样气释放的外场实验,研究了模式应用中的假设引起的排放计算误差,为复杂排放源的研究确定合理的传感器布局,并验证了测量系统和通量反演模型测量温室气体排放的可行性和准确性。
     在约半个月的外场实验中,连续测量环境大气中温室气体以及CO2和水汽的稳定同位素,研究环境大气中CO2和水汽的同位素以及同位素比值δ13C和δD随时间的变化规律。采用Keeling图方法在不同的时间尺度上对CO2和水汽的稳定同位素时间序列进行分析,得到了地表蒸散的氘同位素特征。并对C02同位素12CO2和13CO2的地表排放通量进行了初步的计算,在研究生态系统同位素通量方法上做了新的尝试。外场实验的结果,验证了我们的温室气体及其稳定同位素测量技术和方法的可行性,证明了我们的测量系统长期、连续、无人值守测量环境大气和源排放的潜力。
Global warming due to the increase in the atmospheric greenhouse gases has become a serious environmental problem facing the world.In order to control the emissions of the greenhouse gases, we need to better understand the distributions of natural carbon sources and sinks, as well as the basic processes and variation of the emissions of the greenhouse gases in the ecosystem, so the active techniques for measuring the emissions of greenhouse gases from ecosystem sources are required. Such environmental stable isotopes as carbon thirteen and deuterium are widespread in the atmosphere, hydrosphere, and biosphere,and can be used to research the dynamic processes of the formation, transfer, and consumption of greenhouse gases. Therefore, in addition to multiple greenhouse gases, the stable isotopes should be considered for monitoring ecological emission.
     The focus of the paper is development of key methods and techniques for monitoring emissions of greenhouse gases from ecosystem sources,based on new methods of Fourier transform infrared spectrometry(FTIR) for measurement of multi-component greenhouse gases.In our work,the real time methods of concentration retrieval for multiple greenhouse gases(carbon dioxide,water vapor, methane,nitrous oxide) and the stable isotopes of carbon dioxide and water vapor have been studied using an open-path FTIR system. Also,a model for retrieval of emissions of greenhouse gases are developed,and the methods for measurement of emissions of greenhouse gases and the isotopic flux are examined.Furthermore, experimental verification has been conducted for our measurement system and methods.
     Firstly, the methods for detecting greenhouse gases and their stable isotopes have been deliberated, based on the unique absorption features of gas species in infrared spectral region. The criteria in selection of wavelength region for retrieval of greenhouse gases and stable isotopes are discussed, and the spectral windows for analysis of each gas component of interest are determined.As well, the measurement parameters of the open-path FTIR system are studied,including experiments and tests carried out in a laboratory environment and field environment.The measurement accuracy and precision of the whole system for detecting the ambient air are given.
     On this basis, a model for retrieval of emissions of greenhouse gases are constructed, which combines an inverse dispersion technique based on a backward Lagrangian stochastic (bLS)model with an open-path FTIR system. Then, numerical simulations and a field experiment of release of high purity sample gas are conducted, in which emission-calculation errors caused by the assumption in application of the bLS model are discussed, and a reasonable sensor configuration for complex sources is identified. The experimental results show the feasibility and accuracy of the measurement system in conjunction with the model for measuring emissions of greenhouse gases.
     Finally, greenhouse gases and stable isotopes of CO2and H2O in ambient air are continuously measured in a half-month field experiment, and the variation of stable isotopes of CO2and water vapor as well as the isotopic ratios δ13C and δD are investigated. The time series of stable isotopes of CO2and water vapor are analyzed on different time scales by Keeling plot methods, and the deuterium isotopic characteristics of evapotranspiration are determined. Moreover, the surface flux of12CO2and13CO2are calculated preliminarily, and this is a new attempt to measure isotopic flux in ecosystem. The results of the field experiment indicate the feasibility of our measurement techniques and methods for detecting greenhouse gases and stable isotopes.Also,the outcomes demonstrate the potential of our measuring system for long term, continuous, unattended measurement of ambient air and source emissions.
引文
程巳阳,高闽光,徐亮,等.2011.广州亚运会期间多组分污染气体的抽取式FTIR监测[J].大气与环境光学学报,6(5):351-356.
    董凤忠,阚瑞峰,刘文清,等.2005.可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用[J].量子电子学报,22(3):315-325.
    高闽光,刘文清,张天舒,等.机载FTIR被动遥测大气痕量气体[J].光谱学与光谱分析,2006,26(12):2203-2206.
    何莹,张玉钧,阚瑞峰,等.2009.基于激光吸收光谱开放式大气CO2的在线监测[J].光谱学与光谱分析,29(1):10-13.
    阚瑞峰,刘文清,张玉钧,等.2007.高灵敏激光吸收光谱仪监测北京城区甲烷浓度变化[J].大气与环境光学学报,2(3):203-206
    李相贤,高闽光,徐亮,等.基于OP-FTIR法监测城市交通排放CO、CO2、N2O和CH4气体[J],红外技术,2011,33(8):473-482.
    连晨舟,吕子安,徐旭常.2004.典型毒害气体的FTIR吸收光谱分析[J],中国环境监测,20(2):17-20.
    刘强,王跃思,王明星,等.2005.北京大气中主要温室气体近10年变化趋势[J],大气科学,29(2):267-271.
