蓝细菌光受体色素化及晶体结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藻胆蛋白是偶联藻胆色素的色素蛋白,在生物体内充当光受体。藻胆蛋白光受体可分为两类:天线藻胆蛋白、光敏藻胆蛋白。天线藻胆蛋白捕获光能并传递能量给光合作用系统,而光敏藻胆蛋白将光信号转化为生物化学信号,称为光敏色素蛋白。蓝细菌藻胆蛋白的天线复合物显示出高荧光特性,但也有明显的缺陷,在使其用做于良好的荧光标记物时,需要特定的色素合成酶以及藻胆蛋白裂合酶参与。近年,蓝细菌光敏色素的研究已有一些进展。保守的GAF结构域能自催化结合多种色素,包括BV、PCB、PVB甚至PEB、PUB。这一优良特性比藻胆蛋白用作可基因编码的荧光探针具有更多优点,大大增强了当前色素蛋白用作荧光探针的应用潜力。
     本实验室重组合成了一些在蓝藻体内并不存在的色素蛋白。这些色素蛋白虽然在天然蓝藻体内并不存在,但却可在体外利用不同色素与脱辅基蛋白组合生成,这在应用开发上具有很大潜力。利用这种重组方式,可定向选择合成人们需要的产物,如:荧光量子产率更高或者光谱范围更广的色素荧光蛋白,将他们用作优良的荧光标记材料。
     本论文尝试了来自三个藻种Nostoc sp. PCC7120、Synechocystis sp. PCC6803以及Thermosynechococcus elongatus BP-1中的16个GAF,分别与PEB色素合成酶基因在大肠杆菌体内共表达,产生色素蛋白PEB-GAF或PUB-GAF。其中9个可在大肠杆菌体内自催化色素化结合上PEB,并产生如荧光蛋白GFP一样的高荧光。将GAFs用PEB色素化,得到四个十分有趣的荧光蛋白:PEB-A11699GAF1、PUB(PEB)-A113691GAF2、 PEB(PUB)-All1280GAF2。 PEB-All21699GAF1最大荧光峰在586nm,发射橙红色荧光。PUB(PEB)-All3691GAF2最大荧光峰在498nm,发射绿色荧光。PEB(PUB)-A111280GAF2与PEB(PUB)-Slr1393GAf3相同,荧光在575nm处,有60-80nm的斯托克斯位移,发射橙色荧光。结合色素PEB且发生色素异构化的GAFs,可用作绿色、橙色、红色荧光标记物。用PEB色素化的GAFs,有以下优势:(1)GAF是一个偶联色素的小单位,其不需要裂合酶的催化。(2)PEB色素化后的GAFs有大的摩尔消光系数和高的荧光量子产率及亮度。(3)某些GAFs含有DXCF基序可将PEB异构为PUB,增加了PEB(PUB)一GAFs光谱的多样性。将荧光蛋白转化进大肠杆菌体内诱导表达,通过荧光显微镜的观察,可见明亮的荧光细胞。
     尽管GAF可自催化结合色素,但仍需要与色素合成酶基因共表达,而GFP作为荧光蛋白,不需要其他的辅助因子。因此,为了简化光敏色素合成途径,本论文用首尾相连逐步融合基因的方法解决这个问题。本论文将ho1和pebS先融合成一个基因编码框hol.pebS,然后再将gaf插入融合基因hol.pebS的5’末端。构建的融合基因gaf:hol:pebS连入表达载体后可在宿主细胞中直接诱导表达。本论文将实验室已有的来自于Nostoc sp. PCC7120的all2699的GAF结构域编码基因gafl、all1280的gaf2以及来自Synechocystis sp. PCC6803中的基因slr1393的gaf3分别与PEB色素合成酶基因hol:pebS融合,转化进大肠杆菌体内诱导表达,产生了色素蛋白PEB-GAF::HO1::PebS或PUB-GAF::HO1::PebS。光谱分析表明,光谱特征与简化前基本一致。这些经过分子设计的光敏色素复合物成为极有潜力的活细胞荧光生物标记物。
     色素化的GAFs可以进一步通过GCN4亮氨酸拉链结构域实现其寡聚化,以增强它们的摩尔消光系数和荧光量子产率。PEB可部分地向PUB转化,使寡聚的GAF"束”形成类似蓝藻中的捕光天线复合物中有趣的能量转移模型。良好的热、光化学稳定性及其强烈的荧光亮度,可成为极有潜力的荧光免疫检测标记物。
     这些结果通过光谱分析、荧光显微镜技术得以证实。色素荧光蛋白优异的光谱性质是GFP家族荧光蛋白的很好补充,尤其是它具有的橙红色荧光将为组织深度成像,超分辨显微技术,甚至三维数据存储技术提供便利。
     为对经分子设计的色素荧光蛋白进行进一步的分子优化,本论文在基因片段修剪克隆的基础上,成功实现重组PEB-GAF复合物的高效表达,实验鉴定其保持有正确的光谱活性,运用PDB数据库中已解析的GAF同源结构域成功解析了PEB-All2699GAF1复合物的晶体结构分辨率达1.7A的晶体。在分析结构的基础上进行了系列定点突变究,设计、构建、表达了3个相关突变体,结合相关生理实验分析,试图鉴定其活性部位及实现GAF结构域的单体化。
     本项研究通过将分子设计与结构生物学有机结合,不仅具有重要的基础理论意义,而且具有重要的应用前景。
Acted as photoreceptors in vivo, phycobiliproteins are the chromoprotein coupled with phycobilins. Phycobiliprotein photoreceptors can be divided into two categories including the antenna phycobiliproteins and photosensitive phycobiliprotein. Antenna phycobiliproteins capture and transfer energy from light to the photosynthesis system, while light-sensitive phycobiliproteins, also referred to as photochrome proteins, convert optical signals into biochemical signals, called phytochrome