深海履带式集矿机打滑及路径跟踪控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:履带式行走机构由于其自身特殊的结构特点经常被应用在军事、农业以及采矿领域。对于深海多金属结核及钴结壳采矿而言,众多国家都相继研制出了海底履带式采矿系统。履带式集矿机作为深海采矿系统的关键子系统,其作业环境下的运动控制问题成为研究热点。
     集矿机行走在海底极其稀软的底质上,其行走动力来自于履带与海底软底质之间的相互剪切作用。由于软底质固有的土力学特性,集矿机海底作业过程中履带会产生一定的打滑作用,打滑率的变化将直接影响到集矿机海底行走动力性能。同时,集矿机海底作业过程需按照预先设定路径进行开采行走。但由于受到布放偏差、海底软底质、洋流等作用的影响,集矿机实际行走路径与预定路径存在一定的偏差。为保证集矿效率,路径跟踪问题成为集矿机作业过程关键运动控制问题之一。对深海采矿系统而言,为保证整体系统的稳定性,集矿机与采矿船之间的随动控制问题也尤为关键。本文针对上述三种关键运动控制问题,提出了相应的控制策略和算法,并通过仿真和实验验证了算法的可行性和正确性。
     论文主要研究成果如下:
     1.以履带车辆地面力学特性研究为理论基础,利用以膨润土和水的混合物作为海底模拟软底质,推导出海底稀软底质压力—沉陷关系和剪切应力—剪切位置关系计算公式,建立了集矿机驱动力与打滑率之间的关系。
     通过对集矿机行走过程各运动阻力的分析,建立了完善的集矿机力学和运动学模型。提出了方便研究的简化力学模型,并对简化可能导致的误差进行了分析,为履带式集矿机运动控制研究提供了理论基础。
     2.基于驱动力与打滑率之间的关系,提出了匀底质条件下最佳打滑率判断标准。通过对集矿机牵引效率分析,建立了非匀底质条件下最佳打滑率辨识方法。建立了履带式集矿机液压驱动模型,通过仿真验证了模型的正确性。提出了模糊PID打滑控制策略,建立了打滑控制系统模型。通过对匀底质和非匀底质条件下打滑仿真结果的分析,证明了控制策略的有效性和稳定性。
     3.通过对集矿机路径跟踪控制问题的描述,建立了集矿机路径
     偏差模型。综合考虑了集矿机行走动力约束、跟踪路径平滑性以及跟踪时间最优三个因素,提出了以三次样条曲线为跟踪路径的时间最优控制策略。通过构造李雅普诺夫函数,提出了满足算法稳定性要求,针对由于布放偏差导致的算法不稳定的四种情况,提出了相应的控制策略。建立了路径跟踪控制系统模型,通过对同一路径不同跟踪系数仿真结果对比分析,确定了0.66为最佳路径跟踪系数。通过对直线、圆形、实际开采路径的跟踪控制仿真结果分析,验证了控制算法的正确性。通过与PID控制算法的仿真结果的对比,验证了算法的时间最优特性。
     4.以我国中试1000m海试总体方案为研究基础,分析比较了横纵两种折返作业方式的优缺点。出于整体系统运动复杂性以及对海底环境破坏等因素的考虑,确定纵向折返为整体系统折返方式。分析了整体系统中采矿船、中间仓、集矿机各自的运动安全域,考虑到输送软管马鞍构形的要求,最终确定采矿船与集矿机投影水平距离240m为整体系统联动控制目标。建立了整体联动控制系统,并分别在顺流和逆流条件下对整体系统联动进行了仿真,仿真结果表明整体系统能够满足控制要求。
     5.进行了集矿机打滑及路径跟踪控制实验。利用沙土与水的混合物作为模拟软底质,通过对比不同配比比例下混合物力学特性,最终确定砂水最佳比例为1.5:1。通过6组打滑牵引实验验证了理论推导方法的正确性。通过跟踪直线、圆形以及开采路径三次实验,验证了路径跟踪算法的可性能与正确性。
Abstract:Due to its particular structural feature, tracked vehicles are widely used in military, agricultural and mining applications. For the deep sea mining task, mining research using a tracked miner system has been conducted in many countries. As an indispensable subsystem of the whole deep sea mining system, the operating motion control of the tracked miner is becoming a research focus.