    彭镇华,王妍,任海青,等.2009.安庆杨树林生态系统碳通量及其影响因子研究[J],林业科学研究,22(2):237-242.
    童晶晶,高闽光,刘志明,等.2010.红外光谱法测量城市空气中CH4浓度[J],激光与红外,40(2):166-168.
    王春林,周国逸,王旭,等.2007.复杂地形条件下涡度相关法通量测定修正方法分析[J],中国农业气象,28(3):233-240.
    王玉英,胡春胜.2011.施氮水平对太行山前平原冬小麦-夏玉米轮作体系土壤温室气体通量的影响[J],中国生态农业学报,19(5):1122-1128.
    翁诗甫,傅里叶变换红外光谱分析,第二版,化学工业出版社,北京,2010.
    夏慧,刘文清,张玉钧,等.2009.基于激光吸收光谱开放式长光程的空气中甲烷在线监测及分析[J],光学学报,29(6):1454-1458.
    徐亮.2007.大气痕量气体的主动FTIR光谱分析方法及应用研究[D].北京:中国科学院研究生院.
    徐亮,刘建国,高闽光,等.2007a.FTIR监测北京地区CO2和CH4及其变化分析[J],光谱学与光谱分析,27(5):889-891.
    徐亮,刘建国,高闽光,等.2007b.开放式长光程傅里叶变换红外光谱系统在环境气体分析中的应用[J],光谱学与光谱分析,27(3):448-451.
    徐亮,刘建国,高闽光,等.2007c.开放光程FTIR测量大气甲烷及其与点采样仪器的结果对比[J],红外技术,29(4):239-242.
    严燕儿,赵斌,郭海强,等.2008.生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J],地球科学进展,23(8):884-894.
    于贵瑞,孙晓敏.2006a.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社.
    于贵瑞,伏玉玲,孙晓敏,等.2006b.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学D-地球科学,36:1-21.
    于贵瑞,孙晓敏.2008.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社.
    袁国富,张娜,孙晓敏,等.2010.利用原位连续测定水汽δ18O值和Keeling plot方法区分麦田蒸散组分[J].植物生态学报,34(2):170~178.
    张旭东,彭镇华,漆良华,等.2005.生态系统通量研究进展[J].应用生态学报,16(10):1976-1982.
    赵敏,胡静,汤庆合,等.2012.温室气体监测研究进展及对我国的启示[J],环境科技,25(4):75-78.
    赵炎,曾源,吴炳方,等.2011.水库水气界面温室气体通量监测方法综述[J],水科学进展,22(1):135-146
    周斌,刘文清,齐锋,等.2002.差分吸收光谱法测量大气污染的测量误差分析[J],光学学报,22(8):957-961.
    周凌晞,张晓春,郝庆菊,等.2006.温室气体本底观测研究[J],气候变化研究进展,2(2):63-67.
    周凌晞,周秀骥,张晓春,等.2007.瓦里关温室气体本底研究的主要进展[J],气象学报,65(3):458-468.
    朱军.2006.傅里叶变换红外光谱方法在反演气体浓度中的应用研究[D].北京:中国科学院研究生院.
    朱咏莉,童成立,吴金水,等.亚热带稻田生态系统CO2通量的季节变化特征[J].环境科学,2007,28(2):283-288.
    Adams R M, RosenzweigC, Peart R M, et al.1990. Global climate change and united-states agriculture[J], Nature,345:219-224.
    Archer D.2005. Fate of fossil fuel CO2 in geologic time[J]. Journal of Geophysical Research, 110(C9):C09S05.
    Aylor D E, Boehm M T, Shields, E J.2006. Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modeling[J]. Journal of Applied Meteorology and Climatology,45(7):1003-1015.
    Bakwin P S, Tans P P, White J W C, et al.1998. Determination of the isotopic (13C/12C) discrimination by terrestrial biology from a global network of observations[J]. Global Biogeochemical Cycles,12(3):555-562.
    Baldocchi D D.2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology, 9(4):479-492.
    Baldocchi D, Falge E, Gu L H, et al.2001. Fluxnet:a New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities[J]. Bulletin of the American Meteorological Society,82(11):2415-2434.
    Battle M, Bender M L, Tans P P, et al.2000. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C[J], Science,287:2467-2470.
    Beil A, Daum R, Harig R, et al.1998. Remote sensing of atmospheric pollution by passive FTIR spectrometry:Proceedings of SPIE, Klaus Schafer, Herausgeber[C].
    Bjorneberg D L, Leytem A B, Westermann D T, et al.2009. Measurement of Atmospheric Ammonia, Methane, and Nitrous Oxide at a Concentrated Dairy Production Facility in Southern Idaho Using Open-Path FTIR Spectrometry[J]. Transactions of the Asabe,52(5):1749-1756.
    Black T A, DenHartog G, Neumann H H, et al.1996. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest[J]. Global Change Biology,2(3):219-229.
    Bovensmann H, Burrows J P, Buchwitz M, et al.1999. SCIAMACHY:Mission objectives and measurement modes[J], Journal of the Atmospheric Sciences,56(2):127-150.
    Bowling D R, Baldocchi D D, Monson R K.1999. Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest[J]. Global Biogeochemical Cycles,13(4):903-922.