proteins. Antenna complexes of cyanobacteria phycobiliprotein are characterized with high fluorescence, but they also possess quite obvious flaws that they require participation of specific pigment synthetic enzymes and phycobiliprotein lyase to assemble the fluorescent markers. In recent years, some progress has been made in studies of cyanobacterial phytochrome. Conservative GAF domains are capable of binding and autocatalyzing a variety of pigments, with B V, PCB, PVB or even PEB, PUB included. The feature of GAF domains ensure that they have significant advantages over phycobiliproteins used as gene encoded fluorescent probe, to which largely enhancing the prospect of present chromoproteins'application.
     Several chromoproteins which do not exist in cyanobacteria were synthesized in our laboratory. Although they are not available in natural cyanobacteria, they could be generated by binding different pigment with apoproteins, which displays colossal potential in development of application. With this way of reconstitution, products people need can be selected and synthesized in a specific direction to be utilized as superior fluorescent labeling materials, such as fluorescent proteins with higher fluorescence quantum yield or the broader spectrum.
     In this study,16GAFs from three algae species, namely, Nostoc sp. PCC7120, Synechocystis sp. PCC6803and Thermosynechococcus elongatus BP-1were adopted to co-express with PEB chromophore synthase gene in E. coli in order to generate chromoprotein PEB-GAF or PUB-GAF, nine of which could autocatalyze chromophore to bind PEB, engendering intense fluorescence as bright as GFP. When GAFs were chromophorylated with PEB, three captivating fluorescent proteins were generated embracing PEB-A112699GAF1, PUB (PEB)-A113691GAF2, and PEB (PUB)-A111280GAF2. The maximum fluorescent peak of PEB-A112699GAF1shows at the wavelength of586nm, emitting orange fluorescence, whereas PUB (PEB)-A113691GAF2at498nm.(PUB)-A111280GAF2and PEB (PUB)-Sh1393GAF3PEB fluorescence emit green fluorescence at575nm with stokes shift of60-80nm and orange fluorescent emission. GAFs in combination with isomerized PEB can be used as green, orange, red fluorescent marker. GAFs chromophorylated by PEB has pros as follow:
     (1) GAF is a small unit to couple with chromophore, which does not demand the catalytic lyase.
     (2) PEB-chromophorylated GAFs have large molar extinction coefficient and high fluorescence quantum yield and brightness.
     (3) Some GAFs motif containing DXCF can isomerize PEB into PUB, so increasing the diversity of the PEB (PUB)-GAFs spectrum.
