安徽月山地区龙门山铜矿床成矿流体、矿床地球化学特征及成因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙门山铜矿床位于扬子地块北缘下扬子台坳沿江断褶带中段的月山岩体内以及岩体与围岩的接触带中,是长江中下游铜铁成矿带的重要矿床之一。在对区域地质背景、矿床地质特征、矿床地球化学特征、成矿流体分析的基础上,开展了月山地区控矿因素、成岩机制、矿床成因等方面的研究。论文的研究成果与创新主要有以下几点:
     1、通过对区域地质背景的分析,研究了矿床地质特征,在此基础上,根据矿物共生组合关系,将龙门山铜矿床的成矿作用分为矽卡岩期和硫化物期;矽卡岩期分为早期矽卡岩阶段、晚期矽卡岩阶段、氧化物阶段;硫化物期分为石英硫化物阶段、铜铁硫化物阶段和碳酸盐阶段。
     2、对月山岩体的岩石化学特征、稀土元素和微量元素地球化学特征进行研究,表明月山岩体具富钠、钾的特征,同时富钙的特征也比较明显,属于中酸性、钙碱性岩体。岩体轻、重稀土分馏明显,轻稀土强烈富集,铈、铀异常不明显,且δEu与Si02含量呈负相关而与CaO呈正相关。
     3、月山岩体是龙门山矿床的成矿岩体,在分析其岩浆来源、构造环境及成岩过程的基础上,探讨了其成岩机制,指出月山岩体起源于深部的碱性玄武岩浆,在成岩过程中受到了硅质围岩和钙质围岩的同化混染,属于典型的AFC混合机制。
     4、对龙门山铜矿床岩体、蚀变岩、矿石及围岩稀土元素特征进行研究,得出矿体中的矽卡岩的配分曲线与较纯的岩体的基本趋势相同,表明本区矿体与岩体具有相同的岩浆来源和一致的岩浆演化途径。由岩体、蚀变岩、矽卡岩、矿石、围岩中Cu、Fe、Mn、Zn、Pb等元素含量分布规律可以看出靠近岩体的内接触带相对来说更有利于成矿,地壳的混染作用对成矿也有一定的影响。
     5、对龙门山铜矿床流体包裹体进行了较系统研究,得出该区流体包裹体均一温度主要介于191.3-441.3℃之间,大致可分为中、高两个温度范围,盐度变化范围大致也可分为高、中低两群,流体密度范围是:0.61-1.004g/cm3,属于中等密度流体。流体包裹体成分分析表明,成矿流体以水为主,液相成分中,阳离子主要有:Ca2+、Na+、K+,阴离子有:Cl-、SO42-、F-,气相成分主要是CO2,含有一定量的CH4和少量其他有机气体。成矿溶液属于H2O-Na+(Ca2+、K+)-Cl-(SO42-、F-)-C02体系。
     6、通过对矿床地质特征、地球化学特征、流体包裹体特征分析、控矿因素以及成岩机制的分析,龙门山铜矿床是与富硅富碱中酸性侵入岩有关的接触交代作用形成的矽卡岩型铜矿床。
Longmenshan copper deposit is located in Yueshan rock mass which belongs to the middle of broken fold belt in northern margin of Yangtze block and contact zone between rock body and surrounding rock. This deposit is one of the most important deposits in the middle and lower Yangtze River copper metallogenic belt. Based on the analysis of the characteristics of geological background, geological of ore deposit, geochemical of deposit, metallogenic geologic condition and ore-forming fluids, then do the researches on the ore-controlling factors, rock-forming mechanism, the genesis of deposit and etc. The main achievements are made as follows:
     1. Though the researching the characteristics of geological background, and the geological characteristics of deposit, and then divides the mineralization of Longmenshan copper deposit into skarn stage and sulfide stage two periods by the relation of mineral paragenetic association. And skarn stage can be divided into three phase, namely: early skarn phase, terminal skarn phase, oxide phase; sulfide stage can be divided into three phase, namely:quartz sulfidic phase, sulfidic stage and carbonate phase.