    Bowling D R, Tans P P, Monson R K.2001. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2[J]. Global Change Biology,7(2):127-145.
    Bowling D R, Pataki D E, Ehleringer J R.2003a. Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of CO2[J]. Agricultural and Forest Meteorology,116(3-4):159-179.
    Bowling D R, Sargent S D, Tanner B D, et al.2003b. Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange[J]. Agricultural and Forest Meteorology,118(1-2):1-19.
    Bowling D R, Pataki D E, Randerson J T.2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes[J]. New Phytologist,178(1):24-40.
    Bouwman A F, Boumans L J M, Batjes N H.2002. Modeling global annual N2O and NO emissions from fertilized fields[J]. Global Biogeochemical Cycles,16(4):281-289.
    Brach E J, Desjardins R L, Stamour G T.1981. Open path CO2 analyzer[J]. Journal of Physics and Earth Science Instrumentation,14(12):1415-1419.
    Breas O, Guillou C,Reniero F, et al.2001. The global methane cycle:isotopes and mixing ratios sources and sinks[J]. Isotopes in Environmental and Health Studies.37(4):257-379.
    Buchmann N, Ehleringer J R.1998. CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies[J]. Agricultural and Forest Meteorology,89(1):45-58.
    Bush S E, Pataki D E, Ehleringer J R.2007. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA[J]. Applied Geochemistry,22(4):715-723.
    Businger J A, Wyngaard J C, Izumi Y, et al.1971. Flux-Profile Relationships in Atmospheric Surface Layer[J]. Journal of the Atmospheric Sciences,28(2):181-189.
    Cambaliza M O L.2010. Measurement of forest ecosystem-atmosphere exchange ofδ13C-CO2 using Fourier transform infrared spectroscopy and disjunct eddy covariance[D]. Pullman:Washington State University.
    Carter Jr R E, Thomas M J, Marotz G A, et al.1992. Compound detection and concentration estimation by open-path Fourier transform infrared spectrometry and canisters under controlled field conditions[J]. Environmental Science and Technology,26(11):2175-2181.
    Ciais P, Tans P P, Trolier M, et al.1995. A large northern hemisphere terrestrial CO2 sink indicated by the13C/12C ratio of atmospheric CO2[J], Science,269:1098-1102.
    Corfee-Morlot J, Hohne N.2003. Climate change:long-term targets and short-term commitments [J]. Global Environmental Change,13(4):277-293.
    Crisp D, Atlas R M, Breon F M, et al.2004. The Orbiting Carbon Observatory (OCO) mission[J].
    Advances in Space Research,34(4):700-709.
    Dalai R C, Wang W J, Robertson G P, et al.2003. Nitrous oxide emission from Australian agricultural lands and mitigation options:a review[J]. Australian Journal of Soil Research, 41(2):165-195.
    Dalai R C, Allen D E, Livesley S J, et al.2008. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes:a review[J]. Plant and Soil,309(1-2):43-76.
    Del Grosso S J, Mosier A R, Parton W J, et al.2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA[J]. Soil Tillage Research,83(1):9-24.
    Denmead O T.2008. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere[J]. Plant and Soil,309(1-2):5-24.
    Denmead O T, Harper L A, Freney J R, et al.1998. A mass balance method for non-intrusive measurements of surface-air trace gas exchange[J]. Atmospheric Environment,32(21): 3679-3688.
    Denmead O T, Macdonald B C T, Bryant G, et al.2010. Emissions of methane and nitrous oxide from Australian sugarcane soils[J]. Agricultural and Forest Meteorology,150(6):748-756.
    Desjardins R L.1974. A technique to measure CO2 exchange under field conditions[J]. International Journal of Biometeorology,18(l):76-83.
    Desjardins R L, Lemon E R.1974. Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes[J], Boundary-Layer Meteorology, 5(4):475-488.
    Deutscher N M, Griffith D W T, Bryant G W, et al.2010. Total column CO2 measurements at Darwin, Australia-site description and calibration against in situ aircraft profiles[J]. Atmospheric Measurement Techniques,3(4):947-958.
    deVries D A, Philip J R.1986. Soil heat flux, thermal conductivity, and the null-alignment method[J]. Soil Science Society of America Journal,50(1):12-18.
    Dickinson R E, Cicerone R J.1986. Future global warming from atmospheric trace gases[J]. Nature,319:109-115.
    Dyer A J, Hicks B B.1970. Flux-Gradient Relationships in Constant Flux Layer[J]. Quarterly Journal of the Royal Meteorological Society,96(410):715-721.
    Edwards G C, Thurtell G W, Kidd G E, et al.2003. A diode laser based gas monitor suitable for measurement of trace gas exchange using micrometeorological techniques[J].Agricultural and Forest Meteorology,115(1-2):71-89.
    Ellis J L, Bannink A, France J, et al.2010. Evaluation of enteric methane prediction equations for dairy cows used in whole farm models[J]. Global Change Biology,16(12):3246-3256.
    Emanuel K A.1987. The dependence of hurricane intensity on climate[J]. Nature,326:483-485.
    Emanuel K.2005. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 436:686-688.
    Esler M B, Griffith D W T, Wilson S R, et al.2000a. Precision trace gas analysis by FT-IR spectroscopy.1. Simultaneous analysis of CO2, CH4, N2O, and CO in Air[J]. Analytical Chemistry,72(1):206-215.