     Transformed PEB-chromophorylated GAFs into E.coli to express by inducement, bright fluorescent cells can be observed under fluorescent microscope.
     Although GAF can auto-catalyze binding of pigment, it still needs to coexpress with chromophore synthase gene. On the other hand, GFP, as a fluorescent protein, does not require other cofactors. Therefore, in order to simplify the phytochrome synthesis pathway, the method that links top and tail to gradually fuse genes is taken in this paper. First fuse hol and pebS into a gene encoded frame hoi: pebS, then insert the gaf domain into5'terminus of the fusion gene hoi: pebS. After the fusion gene gaf: hoi: pebS is constructed into the expression vector, it may be directly induced to express in host cells. In this paper, gene gafl encoded by all2699's GAF domain and gaf2encoded by all1280's domain from Nostoc sp. PCC7120as well as gene slr393's gaf3from Synechocystis sp. PCC6803, producing chromoprotein PEB-GAF::HO1::PebS or PUB-GAF::HO1::PebS were fused with PEB synthase gene ho1:pebS, and then transformed into E.coli to express by inducement. Spectra show spectral characteristics consistent with the one before being simplified. These phytochrome complexes designed molecularly have the potential to become live cell fluorescence biomarkers.
     The chromophorylated GAFs then achieve its oligomerization via GCN4leucine zipper domains, to enhance their molar extinction coefficient and fluorescence quantum yield. PEB can be partially converted to PUB, making oligomeric GAF "bundle" form an interesting energy transfer model similar to that in light-harvesting antenna complexes in cyanobacteria. With benign thermal and photochemical stability and strong fluorescence intensity, it may have the very potential to become fluorescent immunoassay label.
     These results can be confirmed through spectroscopy, fluorescence microscopy. Superior spectral properties of chromophore fluorescent proteins are excellent supplement of GFP family fluorescent proteins, especially its orange-red fluorescence will provide convenience for tissue depth imaging, superresolution microscopy, and even three-dimensional data storage technology.
     In order to further molecular optimization of chromophore fluorescent proteins designed through molecule design, this study, based on trimming and cloning of gene fragments, successfully attained the efficient expression of recombinant PEB-GAF complex. It was identified by experiments that it maintains a correct spectral activity, and the crystal structure of PEB-A112699GAF1was successfully resolved at a resolution of1.7A using the GAF homology domain that had already been resolved in PDB database. Based on the structural analysis, a series of site-directed mutagenesis studies were conducted, three activity related mutant were designed, constructed and expressed, combined with related physiological experiment analysis to attempt to identify the active site and monomer of GAF domain structure.
     Studying through the combination of molecular design and structural biology not only has important theory significance, but has critical application prospect as well.
引文
1.郭雨珍,冯恩民.蛋白质结构研究现状与展望.生物信息学,2008,5:182-184
    2.林亚静,刘志杰,龚为民.蛋白质结构研究.生命科学,2007,9:
    3.刘晓,王水才,贺俊芳,彭菊芳,匡廷云.PS核心复合物能量传递的飞秒时间分辨荧光光谱学研究.生物物理学报,2004,20:290-296
    4.王大成.结构生物学研究的一些新进展.生物化学与生物物理进展,1998,25:396-403
    5.王大能,陈勇,隋森芳.电子显微学在结构生物学研究中的新进展.电子显微学报,2003,22:449-456
    6.王宇飞,基于藻胆蛋白和细菌光敏色素的生物光电材料及器件研究,华中科技大学,2004.