     Because the tracked mine goes on the extremely cohesive sediment, the traction force is provided by shear stress which is caused by the shear displacement of the track. Because of inherent soil mechanics of the sediment, slippage under the track will be produced when the miner walks on the soil, and the change of the slip rate will affect the dynamic behavior of the miner. Since the working path of the miner is planned ahead, the trajectory of tracked miner in the real working condition can hardly go with the desired path. To ensure mining productivity, path tracking serves as one of the critical operating motion control. To guarantee the stability of the whole integrated deep sea mining system, follower control between the miner and the ship is also of great essence. In this paper, these three motion control problems are concerned and proper control strategies and algorithms are proposed. After a series of simulation tests and experiments, the feasibility and validity of the algorithms has been confirmed.
     The main research achievements are as follows:
     1. Based on the terrain mechanics of the tracked vehicle, a calculation formula, which reflects the relationship both the pressure and sinkage as well as the shear stress and shear displacement, is established. Also the relationship between the traction force and the slippage is set up.
     By analysis of the motion resistance, a thorough dynamic and kinetic model of the tracked miner is established. To avail the research, a simplified dynamic model is proposed and the error coming along is analyzed. From the theoretical respect, all these work facilitates the motion control of the miner.
     2. According to the relationship between the traction force and slippage, judging criteria of optimal slippage, which based on homogeneous soil, is put forward; also a method to identify the optimal slippage under non-homogeneous soil is established. To better control of slippage of the miner, a fuzzy PID control strategy and a model of slip control system is developed. By a series of simulation under both homogeneous and non-homogeneous soil condition, the effectiveness and stability of the strategy is testified.
     3. The difficulty of the path tracking control is described and the deviation model of the path tracking of the miner is developed. By taking the dynamic constrain of the miner, the smoothness of the trajectory and the time-optimal method into consideration, a time-optimal control strategy, which is based on the cubic spline curve, is proposed. Via Lyapunov method, the stability of the algorithm has been proven. For the instability situations resulting from the deploying process of the miner, the corresponding control tactics are developed. Also, the model of the path tracking control system is established. By analysis of the simulation results, the optimum coefficient, which value is0.66, is determined. After a series of tracking simulation under straight path, circular path and actual mining path, the validity of this control strategy is testified. Comparing with the PID control algorithm, it turns out that the proposed algorithm has a better time-optimal feature.
     4. According to the total system design for the1000m sea trial project, two operating paths are contrasted, which are longitudinal and transverse. A distance of240m between the miner and the ship is chosen as the objectives for the integrated motion control of the whole system. Then a series of simulation both under fair current and counter current has been done. From the result of the simulation, the strategy can satisfy the control requirement.
     5. A series of experiments concerning the critical motion control have been conducted. In the experiments, mixture of the bentonite and the water is used as the simulated sediment. By measuring the mechanical property under different ratio of bentonite and the water, the optimal ratio is determined, that is1.5:1. According to the results from six group traction-slippage tests, the theoretical derivation method is verified. Through path tracking experiments, it indicates that the testing miner can moving along the desired path accurately, thus the correctness and the credibility of the simulations of path tracking can be verified.