    Esler M B, Griffith D W T, Wilson S R, et al.2000b. Precision trace gas analysis by FT-IR spectroscopy.2. The 13C/12C isotope ratio of CO2[J]. Analytical Chemistry,72(1):216-221.
    Flanagan L B, Brooks J R, Varney G T, et al.1996. Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems[J]. Global Biogeochemical Cycles,10(4):629-640.
    Flesch T K, Wilson J D, Yee E.1995. Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions[J]. Journal of Applied Meteorology,34(6): 1320-1332.
    Flesch T K, Wilson J D, Harper L A, et al.2004. Deducing ground-air emissions from observed trace gas concentrations:A field trial[J]. Journal of Applied Meteorology,43(3):487-502.
    Flesch T K, Wilson J D, Harper L A.2005a. Deducing ground-to-air emissions from observed trace gas concentrations:A field trial with wind disturbance[J]. Journal of Applied Meteorology, 44(4):475-484.
    Flesch T K, Wilson J D, Harper L A, et al.2005b. Estimating gas emissions from a farm with an inverse-dispersion technique[J]. Atmospheric Environment,39:4863-4874.
    Flesch T K, Wilson J D, Harper L A, et al.2007. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique[J]. Agricultural and Forest Meteorology, 144(1-2):139-155.
    Flesch T K, Harper L A, Powell J M, et al.2009. Inverse-dispersion calculation of ammonia emissions from Wisconsin dairy farms[J]. Transactions of the American Society of Agricultural and Biological Engineers,52:253-265.
    Flechard C R, Neftel A, Jocher M, et al.2005. Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices[J]. Global Change Biology,11(12):2114-2127.
    Foken T, Leclerc M Y.2004. Methods and limitations in validation of footprint models[J]. Agricultural and Forest Meteorology,127:223-234.
    Fowler D, Skiba U, Moncrieff J B, et al.2008. Greenhouse gas emissions, inventories and validation:SAC and SEPA Biennial Conference, Crichton, Karen, Audsley, Rebecca, [C].
    Fung I, Field C B, Berry J A, et al.1997. Carbon 13 exchanges between the atmosphere and biosphere[J]. Global Biogeochemical Cycles,11(4):507-533.
    Gao Z, Mauder M, Desjardins R L, et al.2009. Assessment of the backward Lagrangian Stochastic dispersion technique for continuous measurements of CH4 emissions[J]. Agricultural and Forest Meteorology,149(9):1516-1523.
    Gao Z, Desjardins R L, Flesch T K.2010. Assessment of the uncertainty of using an inverse-dispersion technique to measure methane emissions from animals in a barn and in a small pen[J]. Atmospheric Environment,44(26):3128-3134.
    Gao Z L, Yuan H J, Ma W Q, et al.2011. Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China[J]. Environmental Pollution,159(5):1183-1189.
    Garratt J R.1975. Limitations of the Eddy-correlation technique for the determination of turbulent fluxes near the surface[J]. Boundary-Layer Meteorology,8(3-4):255-259.
    Gat J R.1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences,24:225-262.
    Goldenberg S B, Landsea C W A, Mestas-Nunez M, et al.2001. The recent increase in Atlantic hurricane activity:causes and implications[J], Science,293:474-479.
    Grainger C, Clarke T, McGinn S M, et al.2007. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques[J]. Journal of Dairy Science, 90(6):2755-2766.
    Grant B, Smith W, Desjardins R L, et al.2004. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada[J]. Climatic Change,65(3):315-332.
    Greco S, Baldocchi D D.1996. Seasonal variations of CO; and water vapour exchange rates over a temperate deciduous forest[J]. Global Change Biology,2(3):183-197.
    Griffis T J, Baker J M, Sargent S D, et al.2004. Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques[J]. Agricultural and Forest Meteorology,124(1-2):15-29.
    Griffis T J, Lee X, Baker J M, et al.2005a. Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient methodfJ]. Agricultural and Forest Meteorology,135(1-4):44-60.
    Griffis T J, Baker J M, Zhang J.2005b. Seasonal dynamics and partitioning of isotopic CO2 exchange in C3/C4 managed ecosystem[J]. Agricultural and Forest Meteorology, 132(1-2):1-19.
    Griffis T J, Zhang J, Baker J M, et al.2007. Determining carbon isotope signatures from micrometeorological measurements:Implications for studying biosphere-atmosphere exchange processes[J]. Boundary-Layer Meteorology,123(2):295-316.
    Griffis T J. Sargent S D, Baker J M, et al.2008. Direct measurement of biosphere—atmosphere isotopic CO2 exchange using the eddy covariance technique[J]. Journal of Geophysical Research,113:D08304.
    Griffis T J.2013. Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere:A review of optical isotope techniques and their application[J]. Agricultural and Forest Meteorology,174-175:85-109.
    Griffith D W T.1996. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra[J]. Applied Spectroscopy,50(1):59-70.
    Griffith D W T, Leuning R, Denmead O T, et al.2002. Air-land exchanges of CO2, CH4 and N2O measured by FTIR spectrometry and micrometeorological techniques[J].Atmospheric Environment,36(11):1833-1842.