     2. According to petrochemical characteristics of magmatic rocks, trace elements, REE geochemiscal characteristics and diagnostic fluid inclusions characteristics of Yueshan rock mass, we draw the conclusion that the Yueshan rock body has the character of rich kalium and natrium, as well as the character of rich calcium is obvious. Yueshan rock mass is belong to intermediate-felsic and calc-alkaline rock mass. Its light-heavy rare earth elements' Fractionation is obvious; it is strongly enriched in light rare earth elements. Ce、Eu anomaly is not obvious. The relationship between content ofδEu and SiO2 is negative correlation, and the relationship between content ofδEu and CaO is positive correlation.
     3. Yueshan rock body is the ore-forming rock body of Longmenshan copper deposit. On the basis of the analysis on the magma sources、tectonic environment and rock-forming process, combined with achievements of ore-forming mechanism, we draw the conclusion that Yueshan rock body roots in the deep-seated alkaline basaltic magma. The rock—forming process has undertaken two diferent degrees of assimilation and contamination. The rock-forming model belongs to the typical AFC mechanism.
     4. Though the researching of the REE geochemiscal characteristics and diagnostic fluid inclusions characteristics of rock mass, alter-rocks, ore and surrounding rock, we draw the conclusion that distribution patterns trend of ore and fresh rock mass of this area is the same. It shows that ore and fresh rock mass of this area have the same magma sources and magmatic evolution approach. The content distribution law of Cu, Fe, Mn, Zn, Pb in the rock mass, alter-rocks, ore and surrounding rock shows that the inner contact zone Close to the rock is more benefited for ore-forming, as well as the contamination of the crust has certain influence on ore-forming.
     5. By systemic researching the diagnostic fluid inclusions of the Longmenshan copper ore, we find that homogenization temperature is between 191.3~441.3℃, it can be divided into high and intermediate Temperature, the salinity can be also divided into two groups-high and medium-low. The density range in 0.61-1.004g/cm3, belongs to the medium-low-density fluid. The gas phase is mainly composed of H2O and CO2, with minor organic gas; the main anions in the liquid composition are Cl-, NO3- and SO42-, and the cations are Ca2+, Na+ and K+. The ore-forming solutions belong to the H2O-Na+(Ca2+, K+)-Cl-(SO42-,F-)-CO2 type.
     6. By analysing the ore deposit geologic characteristic, geochemical characteristic, diagnostic fluid inclusions characteristic, ore-controlling factors and rock-forming mechanism, we draw the conclusion that Longmenshan copper deposit is a contact metasomatic copper deposit which relates with silicon-rich and alkaline-rich intermediate-acid diorite.
引文