引文
[1]牛京考.大洋多金属结核开发研究述评[J].中国锰业,2002,20(2):20-26
    [2]吕华.海洋开发与管理的探讨[J].地址管理科技,1999,1:7-11
    [3]International Seabed Authority. Marine Mineral Resources:Scientific Advances and Economic Perspectives[M].2004
    [4]沈裕军,钟祥,贺泽全.大洋钴结壳资源研究开发现状[J].矿冶工程,1999,19(2):11-13
    [5]简曲.中太平洋富钴结壳的研究[J].矿冶研究与开发.1999,19(1):25-27
    [6]陈新明,吴鸿云,丁六怀,等.富钻结壳开采技术研究现状[J].矿冶研究与开发,2008,28(6):1-3
    [7]James R. Hein, Marjorie S. Schulz, Lisa M. Gein. Central Pacific Cobalt-Rich Ferromanganese Crusts:Historical Perspective and Regional Variability[R] Jamaica:International Seabed Authority,1992
    [8]公衍芬,刘志杰.海底热液多金属硫化物勘探开发与管理研究[J].海洋开发与管理.2012,7:6-10
    [9]陈新民,高宇清,吴鸿云,等.海底热液硫化物的开发现状[J].矿冶研究与开发.2008,28(5):1-6
    [10]邬长斌,刘少军,戴瑜.海底多金属硫化物开发动态与前景分析[J].海洋通报.2008,27(6):101-109
    [11]丁六怀,陈新明,高宇清.海底热液硫化物—深海采矿前沿探索[J].海洋技术.2009,28(1):126-132
    [12]Peter M. Herzig, Mark D. Hannington. Polymetallic massive sulfides at the modern seafloor a review[J]. Ore Geology Reviews,1995,10(2):95-115
    [13]中国能源战略研究课题组著.中国能源战略研究(2000-2050年)总报告[M].北京:中国电力出版社,1996
    [14]简曲,成湘州.大洋多金属结核资源开发的回顾与展望[J].中国矿业,1996,5(6):14-18
    [15]Yoshio Masuda, M.J.Cruickshank. Mechanical Design Developments for a CLB Mining System[C]. Proceedings of the Ocean Technologies and Opportunities in the Pacific for the 90's,1991:1583-1586
    [16]阳宁,夏建新.国际海底资源开采技术及其发展趋势[J].矿冶工程,2000,20(1):1-4
    [17]葛彤,朱继懋,姚宝恒.分散式深海局部试采矿系统[P].中国,200610023636.2006-01-26
    [18]The United Nations Ocean Economics and Technology Office. Manganese Nodules:Dimensions and Perspectives[M]. D. Reidel Publishing Company,1979
    [19]McNary, J.F., Person, A., Ozudongru, Y.H.. A 7500-Ton Capacity, Shipboard, Completely Gimbaled and Heave-Compensated Platform[J]. Journal of Petroleum Technology,1977,29(4):439-448
    [20]Znokuma, A. Current Status of Deep-Ocean Mineral Resources Development in Japan[C]. Proceedings of ISOPE Ocean Mining Symposium,1995:9-13
    [21]Chung J.S. Deep Ocean Mining Issue and Ocean Mining Working Group(OWG)[C]. Proceedings of the 3rd Ocean Mining Symposium,1999:14-17
    [22]Rajesh S., Gnanaraj A.A., Velmurugan A., et. Qualification Tests on Underwater Mining System with Manganese Nodule Collection and Crushing Devices[C]. Proceedings of the Ninth (2011) ISOPE Ocean Mining Symposium, Maui, Hawaii, USA, June 19-24,2011:111-115
    [23]Sup Hong, Hyung-Woo Kim, Jong-su Choi., et. A Self-propelled Deep-seabed Miner and Lessons from Shallow Water Tests[C]. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2010, Shanghai, China, June 6-11,2010:1 -12
    [24]刘少军.《深海多金属结核开采虚拟现实研究》课题研究报告[R].长沙:中南大学,2005
    [25]中国大洋矿产资源研究开发协会.大洋多金属结核中试采矿系统1000m海上试验总体设计[R].北京:中国大洋协会,2002
    [26]中国大洋矿产资源研究开发协会.大洋多金属结核中试采矿系统“九五”综合湖试报告[R].中国大洋协会,2002
    [27]M.G. Bekker. Theory of Land Locomotion[M]. Ann Arbor, Mich.:University of Michigan Press,1956
    [28]M.G. Bekker,《地面·车辆系统导论》翻译组.地面—车辆系统导论[M].机械工业出版社,1978
    [29]A.R. Reece. Principles of Soil-Vehicle Mechanics[C]. In Proc. Institution of Mechanical Engineers, vol.180, part 2A:1965-1966
    [30]Steeds W. Tracked Vehicles[J]. Journal of Automobile Engineering,1950:143-148
    [31]J.Y. Wong. Theory of Ground Vehicles 4th Edition[M]. John Wiley & Sons, Inc. 2008
    [32]J.Y. Wong., C.F. Chiang. A general theory for skid steering of tracked vehicles on firm ground[J]. Journal of Automobile Engineering,2001,215(3):343-355