    7. Afar B, Merrill J, Clark EA. Detection of lymphocyte subsets using three-color/single-laser flow cytometry and the fluorescent dye peridinin chlorophyll-a protein. Journal of clinical immunology, 1991,11:254-261
    8. Akey DL, Malashkevich VN, Kim PS. Buried polar residues in coiled-coil interfaces. Biochemistry, 2001,40: 6352-6360
    9. Alvey RM, Biswas A, Schluchter WM, Bryant DA. Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry, 2011,50: 4890-4902
    10. Aravind L, Ponting CP. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends in biochemical sciences, 1997, 22: 458-459
    11. Ashby MK, Mullineaux CW. Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett, 1999, 181:253-260
    12. Auldridge ME, Forest KT. Bacterial phytochromes: more than meets the light. Crit Rev Biochem Mol Biol, 2011a, 46: 67-88
    13. Beale SI. Biosynthesis of phycobilins. Chemical reviews, 1993, 93: 785-802
    14. Beale SI, Cornejo J. Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium. Arch Biochem Biophys, 1983,227:279-286
    15. Beale SI, Cornejo J. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. Journal of Biological Chemistry, 1991,266:22328-22332
    16. Biswas A, Vasquez YM, Dragomani TM, Kronfel ML, Williams SR, Alvey RM, Bryant DA, Schluchter WM. Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli:chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002. Appl Environ Microbiol, 2010,76:2729-2739
    17. Blot N, Wu X-J, Thomas J-C, Zhang J, Garczarek L, Bohm S, Tu J-M, Zhou M, Ploscher M, Eichacker L. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. Journal of Biological Chemistry, 2009, 284:9290-9298
    18. Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol, 2005,15:1833-1838
    19. Brandt S, von Stetten D, Gunther M, Hildebrandt P, Frankenberg-Dinkel N. The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem,2008,283: 34605-34614
    20. Brejc K, Ficner R, Huber R, Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. Journal of molecular biology, 1995,249:424-440
    21. Brock H, Ruzsicska BP, Arai T, Schlamann W, Holzwarth AR, Braslavsky SE, Schaffner K. Fluorescence lifetimes and relative quantum yields of 124-kilodalton oat phytochrome in water and deuterium oxide solutions. Biochemistry, 1987, 26: 1412-1417
    22. Bryant DA, Hixson CS, Glazer AN. Structural studies on phycobiliproteins III. Comparison of bilin-containing peptides from the beta subunits of C-phycocyanin, R-phycocyanin, and phycoerythrocyanin. J Biol Chem,1978,253:220-225
    23. Butler WL, Norris KH, Siegelman HW, Hendricks SB. Detection, Assay, and Preliminary Purification of the Pigment Controlling Photoresponsive Development of Plants. Proc Natl Acad Sci USA,1959,45:1703-1708
    24. Cai YA, Murphy JT, Wedemayer GJ, Glazer AN. Recombinant phycobiliproteins: Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem, 2001,290:186-204
    25. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science, 1994, 263:802-805
    26. Chayen NE, Saridakis E. Protein crystallization: from purified protein to diffraction-quality crystal. Nature Methods, 2008, 5:147-153
    27. Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, Zhou M, Zhao JQ, Scheer H, Zhao KH. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores:photochemistry and dark reversion kinetics. FEBS J, 2012,279:40-54
    28. Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell, 1989, 1: 867-880
    29. Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin - dependent heme oxygenase from Synechocystis sp. PCC 6803. The Plant Journal, 1998, 15:99-107
    30. Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochemical & Photobiological Sciences, 2007, 6:725-736
    31. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. Understanding, improving and using green fluorescent proteins. Trends in biochemical sciences, 1995, 20:448-455
    32. Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Current Biology,2008,18:442-448
    33. Dammeyer T, Frankenberg-Dinkel N. Function and distribution of bilin biosynthesis enzymes in photo synthetic organisms. Photochemical & Photobiological Sciences, 2008,7:1121-1130
    34. Davis SJ, Vener AV, Vierstra RD. Bacteriophytochromes:phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 1999,286:2517-2520
    35. De Marsac NT, Cohen-Bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA,1977,74:1635-1639
    36. De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res, 2009, 37:e96