    Griffith D W T, Jamie I, Esler M, et al.2006. Real-time field measurements of stable isotopes in water and CO2 by Fourier transform infrared spectrometry [J]. Isotopes in Environmental and Health Studies,42(1):9-20.
    Griffith D W T, Bryant G R, Hsu D, et al.2008. Methane emissions from free-ranging cattle: Comparison of tracer and integrated horizontal flux techniques[J]. Journal of Environmental Quality,37(2):582-591.
    Griffith D W T, Deutscher N M, Caldow C, et al.2012. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications[J]. Atmospheric Measurement Techniques, 5(10):2481-2498.
    Griffiths P R, de Haseth J A.1986. Fourier Transform Infrared Spectrometry[M]. New York:John Wiley.
    Gupta P, Noone D, Galewsky J, et al.2009. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology [J]. Rapid Communications in Mass Spectrometry,23(16):2534-2542.
    HaDuong M, Grubb M J, Hourcade J C.1997. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement[J], Nature,390:270-273.
    Hansen J E, Lacis A A. Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate change[J]. Nature,1990,346(6286):713-719.
    Harper L A, Flesch T K, Powell J M, et al.2009. Ammonia emissions from dairy production in Wisconsin[J]. Journal of Dairy Science,92(5):2326-2337.
    Haverd V, Cuntz M, Griffith D, et al.2011. Measured deuterium in water vapour concentration does not improve the constraint on the partitioning of evapotranspiration in a tall forest canopy, as estimated using a soil vegetation atmosphere transfer modelfJ], Agricultural and Forest Meteorology,151(6),645-654.
    He H, Smith R B, Aylor D E.2003. Measurement of deuterium isotope flux ratio from an agricultural grassland[J]. Journal of Geophysical Research,108(D9):11-1-11-6.
    Hicks B B.1976. Wind Profile Relationships from Wangara Experimen[J]. Quarterly Journal of the Royal Meteorological Society,102(433):535-551.
    Hirst B, Gibson G, Gillespie S, et al.2004. Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling[J]. Geophysical Research Letters, 31(12):L12115.
    IPCC.1996. Climate Change 1995. The Science of Climate Change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press.
    IPCC.2000. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change[R], Cambridge:Cambridge University Press.
    IPCC.2007. Climate Change 2007:The Physical Science Basis[R]. Cambridge:Cambridge University Press.
    Jager F, Wagner G, Meijer H A J, et al.2005. Measuring δ13C of atmospheric air with non-dispersive infrared spectroscopy[J]. Isotopes in Environmental and Health Studies,41(4): 373-378.
    Johnson K, Huyler M, Westberg H, et al.1994. Measurement of Methane Emissions from Ruminant Livestock Using a Sf6, Tracer Technique[J]. Environmental Science and Technology, 28(2):359-362.
    Kaharabata S K, Schuepp P H, Desjardins R L,2000. Source strength determination of a tracer gas using an approximate solution to the advection-diffusion equation for microplots[J]. Atmospheric Environment,34(15):2343-2350.
    Kallbekken S, Rive N.2007. Why delaying emission reductions is a gamble[J],Climatic Change, 82(1-2):27-45.
    Keeling C D.1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta,13(4):322-334.
    Keeling CD.1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air[J]. Geochimica et Cosmochimica Acta,24(3-4):277-298.
    Kerstel E R T, Iannone R Q, Chenevier M, et al.2006. A water isotope (2H,17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications[J].Applied Physics B-Lasers and Optics,85(2-3):397-406.
    Kljun N, Rotach M W, Schmid H P.2002. A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications[J]. Boundary-Layer Meteorology, 103(2):205-226.
    Knohl A, Buchmann N.2005. Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopoes[J]. Global Biogeochemical Cycles,19(4): GB4008.
    Knutson T R, Tuleya R E.2004. Impact of CO2-induced warming on simulated hurricane intensity and precipitation:Sensitivity to the choice of climate model and convective parameterization[J]. Journal of Climate,17(18):3477-3495.
    Kumaraswamy S, Rath A K, Ramakrishnan B, et al.2000. Wetland rice soils as sources and sinks of methane:a review and prospects for research[J]. Biology and Fertility of Soils,31(6):449-461.
    Lashof D A, Ahuja D R.1990. Relative contributions of greenhouse gas emission to global warming[J]. Nature,344:529-531.
    Laubach J, Kelliher F M.2004. Measuring methane emission rates of a dairy cow herd by two micrometeorological techniques[J]. Agricultural and Forest Meteorology,125(3-4):279-303.
    Laubach J, Kelliher F M.2005. Measuring methane emission rates of a dairy cow herd (Ⅱ):results from a backward-Lagrangian stochastic model[J]. Agricultural and Forest Meteorology,129(3-4):137-150.
    Laubach J, Kelliher F M. Knight T W, et al.2008. Methane emissions from beef cattle-a comparison of paddock-and animal-scale measurements[J]. Australian Journal of Experimental Agriculture,48(1-2):132-137.
    Laubach J.2010. Testing of a Lagrangian model of dispersion in the surface layer with cattle methane emissions[J]. Agricultural and Forest Meteorology,150(11):1428-1442.
    Leclerc M Y, Thurtell G W.1990. Footprint prediction of scalar fluxes using a Markovian analysis[J]. Boundary-Layer Meteorology,52(3):247-258.