    [33]M. Kitano, M. Kuma. An Analysis of Horizontal Plane Motion of Tracked Vehicles[J]. Journal of Terramechanics,1977,14(4):211-225
    [34]J.A. Okello, M. Watany, D.A. Crolla. A Theoretical and Experimental Investigation of Rubber Track Performance Models[J]. Journal of Agriculture Engineering,1998,69(1):15-24
    [35]G. Gerhart, S. Laughery, R. Goetz. Off-road Vehicle Location Using Bekker's Model[C]. Proceedings of the SPIE,2000:127-136
    [36]D.T. Tran, J. O'Brien, T. Muro. An Optimal Method for the Design of a Robotic Tracked Vehicle to Operate over Fresh Concrete under Steering Motion[J]. Journal of Terramechanics,2002,39(1):1-22
    [37]J.H. Lever, D. Denton, G.E. Phetteplace, et al. Mobility of a Lightweight Tracked Robot over Deep Snow[J]. Journal of Terramechanics,2006,43(4):527-551
    [38]Modest Lyasko. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics,2010,47(1):21-31
    [39]Thomas Thueer, Roland Siegwart. Mobility evaluation of wheeled all-terrain robots[J]. Journal of Robotics and Autonomous Systems,2010,58(5),508-519
    [40]Said Al-Milli, Lakmal D. Seneviratne, Kaspar Althoefer. Track-terrain modeling and traversability prediction for tracked vehicles on soft terrain[J]. Journal of Terramechanics,2010,47(3):151-160
    [41]宋连清.大洋多金属结核矿区沉积物土工性质[J].海洋学报,1999,21(6):47-54
    [42]陈小玲.大洋多金属结核矿区表层沉积物的物理性质[J].东海海洋2004,22(1):28-33
    [43]周知进,王贵满.海底沉积物剪切强度的试验研究[J].湖南科技大学学报,2005,20(2):15-18
    [44]H.Y. Wu, J.S. He, X.M. Chen, et al. Establishment of the Deep-sea Soft Sediments Shearing Strength-Shearing Displacement Model[J]. Journal of Modern Applied Science,2010,4(1):22-27
    [45]J.Y. Wang, W.G. Cao, Y.C. Zhai. Experimental Study of Interaction between Deep-sea Sediments and Tracks [J]. Journal of Rock and Soil Mechanics,2011, 32(2):274-278
    [46]吴鸿云,陈新明,刘少军等.履带板、齿间黏附底质对集矿附着性能的影响[J].农业工程学报,2010,26(10):140-145
    [47]Tan, Han-Shue, Y.K. Chin. Vehicle Traction Control:Variable Structure Control Approach[J]. Journal of Dynamic System, Measurements and Control,1991, 113(2):223-230
    [48]Z.J. Fan, Yoram Koren, David Wehe. A Simple Traction Control for Tracked Vehicle [C]. Proceedings of the American Control Conference, Seattle, Washington, June,1995:1176-1177
    [49]Laura R. Ray. Nonlinear State and Tire Force Estimation for Advanced Vehicle Control[J]. IEEE Trans. Control Systems Tech.,1995,3(1):117-124
    [50]Laura R. Ray. Real-Time Determination of Road Coefficiency of Friction for IVHS and Advanced Vehicle Control [C]. Proc. American Control Conference, Seattle, Washington, June,1995:2133-2137
    [51]Laura R. Ray. Experimental Determination of Tire Forces and Road Friction[C]. Proc. American Control Conference, Philadelphia, Pennsylvania, June,1998: 1843-1847
    [52]S. Kawasaki, S. Ouchi. Traction Control for Automobiles by Model-following Sliding Mode Control[C]. Proceedings of the 41st SICE Annual Conference, Aug, 2002:1175-1180
    [53]Hung Pham, K. Hedrick, M. Tomizuka. Combined Lateral and Longitudinal Control of Vehicles for IVHS[C]. American Control Conference, June,1994: 1205-1206
    [54]V.D. Colli, G. Tomassi, M. Scarano. Fuzzy Longitudinal Traction Control[C]. Proceedings of the International Conference on Advanced Intelligent Mechatronics, Monterey, California, July,2005:289-294