[1]Chang Y F, Liu X P and Wu Y C. The Copper-Iron Belt of the Middle and Lower Reaches of the Yangtze River, Geological Publishing House, Beijing.1991.379
    [2]Ganguly J and Ruiz J. Time-temperature relation of mineral isochrones:a thermodynamic model and illustrative examples for Rb-Sr system. Earth Plan et.Sci.Lett.1987.81:338-348
    [3]Li W D, Wang W B and Fan H Y, et al. The conditions to form copper (gold) ore deposit concentrated areas and the possibilities to discover giant copper (gold) ore deposits in the Middle-Lower Yangtze area. Volcanology and Mineral Resources, Supplement.1997,20:129
    [4]Liu Y Q and Liu Z L. Isotope geochemistry and genesis of the stratabound copper (iron-sulphur) deposits in Tongling area, Anhui Province. Bulletin, Institute of Mineral Deposits, China Academy of Geological Science.1991,1:47-114
    [5]Nicholls I. A simple thermodynamic model for estimating the solubility of H2O in magma. Contrib Mineral Petrol.1980,74:211-220
    [6]Tang Y C, Wu Y C and Chu G Z, et al. Geology of copper-gold polymetallic deposits in the along-changjiang area of Anhui province, Geological Publishing House.1998,351
    [7]Xu G and Zhou J. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China:synorogenic remobilization of a stratiform sulphide deposit, Ore Geology Reviews.2001,18,77-94
    [8]Zhai Y S, Yao S Z and Zhou X R. Metallogenesis of iron-copper (gold) deposits in the middle and lower reaches of the Yangtze area. Geological Publishing House. Beijing, China.1992,210
    [9]Zhou T F. The genesis of diorites and related Fe-Cu deposits in Yueshan area of Anhui Province. Unpublished PhD thesis. Hefei University of Technology, China. 1993,192
    [10]Zhou T F and Feng Y. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits, Anhui Province, South China. Ore Geology Reviews. April 2007,31:279-303
    [11]安徽省地矿局.安徽省区域地质志.北京:地质出版社.1987
    [12]安徽省地质矿产局326地质队.安徽省安庆地区成矿条件及铜金铁成矿预测.1990
    [13]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社.1991,294-312
    [14]常印佛,唐永成,邢风鸣等.安徽沿江地区铜金多金属成矿预测研究(简介).安徽地质科技.1997,10(1):1-11
    [15]陈江峰,Foland.KA,李学明等.安徽月山岩体的40 Ar/39Ar年龄及与其有关的成矿时代估计.现代地质.1991,5(1):91-99
    [16]陈江峰,周泰禧,邢凤鸣等.长江中下游岩带含铜岩体的Pb、Sr、Nd同位素特征.地球学报.1994,1-2:111-116
    [17]陈江峰,喻钢.安徽沿江地区铜矿床的物质来源Pb同位素组成的制约.安徽地质.2003,13(1):27-33
    [18]陈江峰,喻钢,杨刚等.安徽沿江江南晚中生代岩浆——成矿年代学格架.安徽地质.2005,15(3):161-169
    [19]陈江峰,周泰禧,邢凤鸣等.长江中下游岩带含铜岩体的Pb、Sr、Nd同位素特征.地球学报.1994,1-2:111-116
    [20]陈锡坤.龙门山铜矿床地质特征与成矿控制因素.矿产地质.1987,6(4):43-52
    [21]陈旭.红卓斑岩型铜矿床地球化学特征及找矿模型研究.地质找矿论丛.2007,22(3):184-189
    [22]董树文,邱瑞龙.安庆——月山地区构造作用与岩浆活动.北京:地质出版社.1993
    [23]范良武,张乾,朱永兵等.安徽月山矿田三叠系月山组角砾岩与成矿的关系.矿物学报.2007,增刊:500-502
    [24]柯韵徽.安徽月山地区铜矿床的地质地球化学研究.安徽合肥工业大学硕士论文.1995
    [25]李波,陈江峰,郑永飞等.安徽月山石英闪长岩氧同位素分馏、Rb-Sr等时线定年与矿物蚀变之间的关系.岩石学报.2004,20(5):1185-1192
    [26]李文达,王文斌,范洪源等.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产.1997,20(增刊):1-131
    [27]刘斌,沈昆.流体包裹体热力学.北京:地质出版社.1999,1-290