    37. Ducret A, Sidler W, Wehrli E, Frank G, Zuber H. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. European journal of biochemistry, 1996, 236:1010-1024
    38. Filonov GS, Piatkevich KD, Ting L-M, Zhang J, Kim K, Verkhusha VV. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nature biotechnology, 2011,29:757-761
    39. Fischer AJ, Lagarias JC. Harnessing phytochrome's glowing potential. Proc Natl Acad Sci U S A,2004,101:17334-17339
    40. Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell,2005,4:2140-2152
    41. Gambetta GA, Lagarias JC. Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci USA,2001,98:10566-10571
    42. Gantt E, Cunningham FX, Lipschultz CA, Mimuro M. N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga. Plant Physiol, 1988,86:996-998
    43. Gantt E, Lipschultz CA, Zilinskas B. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta,1976,430:375-388
    44. Glazer A, Hixson CS. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. JBiol Chem, 1977, 252:32-42
    45. Glazer AN. Phycobilisome a macromolecular complex optimized for light energy transfer. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 1984, 768: 29-51
    46. Glazer AN, Fang S. Chromophore content of blue-green algal phycobiliproteins. J Biol Chem,1973,248:659-662
    47. Glazer AN, Hixson CS. Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. JBiol Chem, 1975,250:5487-5495
    48. Glazer AN, Stryer L. Phycofluor probes. Trends in biochemical sciences, 1984, 9: 423-427
    49. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A, 1994, 91: 12501-12504
    50. Herdman M, Coursin T, Rippka R, Houmard J, de Marsac NT. A new appraisal of the prokaryotic origin of eukaryotic phytochromes. J Mol Evol, 2000, 51:205-213
    51. Hirose Y, Narikawa R, Katayama M, Ikeuchi M. Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proc Natl Acad Sci USA, 2010, 107:8854-8859
    52. Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci USA, 2008, 105:9528-9533
    53. Howe CJ, Barbrook AC, Koumandou VL, Nisbet RE, Symington HA, Wightman TF. Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 99-106; discussion 106-107
    54. Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annual review of physiology, 2010,72:247
    55. Hughes J, Lamparter T, Mittmann F, Hartmann E, Gartner W, Wilde A, Borner T. A prokaryotic phytochrome. Nature, 1997, 386:663-663
    56. Ikeuchi M, Ishizuka T. Cyanobacteriochromes:a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci., 2008,7:1159-1167
    57. Ishizuka T, Kamiya A, Suzuki H, Narikawa R, Noguchi T, Kohchi T, Inomata K, Ikeuchi M. The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Biochemistry, 2011,50:953-961
    58. Ishizuka T, Narikawa R, Kohchi T, Katayama M, Ikeuchi M. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Plant and cell physiology, 2007,48:1385-1390
    59. Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M, Ikeuchi M. Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant and cell physiology, 2006,47: 1251-1261
    60. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA research,1996,3:109-136
    61. Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA research, 1995, 2: 153-166
    62. Karniol B, Wagner JR, Walker JM, Vierstra RD. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J, 2005,392:103-116
    63. Katayama M, Ikeuchi M. Perception and transduction of light signals by cyanobacteria. Frontiers in Life Sciences, 2006, 65-90
    64. Kehoe DM. Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proc Natl Acad Sci U S A, 2010, 107:9029-9030
    65. Kehoe DM, Grossman AR. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science, 1996, 273:1409-1412
    66. Kendrick RE, Kronenberg G, Photomorphogenesis in plants, Springer, 1994.
    67. Kufer W, Krauss C, Scheer H. Two Mild, Regioselective Methods of Degrading Biliprotein Chromophores. Angew Chem Int Ed Engl, 1982, 21:446-447
    68. Lagarias JC, Kelly JM, Cyr KL, Smith WO. Comparative photochemical analysis of highly purified 124 kilodalton oat and rye phytochromes in vitro. Photochem Photobiol, 1987,46:5-13
    69. Lagarias JC, Lagarias DM. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci USA,1989,86:5778-5780
    70. Landgraf FT, Forreiter C, Hurtado Pico A, Lamparter T, Hughes J. Recombinant holophytochrome in Escherichia coli. FEBSLett, 2001,508(3):459-62
    71. Lamparter T. Evolution of cyanobacterial and plant phytochromes. FEBS Lett, 2004, 573:1-5