    [55]Z. Schiller, W. Serate, M. Hua. Trajectory Planning of Tracked Vehicles[C]. Proceedings of IEEE International Conference on Robotics and Automation, 1993,3:796-801
    [56]A.T. Le, D.C. Rye, H.F. Durrant-Whyte. Estimation of Track-Soil Interactions for Autonomous Tracked Vehicles[C]. Proceedings of IEEE International Conference on Robotics and Automation,1997,2:1388-1393
    [57]S. Scheding, G.Dissanayake, E.M. Nebot, et al. An Experiment in Autonomous Navigation of an Underground Mining Vehicle[J]. IEEE Transactions on Robotics and Automation,1999,15(1):85-95
    [58]Y.H. Zweiri, J.F. Ehidborne, L.D. Deneviratne. Diesel Engine Indicated and Load Torque Estimation using Sliding Mode Observer[C]. Proceedings of ASME 2000 ICE Fall Technical Conference, USA:24-27
    [59]K.R. Buckholtz. Reference Input Wheel Slip Tracking Using Sliding Mode Control[C] Proceedings of SAE 2002 World Congress,2002:1-8
    [60]K.Iagnemma, S. Kang, H. Shibly, et al. Online Terrain Parameter Estimation for Wheeled Mobile Robots with Application to Planetary Rovers[J]. IEEE Transactions on Robotics and Automation,2004,20(5):921-927
    [61]Laura R. Ray, Devin C. Brande, James H. Lever. Estimation of Net Traction for Differential-steered Wheeled Robots[J]. Journal of Terramechanics,2009,46(3): 75-87
    [62]Z. Song, S. Hutangkabodee, Y.H. Zweiri, et al. Identification of Soil Parameters for Unmanned Ground Vehicles Track-terrain Interaction Dynamics[C]. Proceedings of SICE Annual Conference,2004,3:2255-2260
    [63]Z. Song, Y.H. Zweiri, L.D. Seneviratne. Non-linear Observer for Slip Estimation of Skid-steering Vehicles[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, USA,2006:1499-1504
    [64]陈峰,韩晓英,桂卫华.基于FSUKF的全液压履带机器车打滑率估计及应用[J].中山大学学报,2007,46(2):199-203
    [65]B. Zhou, J.D. Han. Nonlinear Estimation Methods for Autonomous Tracked Vehicle with Slip[J]. Chinese Journal of Mechanical Engineering,2007,20(4): 1-7
    [66]T.M. Dar, R.G. Longoria. Slip Estimation for Small-Scale Robotic Tracked Vehicles[C]. Proceedings of 2010 American Control Conference, USA,2010: 6816-6821
    [67]Carlos C., Panagiotis T.. Dynamic Tire Friction Models for Vehicle Traction Control[C] Proceedings of the 38th Conference on Decision & Control,1999: 3746-3750
    [68]Marcel S. G., Arben C., Lesolliec G.. Longitudinal Control for an All-Electric Vehicle[C] Proceedings of IEEE International Conference on Electric Vehicle, 2012:357-375
    [69]Hyoun-Chul C, Suk-Kyo H.. Hybrid Control for Longitudinal Speed and Traction of Vehicles[C] Proceedings of IEEE 28th Annual Conference of the Industrial Electronics,2002:1675-1680
    [70]K. Herzog, E. Schulte, M.A. Atmanand. Slip Control System for a Deep-Sea Mining Machine[J]. IEEE Transaction on Automation Science and Engineering, 2007,4(2):282-286
    [71]TCHAMNA R., YOUN L. Yaw Rate and Side-slip Control Considering Vehicle Longitudinal Dynamic[J]. International Journal of Automotive Technology,2013, 14(1):53-60
    [72]宋海军,李军,王琛.坚实地面上履带车辆转向过程仿真与试验研究[J]车辆与动力技术,2005,3:45-49
    [73]宋海军,李军,安钢等.履带车辆转向过程仿真与试验研究[J]装甲兵工程学院学报,2005,19(3):50-53
    [74]程军伟,高连华,王红岩.基于打滑条件下的履带车辆转向分析[J].机械工程学报,2006,42(5):192-195
    [75]程军伟,高连华,王良曦.基于打滑条件下的履带车辆高速转向分析[J].车辆与动力技术,2006,1:44-48
    [76]张延松,陈关龙,罗哲等.半履带气垫车最佳工作状态的仿真研究[J].系统仿真学报,2004,16(8):1711-1713
    [77]Shuo X., Zhe L., Fan Y, etc. Slip Ratio Control for a Semi-Track Air-Cushion Vehicle[C] Proceedings of IEEE International Conference on Vehicular Electronics and Safety,2007:235-240