    Leuning R, Baker S K, Jamie I M, et al.1999. Methane emission from free-ranging sheep:a comparison of two measurement methods[J]. Atmospheric Environment,33(9):1357-1365.
    Leuning R, Raupach M R, Coppin P A, et al.2004. Spatial and temporal variations in fluxes of energy, water vapour and carbon dioxide during OASIS 1994 and 1995[J]. Boundary-Layer Meteorology,110(1):3-38.
    Leuning R, Cleugh H A, Zegelin S, et al.2005. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia:measurements and comparison with MODIS remote sensing estimates[J]. Agricultural and Forest Meteorology,129(3-4): 151-173.
    Leuning R, Etheridge D, Luhar A, et al.2008. Atmospheric monitoring and verification technologies for CO2 geosequestration[J]. International Journal of Greenhouse Gas Control, 2(3):401-414.
    Levitus S, Antonov J I, Boyer T P, et al.2000, Warming of the world ocean[J]. Science,287: 2225-2229.
    Leytem A B, Dungan R S, Bjorneberg D L, et al.2011. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure, management systems[J], Journal of Environmental Quality,40(5):1383-1394.
    Liang W, Shi Y, Zhang H.2007. Greenhouse gas emissions from northeast China rice fields in fallow seasonfJ]. Pedosphere,17(5):630-638.
    Loh Z, Leuning R, Zegelin S, et al.2009. Testing Lagrangian atmospheric dispersion modelling to monitor CO2 and CH4 leakage from geosequestration[J]. Atmospheric Environment, 43(16):2602-2611.
    McBain M C, Desjardins R L.2005. The evaluation of a backward Lagrangian stochastic (bLS) model to estimate greenhouse gas emissions from agricultural sources using a synthetic tracer source[J]. Agricultural and Forest Meteorology,135(1-4):61-72.
    McGinn S M, Flesch T K, Harper L A. et al.2006. An approach for measuring methane emissions from whole farms[J].Journal of Environmental Quality,35(1):14-20.
    McGinn S M, Beauchemin K A, Flesch T K, et al.2009. Performance of a dispersion model to estimate methane loss from cattle in pens[J]. Journal of Environmental Quality,38(5): 1796-1802.
    McManus J B, Nelson D D, Zahniser M S.2010. Long-term continuous sampling of 12CO2, 13CO2 and 12C18O16O in ambient air with a quantum cascade laser spectrometer[J]. Isotopes in Environmental and Health Studies,46(1):49-63.
    Meehl G A, Washington W M, Collins W D, et al.2005, How much more global warming and sea level rise? [J]. Science,307:1769-1772.
    Mendelsohn R, Nordhaus W D, Shaw D.1994. The impact of global warming on agriculture-A Ricardian analysis[J]. American Economic Review,84(4),753-771.
    Michener R, Lajtha K.2007. Stable isotopes in ecology and environmental science[M].2nd ed. Oxford:Blackwell Science Ltd.
    Mohn J, Werner R A, Buchmann B, et al.2007. High-precision δ13CO2 analysis by FTIR spectroscopy using a novel calibration strategy[J]. Journal of Molecular Structure,834-836: 95-101.
    Mohn J, Zeeman M J, Werner R A, et al.2008. Continuous field measurements of δ13C-CO2 and trace gases by FTIR spectroscopy[J].Isotopes in Environmental and Health Studies,44(3): 241-251.
    Moncrieff J B, Malhi Y, Leuning R.1996. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water[J]. Global Change Biology,2(3):231-240.
    Morino I, Uchino O, Inoue M, et al.2011. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra[J], Atmospheric Measurement Techniques,4(6):1061-1076.
    Mosier A, Wassmann R. Verchot L, et al.2004. Methane and nitrogen oxide fluxes in tropical agricultural soils:sources, sinks and mechanisms[J]. Environment, Development and Sustainability,6(1-2):11-49.
    Ogee J, Peylin P, Ciais P, et al.2003. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements:a cost-effective sampling strategy[J]. Global Biogeochemical Cycles,17(2):1070.
    Ogee J, Peylin P, Cuntz M, et al.2004. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements:An error propagation analysis with 13CO2 and CO18O data[J]. Global Biogeochemical Cycles,18(2):GB2019.
    Ohtaki E, Matsui T.1982. Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor[J]. Boundary-Layer Meteorology,24(1):109-119.
    Oldenburg C M, Unger A J A.2003. On leakage and seepage from gelogic carbon sequestration sites:unsaturated zone attenuation[J]. Vadose Zone Journal,2(3):287-296.
    Oldenburg C M, Unger A J A.2004. Coupled Vadose zone and atmospheric surface-layer transport of carbon dioxide from geologic carbon sequestration sites[J]. Vadose Zone Journal, 3(3):848-857.
    Pape L, Ammann C, Nyfeler-Brunner A, et al.2009.An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems[J].Biogeosciences,6(3):405-429.
    Pataki D E, Ehleringer J R, Flanagan L B, et al.2003a. The application and interpretation of Keeling plots in terrestrial carbon cycle research[J]. Global Biogeochemical Cycles, 17(I):1022-1035.