    [28]刘亮明.安徽省安庆矿区成矿规律及成矿预测.2002
    [29]刘绍濂.长江中下游成矿带区域构造格局及其演化.中南冶金地质.1997(2):8-15
    [30]刘绍濂,晏久平等.长江中下游成矿带构造沉积特征分析.中南冶金地质.1996,(2):34-39
    [31]刘晓东.安徽月山矿田成矿流体系统研究.安徽合肥工业大学硕士论文,2000
    [32]刘园园,马昌前,张超.安徽月山闪长岩的成因探讨——锆石U-Pb定年及Hf同位素证据.安徽地质.2009,28(5):22-30
    [33]刘忠法.安徽月山地区龙门山铜多金属矿床地质地球化学特征及成因分析.湖南:中南大学硕士论文.2009
    [34]吕庆田,杨竹森,严加永等.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例.地质学报.2007,81(7):865-880
    [35]卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社.2004:1-487
    [36]卢焕章,郭迪江.流体包裹体的研究进展和方向.地质评论.2000,46(4):386-392
    [37]毛建仁,苏郁香,陈三元等.长江中下游中酸性侵入岩与成矿.地质出版社.1990,1-13
    [38]毛景文,Holly.STEIN,杜安道等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报.2004,78(1):121-131
    [39]邱瑞龙.安庆地区的岩浆活动及其构造作用关系.安徽地质.1993,3(2):20-32
    [40]任启江,刘孝善,徐兆文.安徽庐极中生代火山构造洼地及其成矿作用.北京:地质出版社.1991
    [41]沈渭洲,黄耀生.稳定同位素地质.北京:原子能出版社.1987,1-181
    [42]孙家富.长江中下游成矿带成矿系列及其地质背景.大地构造与成科学.1992,2(16):155-156
    [43]唐永成,吴言昌,储国正等.安徽沿江地区铜多金属矿床.北京:地质出版社.1998
    [44]王文斌,李文达,范洪源等.长江中下游地区变质基底及地壳形成时间.火山地质与矿产.1996,3-4:42-50
    [45]王文斌,李文达,范洪源等.长江中下游成矿侵入岩的特征研究.火山地质与矿产.1995,16(2):21-31
    [46]王文斌,李文达,谢华光等.长江中下游铜铁多金属矿床铅同位素特征.火山地质与矿产.1995,16(2):67-77
    [47]谢建成,杨晓勇,Insung Lee安徽沿江地区燕山期含铜岩体稀土微量地球化学特征.矿物岩石.2008,28(1):72-78
    [48]邢凤鸣,徐祥.安徽沿江地区中生代岩浆岩的基本特点.岩石学报.1995,11(4):409-422
    [49]涂光炽.中国层控矿床地球化学(第三卷).北京:科学出版社.1989,11-16
    [50]杨兵.长江中下游成矿带的构成与形成机制.有色金属矿产与勘查.1999,8(5):409-422
    [51]杨兵.长江中下游地区铁、铜等成矿规律.有色金属矿床与勘查.1999,8(5):207-276
    [52]杨光树,温汉捷,胡瑞忠等.安徽月山岩体岩石地球化学特征及成因.矿物学报.2007,27(3-4):406-413
    [53]杨学明,林文通.铜官山矿区金口岭铜金矿床围岩蚀变、物理化学条件及成矿机理研究.地质科学.1989,9(4):323-337
    [54]于修文.安徽月山岩体成因及其与成矿关系探讨.北京:中国科学院地球化学研究所.2006
    [55]於崇文,岑况,鲍征宇等.成矿作用动力学.北京:地质出版社.1998,30-76.
    [56]翟裕生,林新多主编.矿田构造学.1993,地震出版社.
    [57]翟裕生,姚书振,林新多等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.1992,1-11
    [58]翟裕生,姚书振,林新多等.长江中下游地区铁、铜等成矿规律.矿床地质.1992,11(1):1-12
    [59]赵勇.安徽月山矿田水-岩作用研究.安徽合肥工业大学硕士论文,2001
    [60]赵斌,赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧、锶同位素地球化学研究.地球化学.1997,26(5):34-53
    [61]钟志洪,张庆龙,孙珍.韧性剪切带中的Rb-Sr和:Sm-Nd同位素体系.地质地球化学.1997,3:70-75
    [62]周涛发,岳书仓,刘晓东等.长江中下游铜、金矿床密集区形成条件及矿床成因研究综述.地质科技情报.1999,78(1):51-54
    [63]周涛发,岳书仓.长江中下游铜—金矿床成矿流体系统的形成条件及机理.北京大学学报(自然科学版).2000,36(5):697-707
    [64]周涛发,岳书仓,兰天佑.安徽安庆铜矿床硫同位素地球化学.地球科学.1995,20(6):705-711
    [65]周涛发,岳书仓,兰天佑.安徽月山地区闪长岩类岩浆动力学及其与成矿作用的联系.矿床地质.1995,14(4):303-313
    [66]周涛发,岳书仓.安徽月山矿田铜矿床的形成机制.长春地质学院学报.1997,27(7):310-316
    [67]周涛发,岳书仓,袁峰.安徽月山矿田成岩成矿作用.地质出版社.2005
    [68]周涛发,岳书仓,袁锋等.安徽月山岩体地球化学特征及成因机理分析.高校地质学报.2001,7(1):70-80
    [69]周涛发,岳书仓.安徽月山地区成岩—成矿作用关系研究.火山地质与矿产.1995,16(2):55-66
    [70]周涛发,柯韵徽,岳书仓.硅同位素在月山矿田成岩—成矿研究中的应用.合肥工业大学学报(自然科学版).1996,19(2):117-121
    [71]周涛发.安徽月山地区闪长岩类及铜矿床的地球化学研究.合肥:合肥工业大学.1993,1-192.
    [72]周涛发,岳书仓.月山地区铜成矿作用的同位素地球化学研究.矿床地质.1996,15(4):341-350
    [73]左洪发.安徽省怀宁县小园铡铜矿成矿控制因素及成因探讨.安徽地质.2009,19(3):186-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700