    72. Lamparter T, Mittmann F, Gartner W, Borner T, Hartmann E, Hughes J. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci USA, 1997, 94: 11792-11797
    73. Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461:997-1001
    74. Li L, Lagarias J. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. J Biol Chem, 1992, 267: 19204-19210
    75. Li L, Lagarias JC. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1994,91:12535-12539
    76. Li L, Murphy JT, Lagarias JC. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry, 1995,34:7923-7930
    77. Lundstrom K. Structural genomics and drug discovery. Journal of cellular and molecular medicine, 2007,11:224-238
    78. Moglich A, Moffat K. Engineered photoreceptors as novel optogenetic tools. Photochemical & Photobiological Sciences, 2010,9:1286-1300
    79. Ma Q, Hua HH, Chen Y, Liu BB, Kramer AL, Scheer H, Zhao KH, Zhou M. A rising tide of blue-absorbing biliprotein photoreceptors:characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120. FEBS J., 2012, 279:4095-4108
    80. Montgomery BL. Sensing the light:photoreceptive systems and signal transduction in cyanobacteria. Mol Microbiol, 2007,64:16-27
    81. Montgomery BL, Lagarias JC. Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci,2002,7:357-366
    82. Moon Y-J, Kim SY, Jung K-H, Choi J-S, Park YM, Chung Y-H. Cyanobacterial phytochrome Cph2 is a negative regulator in phototaxis toward UV-A. FEBS Lett, 2011,585:335-340
    83. Mullineaux CW. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1992,1100: 285-292
    84. Mullineaux CW. How do cyanobacteria sense and respond to light? Mol Microbiol, 2001,41:965-971
    85. Murphy JT, Lagarias JC. The phytofluors:a new class of fluorescent protein probes. Curr. Biol., 1997,7:870-876
    86. Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. Journal of molecular biology, 2008a, 380:844-855
    87. Narikawa R, Ishizuka T, Muraki N, Shiba T, Kurisu G, Ikeuchi M. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proc Natl Acad Sci U S A, 2013, 110: 918-923
    88. Narikawa R, Kohchi T, Ikeuchi M. Characterization of the photoactive GAF domain of the CikA homo log (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochemical & Photobiological Sciences, 2008b, 7:1253-1259
    89. Ohmori M, Ikeuchi M, Sato N, Wolk P, Kaneko T, Ogawa T, Kanehisa M, Goto S, Kawashima S, Okamoto S. Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA research,2001,8:271-284
    90. Ong LJ, Glazer AN. R-phycocyanin Ⅱ, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. JBiol Chem, 1987, 262:6323-6327
    91. Park C-M, Kim J-I, Yang S-S, Kang J-G, Kang J-H, Shim J-Y, Chung Y-H, Park Y-M, Song P-S. A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803:spectral analysis and down-regulation by light. Biochemistry, 2000a, 39: 10840-10847
    92. Park C-M, Shim J-Y, Yang S-S, Kang J-G, Kim J-I, Luka Z, Song P-S. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cphl. Biochemistry, 2000b, 39:6349-6356
    93. Patrick GN, Zukerberg L, Nikolic M, de La Monte S, Dikkes P, Tsai LH. reply: Neurobiologyp25 protein in neurodegeneration. Nature, 2001,411:764-765
    94. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111: 229-233
    95. Pratt LH. Phytochrome: the protein moiety. Annual review of plant physiology, 1982, 33:557-582
    96. Rudiger W, Thummler F. Phytochrome, the visual pigment of plants. Angew Chem Int Ed Engl, 1991,30:1216-1228
    97. Rockwell NC, Lagarias JC. The structure of phytochrome: a picture is worth a thousand spectra. The Plant Cell Online, 2006, 18:4-14
    98. Rockwell NC, Lagarias JC. A brief history of phytochromes. Chemphyschem, 2010, 11:1172-1180
    99. Rockwell NC, Martin SS, Gulevich AG, Lagarias JC. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry, 2012a, 51:1449-1463
    100.Rockwell NC, Martin SS, Lagarias JC. Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Biochemistry, 2012b, 51:3576-3585
    101.Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry, 2008,47:7304-7316
    102.Rockwell NC, Su YS, Lagarias JC. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol,2006,57:837-858
    103.Scheer H, Zhao KH. Biliprotein maturation: the chromophore attachment. Mol Microbiol,2008,68:263-276
    104.Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science, 2000, 289:765-768
    105.Sharrock RA. The phytochrome red/far-red photoreceptor superfamily. Genome Biol, 2008,9:230