    [78]Kanayama Y, Kimura Y, Miyazaki F., et al. A Stable Tracking Control Method for Autonomous Mobile Robots[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1990:384-389
    [79]Murry R.M., Walsh G., Sastry S.S.. Stabilization and tracking for nonholonomic Control Systems Using Time-Varying State Feedback[C]. Proceedings of IFAC Nonlinear Control Systems Design,1992:109-114
    [80]Walsh G., Tilbury D., Sastry S., et al. Stabilization of Trajectories for Systems with Nonholonomic Constraints[J]. IEEE Transactions on Automatic Control, 1994,39(1):216-222
    [81]Hemami A., Mehrabi M.G., Cheng R.M. Synthesis of an Optimal Control Law for Path Tracking in Mobile Robots[J]. Journal of Automatica,1992,28(2): 383-387
    [82]Samson C., Ait-Abderrahim K. Feedback Control of a nonholonomic Wheeled Cart in Cartesian Space[C]. Proceedings of IEEE International Conference on Robotics and Automation, CA,1991:1136-1141
    [83]徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究[J].中国科学技术大学学报,2004,34(3):376-380
    [84]吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):327-331
    [85]Tounsi M., Le Corre, J.F.. Trajectory Generation for Mobile Robots[J]. Journal of Mathematics and Computers in Simulation,1996,41(3):367-3376
    [86]Reister D.B., Pin F.G.. Time-Optimal Trajectories for Mobile Robots with Two Independently Driven Wheels [J]. International Journal of Robotics Research, 1994,13(1):38-54
    [87]徐俊艳,张培仁,程剑锋.基于Backstepping时变反馈和PID控制的移动机器人实时轨迹跟踪控制[J].电机与控制学报,2004,8(1):37-43
    [88]裴辛哲,裴润,刘志远.轮式移动机器人全局渐近稳定控制器设计[J].系统仿真学报,2003,15(8):1101-1105
    [89]Z.P.Jiang, H. Nijmeijer. Tracking Control of Mobile Robots:a case study in backstepping [J]. Journal of Automatica,1997,33(7):1393- 1399
    [90]Fierro R., Lewis F.L.. Control of a Nonholonomic Mobile Robot:Backstepping Kinematics into Dynamics[J]. Journal of Robotic Systems,1997,14(3):149-163
    [91]Herber G., Kostas J.. Discontinuous Backstepping for Stabilization of Nonholonomic Mobile Robots [C]. Proceedings of the IEEE International Conference on Robotics and Automation, Washington DC,2002:3948-3953
    [92]Shigeki IIDA, Shin'ichi YUTA. Vehicle Command System and Trajectory Control for Autonomous Mobile Robots[C] Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems,1991:212-217
    [93]Chenavier F., James L.. Position Estimation for a Mobile Robot Using Vision and Odometry[C] Proceedings of the 1992 IEEE International Conference on Robotics and Automation,1992:2588-2593
    [94]D. Helmick, Y. Cheng, S.I. Roumeliotis. Path Following Using Visual Odometry for a Mars Rover in High-Slip Environments[C]. Proceedings of the 2004 IEEE Aerospace Conference,2004:772-789
    [95]Ahmadi M., Polotski V, Hurteau R.. Path Tracking Control of Tracked Vehicles[C]. Proceedings of the IEEE International Conference on Robotics and Automation,2000:2938-2943
    [96]Keiji N., Daisuke E., Kazuya Y.. Improvement of the Odometry Accuracy of a Crawler Vehicle with Consideration of Slippage[C]. Proceedings of 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,2007: 2752-2757
    [97]Daisuke E., Yoshito O., Keiji N., et al. Path Following Control for Tracked Vehicles Based on Slip-Compensating Odometry[C]. Proceedings of the 2007 IEEE International Conference on Intelligent Robots and Systems, San Diego, USA,2007:2871-2876