    Pataki D E, Bowling D R, Ehleringer J R.2003b. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere:anthropogenic and biogenic effectsfJ]. Journal of Geophysical Research,108(D23):4735.
    Pataki D E, Alig R J, Fung A S, et al.2006. Urban ecosystems and theNorth American carbon cycle[J]. Global Change Biology,12(11):2092-2102.
    Pataki D E, Xu T, Luo Y Q, et al.2007. Inferring biogenic and anthropogenic carbon dioxide sources across an urban to rural gradient[J]. Oecologia,152(2):307-322.
    Pattey E, Strachan I B, Desjardins R L, et al.2006. Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques[J]. Agricultural and Forest Meteorology,136(3-4):222-236.
    Pattey E, Edwards G, Strachan I B, et al.2006. Towards standards for measuring greenhouse gas fluxes from agricultural fields using instrumented towers[J]. Canadian Journal of Soil Science, 86(3):373-400.
    Pattey E, Edwards G C, Desjardins R L, et al.2007. Tools for quantifying N2O emissions from agroecosystems[J]. Agricultural and Forest Meteorology,142(2-4):103-119.
    Phillips F A, Leuning R, Baigenta R, et al.2007. Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques[J]. Agricultural and Forest Meteorology,143(1-2):92-105.
    Pihlatie M, Rinne J, Ambus P, et al.2005. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques[J]. Biogeosciences,2005,2(4): 377-387.
    Pinares-Patino C S, D'Hour P, Jouany J P, et al.2007.Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle[J].Agriculture, Ecosystems and Environment, 121(1-2):30-46.
    Ponton S L B, Flanagan K P, Alstad B G, et al.2006.Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques[J],Global Change Biology,12(2):294-310.
    Rao K S.2007. Source estimation methods for atmospheric dispersion[J].Atmospheric Environment,41(33):6964-6973.
    Raupach M R.1994. Simplified expression for vegetation roughness lengths and zero-plane displacements as functions of canopy height and area index[J].Boundary-Layer Meteorology, 71(1-2):211-216.
    Roden J S, Ehleringer J R.1999.Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions[J].Plant Physiol., 120(4):1165-1173.
    Rosenberg N J.1981. The increasing CO2 concentration in the atmosphere and its implication on agricultural productivity.1.Effects on photosynthesis, transpiration and water-use efficiency[J].Climatic Change,3(3):265-279.
    Rothman L S, Gordon I E, Barbe A, et al.2009. The HITRAN 2008 molecular spectroscopic database[J].Journal of Quantitative Spectroscopy and Radiative Transfer,110(9-10):533-572.
    Rotz CA, Montes F, Chianese DS.2010. The carbon footprint of dairy production systems through partial life cycle assessment[J].J Dairy Sci,93(3):1266-1282.
    Schaeffer S M, Miller J B, Vaughn B H, et al.2008. Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in torest air[J]. Atmospheric Chemistry and Physics Discussions,8(3):9531-9568.
    Schauberger G, Piringer M, Knauder W, et al.2011. Odour emissions from a waste treatment plant using an inverse dispersion technique[J], Atmospheric Environment,45(9):1639-1647.
    Schauer A J, Lott M J, Cook C S, et al.2005. An automated system for stable isotope and concentration analyses of CO2 from small atmospheric samples[J]. Rapid Communications in Mass Spectrometry,19(3):359-362.
    Schmid H P.2002. Footprint modeling for vegetation atmosphere exchange studies:a review and perspective[J]. Agricultural and Forest Meteorology,113(1-4):159-183.
    Schneider M, Sepulveda E, Garcia O, et al.2010. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON) [J]. Atmospheric Measurement Techniques,3(6):1785-1795.
    Schnyder H, Schaufele R, Wenzel R.2004. Mobile, outdoor continuous-flow isotope-ratio mass spectrometer system for automated high-frequency C13-and 18O-CO2 analysis for Keeling plot applications[J]. Rapid Communications in Mass Spectrometry,18(24),3068-3074.
    Schuepp P H, Leclerc M Y, MacPherson J I, et al.1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation[J]. Boundary-Layer Meteorology,50(1-4): 355-373.
    Shine K P, Fulestvedt J S, Hailemariamk K, et al.2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J].Climatic Change, 68(3):281-302.
    Simon A,Gast J, Keens A.1994.Fourier Spectrometer:US.5309217[P].1994-5-3.
    Smith K A,Conen F.2004.Impacts of land management on fluxes of trace greenhouse gases[J]. Soil Use and Management,20(2):255-263.
    Smith T E L, Wooster M J,Tattaris M,et al.2011.Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of"clean air" and "polluted plumes"[J].Atmospheric Measurement Techniques,4(1):97-116.
    Sommer S G, McGinn S M,Flesch T K.2005.Simple use of the backwards Lagrangian stochastic dispersion technique for measuring ammonia emission from small field-plots[J].European Journal of Agronomy,23(1):1-7.
    Studz J,Platt U.1996.Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods[J].Applied Optics, 35(30):6041-6053.
    Takahashi H,Hiyama T, Konohira E, et al.2001.Balance and behavior of carbon dioxide at an urban forest inferred from the isotopic and meteorological approaches[J].Radiocarbon,43: 659-669.