    106.Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science, 2009,324:804-807
    107.Song J-Y, Cho HS, Cho J-I, Jeon J-S, Lagarias JC, Park Y-I. Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proceedings of the National Academy of Sciences, 2011,108:10780-10785
    108.Stearns T. Green flourescent protein: the green revolution. Current Biology, 1995,5: 262-264
    109.Sun Y-F, Xu J-G, Tang K, Miao D, Gartner W, Scheer H, Zhao K-H, Zhou M. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochem Photobiol Sci, 2014, 13:757-763
    110.Toth V. Change typology of toponyms. Acta onomastica, 2011,179-189
    111.Talarico L. Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci Mar, 1996,60:205-222
    112.Talarico L, Maranzana G. Light and adaptive responses in red macroalgae:an overview. Journal of Photochemistry and Photobiology B: Biology, 2000, 56: 1-11
    113.Tang K, Zeng XL, Yang Y, Wang ZB, Wu XJ, Zhou M, Noy D, Scheer H, Zhao KH. A minimal phycobilisome: fusion and chromophorylation of the truncated core-membrane linker and phycocyanin. Biochim Biophys Acta, 2012, 1817: 1030-1036
    114.Tasler R, Moises T, Frankenberg-Dinkel N. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. FEBS J, 2005,272:1927-1936
    115.Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA. From structure to function: approaches and limitations. Nature Structural & Molecular Biology, 2000, 7: 991-994
    116.Tickle I, Sharff A, Vinkovic M, Yon J, Jhoti H. High-throughput protein crystallography and drug discovery. Chemical Society Reviews, 2004, 33:558-565
    117.Tobin EM, Briggs WR. Phytochrome in Embryos of Pinus palustris. Plant Physiol, 1969,44:148-150
    118.Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Escobar FV, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. JBiol Chem, 2009,284: 29757-29772
    119.Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature, 2005,438: 325-331
    12O.Wilbanks SM, Glazer A. Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J Biol Chem,1993,268:1226-1235
    121.Wilde A, Fiedler B, Borner T. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol, 2002, 44: 981-988
    122.Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr, 2011,67:235-242
    123.Wu S-H, Lagarias JC. Defining the bilin lyase domain:lessons from the extended phytochrome superfamily. Biochemistry, 2000, 39:13487-13495
    124.Wu SH, McDowell MT, Lagarias JC. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J Biol Chem, 1997,272:25700-25705
    125.Wu XJ, Chang K, Luo J, Zhou M, Scheer H, Zhao KH. Modular generation of fluorescent phycobiliproteins. Photochem Photobiol Sci, 2013,12:1036-1040
    126.Yeh K-C, Wu S-H, Murphy JT, Lagarias JC. A cyanobacterial phytochrome two-component light sensory system. Science, 1997,277:1505-1508
    127.Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial phytochrome-like PixJl holoprotein shows novel reversible photoconversion between blue-and green-absorbing forms. Plant and cell physiology, 2004, 45:1729-1737
    128.Yoshihara S, Shimada T, Matsuoka D, Zikihara K, Kohchi T, Tokutomi S. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJl, in phycocyanobilin-producing Escherichia coli. Biochemistry, 2006,45:3775-3784
    129.Yoshihara S, Suzuki F, Fujita H, Geng XX, Ikeuchi M. Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant and cell physiology, 2000, 41:1299-1304
    130.Zeng XL, Tang K, Zhou N, Zhou M, Hou HJ, Scheer H, Zhao KH, Noy D. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains. J Am Chem Soc, 2013,135:13479-13487
    131.Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. The Journal of neuroscience, 2005,25:3379-3388
    132.Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, Scheer H, Zhao KH. Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew Chem Int Ed Engl, 2010, 49:5456-5458
    133.Zhao KH, Su P, Tu JM, Wang X, Liu H, Ploscher M, Eichacker L, Yang B, Zhou M, Scheer H. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A,2007,104: 14300-14305
    134.Zhao KH, Wu D, Wang L, Zhou M, Storf M, Bubenzer C, Strohmann B, Scheer H. Characterization of phycoviolobilin phycoerythrocyanin-alpha 84- cystein- lyase-(isomerizing) from Mastigocladus laminosus. Eur JBiochem, 2002,269: 4542-4550
    135.Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature, 2001, 409:739-743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700