    [98]Michael B. Path-following Control of a Velocity Constrained Tracked Vehicle Incorporating Adaptive Slip Estimation[C] Proceedings of IEEE International Conference on Robotics and Automation,2012:97-102
    [99]H.W. Kim, S. Hong, J.S. Choi, et al. Dynamic Analysis of Underwater Tracked Vehicle on Extremely Soft Soil by Using Euler Parameters[C] Proceedings of the sixth ISOPE Ocean Mining Symposium, Changsha, Hunan, China,2005: 141-148
    [100]T.K. Yeu, S. Hong, H.W. Kim, et al. Path Tracking Control of Tracked Vehicle on Soft Cohesive Soil[C]. Proceedings of the sixth ISOPE Ocean Mining Symposium, Changsha, Hunan, China,2005:168-173
    [101]T.K. Yeu, S.J. Park, H.W. Kim, et al. Path Tracking Using Vector Pursuit Algorithm for Tracked Vehicles Driving on the Soft Cohesive Soil[C]. Proceedings of SICE-ICASE International Joint Conference,2006:2781-2786
    [102]S. Hong, J.S. Choi, H.W. Kim, et al. A Path Tracking Control Algorithm for Underwater Mining Vehicles[J]. Journal of Mechanical Science and Technology, 2009,23(8):2030-2037
    [103]Z. Janosi, B. Hanamoto. The Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Deformable Soils[C]. Proceedings of the 1st International Conference on Terrain-Vehicle Systems, Torino, Italy,1961: 707-726
    [104]J.Y. Wong, J. Preston-Thomas. On the Characteristic of the Shear Stress-Displacement Relationship of Terrain[J]. Journal of Terrmechanics,1983, 19(4):225-234
    [105]J.Y. Wong, M. Garber, J.R. Radforth. Characterization of the Mechanical Properties of Muskeg with Special Reference to Vehicle Mobility [J]. Journal of Terramechanics,1979,16(4):163 - 180
    [106]李力,李庶林.深海表层海泥模拟及地面力学特性研究[J].工程力学.2010,27(11):213-220
    [107]王江营,曹文贵,翟友成.深海沉积物与履带相互作用试验研究[J].岩土力学,2011,32(2):274-278
    [108]J.Y. Wong, M. Garber, J. Preston-Thomas. Theoretical Prediction and Experimental Substantiation of the Ground Pressure Distribution and Tractive Performance of Tracked Vehicles[J]. Journal of Automobile Engineering,1984, 198(90):265-285
    [109]Shiller Z., Serate W., Hua M. Trajectory Planning of Tracked Vehicles[C]. Proceedings of International Conference on Robotics and Automation,1993: 796-801
    [110]Hayashi I. Practical Analysis of Tracked Vehicle Steering Depending on Longitudinal Track Slippage[C]. Proceedings of the International Society for Terrain-Vehicle Systems,1975:225-239
    [111]戴瑜.履带式集矿机海底行走的单刚体建模研究与仿真分析[D].长沙:中南大学,2010
    [112]张克健.车辆地面力学[M].国防工业出版社,2002
    [113]K. Terzaghi. Theoretical Soil Mechanics[M]. New York:Wiley,1966
    [114]John. J. Myers, Carl H. Holm, R.H. McAllister. Handbook of Ocean and Underwater Engineering[M]. New York:McGraw-Hill,1969
    [115]“十五”采矿海试系统总师组.大洋多金属结核中试采矿系统1000m海上试验总体系统技术设计[R].北京:中国大洋协会研究报告,2004
    [116]陈峰.深海底采矿机器车运动建模与控制研究[D].长沙:中南大学,2005
    [117]张平格.液压传动与控制[M].冶金工业出版社,2009
    [118]邹兴龙.海底作业车行走液压系统与路径控制研究[D].长沙:中南大学,2006
    [119]J.S. Choi, S. Hong, H.W. Kim. An Experimental Study on Tractive Performance of Tracked Vehicle on Cohesive Soft Soil[C] Proceedings of the Fifth Ocean Mining Symposium, Tsukuba, Japan,2003:139-143
    [120]李艳.基于三维离散元管线模型的深海采矿1000m海试系统整体联动动力学研究[D].长沙:中南大学,2009
    [121]王刚.深海采矿作业过程扬矿管线系统空间构形与动态特性研究[D].长沙:中南大学,2009
    [122]陈正想,熊莉利,龚天平.小型化技术与数字罗盘的开发[J].水雷战与舰 船防护,2005:1,26-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700