    Takahashi H A, Konohira E, Hiyama T, et al.2002.Diurnal variation of CO2 concentration,△14C andδ13C in an urban forest:estimate of the anthropogenic and biogenic CO2 contributions[J]. Tellus,54(2):97-109.
    Thomson D J.1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows[J].Journal of Fluid Mechanics,180:529-556.
    Thomson L C,Hirst B,Gibson G,et al.2007.An improved algorithm for locating a gas source using inverse methods[J].Atmospheric Environment,41(6):1128-1134.
    Todd R W, Cole N A, Clark R N,et al.2008.Ammonia emissions from a beef cattle feedyard on the southern High Plains[J]. Atmospheric Environment,42(28):6797-6805.
    Tuzson B,Zeeman M J,Zahniser M S,et al.2008.Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements[J]. Infrared Physics and Technology,51(3): 198-206.
    Twining J, Stone D, Tadros C, et al.2006. Moisture Isotopes in the Biosphere and Atmosphere (MIBA) in Australia:A priori estimates and preliminary observations of stable water isotopes in soil, plant and vapour for the Tumbarumba Field Campaign[J], Global and Planetary Change, 51(1-2):59-72.
    van Haarlem R P, Desjardins R L, Gao Z, et al.2008. Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall[J]. Canadian Journal of Animal Science,88:641-649.
    Velasco E, Pressley S, Allwine E, et al.2005. Measurements of CO2 fluxes from the Mexico City urban landscape!J]. Atmospheric Environment,39(38):7433-7446.
    Velasco E, Pressley S, Grivicke R, et al.2009. Eddy covariance flux measurements of pollutant gases in urban Mexico City[J]. Atmospheric Chemistry and Physics,9(19):7325-7342.
    Vesala T, Kljun N, Rannik ii, et al.2008. Flux and concentration footprint modelling:state of the art[J]. Environmental Pollution,152(3):653-666.
    Wada R, Pearce J K, Nakayama T, et al.2011. Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy[J], Atmospheric Environment,45(5):1168-1174.
    Wang M, Zhang Y, Liu J, et al.2006. Applications of a tunable diode laser absorption spectrometer in monitoring green house gases[J]. Chinese Optics Letters,4(6):363-365.
    Wang Y, Li Z, Wang M, et al.2001. Trends of atmospheric methane in Beijing[J]. Chemosphere-Global Change Science,3(1):65-71.
    Wang Wei, Liu W, Zhang T.2012. Continuous field measurements of δDin water vapor by open-path Fourier transform infrared spectrometry:Proceedings of SPIE, Beijing, December 4-7,2012[C]
    Wang Wei, Liu W, Zhang T, et al.2013.Evaluation of backward Lagrangian stochastic (bLS) model to estimate gas emissions from complex sources based on numerical simulations[J]. Atmospheric Environment,67:211-218.
    Webb E K.1970.Profile Relationships.Log-linear range, and extension to strong stability[J]. Quarterly Journal of the Royal Meteorological Society,96(407):67-90.
    Webster P J, Holland G J,Curry J A, et al.2005.Changes in tropical cyclone number, duration, and intensity in a warming environment[J].Science,309:1844-1846.
    Wen X F, Sun X M, Zhang S C, et al.2008. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere[J].Journal of Hydrology,349(3-4):489-500.
    Werle P, Miicke R, Slemr F.1993.The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS) [J].Applied Physics B-Photophysics and Laser Chemistry,57(2):131-139.
    Werner R A, Rothe M, Brand W A.2001.Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precisionδ18O determination in CO2 gas[J].Rapid Communications in Mass Spectrometry,15(22):2152-2167.
    Williams D G,Cable W,Hultine K, et al.,2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J].Agricultural and Forest Meteorology,125(3-4):241-258.
    Wuebbles DJ,Hayhoe K.2002.Atmospheric methane and global change[J].Earth-Science Reviews,57(3-4):177-210.
    Xu Z, Yang H B, Liu F D, et al.2008.Partitioning evapotranspiration flux components in a subalpine shrubland based on stable isotopic measurements[J].Botanical Studies,49 (4): 351-361.
    Yakir D, Sternberg L S L.2000. The use of stable isotopes to study ecosystem gas exchange[J]. Oecologia,123(3):297-311.
    Yakir D, Wang X F.1996. Fluxes of CO2 and water fluxes between terrestrial vegetation and the atmosphere estimated from isotope measurements[J].Nature,380:515-517.
    Yamamoto S,Murayama S,Saigusa N, et al.(1999).Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan[J].Tellus,51(2),402-413.
    Yao Z S, Zheng X H, Xie B H, et al.2009. Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land[J]. Atmospheric Environment,43(11):1888-1896.
    Yepez E A, Williams D G, Scott R L, et al.2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology,119(1-2):53-68.
    Yepez E A, Huxman T E, Ignace D D, et al.2005.Dynamics of transpiration and evaporation following a moisture pulse in semiarid grassland:a chamber-based isotope method for partitioning flux components[J]. Agricultural and Forest Meteorology,132 (3-4):359-376.
    Zhang J, Griffis T J, Baker J M.2006. Using continuous stable isotope measurements to partition net ecosystem CO2 exchange[J]. Plant Cell and Environment,29(4):483-496.
    Zobitz J M, Burns S P, Reichstein M, et al.2008. Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest[J]. Global Change Biology,14(8): 1785-1800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700