在轨服务空间机械臂运动及任务规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械臂在空间在轨服务过程中起着非常重要的作用,系统地应用空间机械臂能提高宇航员的工作效率并能有效地节省费用,而自由漂浮空间机械臂由于其耗能低,寿命长,近些年来逐渐成为空间在轨服务研究的重点。
     本文以两项国家863科研项目为依托,主要研究空间机械臂的运动学建模问题、空间机械臂的运动规划、基于在轨服务的多目标任务规划、避障规划以及空间机械臂综合任务规划,并应用Orbiter系统进行仿真研究。
     本文的主要内容为:
     (1)调研了国内外空间机械臂的发展情况,介绍了空间在轨服务的任务体系及典型任务,最详细阐述了近年来国内外的空间机械臂理论研究的重点难点问题。
     (2)基于四点假设,建立了空间机械臂的坐标系统。对广义雅克比矩阵及虚拟机械臂的建模方法进行分析,针对目前建模方法的计算量大、系统模型不直观的问题,提出了基于互相映射的坐标系方法。
     (3)进行了自由漂浮空间机械臂运动规划研究,分别包括:关节空间点到点运动规划、笛卡尔空间点到点的路径规划和笛卡尔空间连续性路径规划。
     (4)根据当前空间机械臂的任务追踪过程以及在轨服务任务的复杂情况,建立了空间机械臂多目标在轨任务模型。结合邻域搜索算法利用非线性分段优化算法解决空间机械臂的多目标任务的问题。
     (5)建立了不同种类障碍物的包围盒及碰撞检测算法,使用位姿空间分段搜索的方法解决了机械臂与服务星和目标星的碰撞问题,提出了基于遗传算法的全局性避障及任务规划方法。
     (6)应用Orbiter系统对空间机械臂的整体任务规划进行了仿真和验证,并模拟了在轨服务观测的摄像头视角,更直观地仿真了空间机械臂系统的在轨服务任务。
     本文的主要创新工作如下:
     (1)提出了建立互映射空间坐标系的方法,改进了广义雅可比矩阵的建模方法,使得模型更直观,有效地降低了广义雅克比矩阵方法计算复杂度。
     (2)在基于笛卡尔空间的点到点运动规划方法中,利用基于六次多项式样条函数的双参数法规划关节的角速度变化曲线,结合牛顿法和割线法对关节参数迭代,提高了迭代效率,得到的空间机械臂运动轨迹满足任务要求。
     (3)在空间机械臂的连续性路径规划方面,为避免连续性路径过程中动力学奇异问题,基于分段进化算法,将连续性路径规划转化为点到点路径规划,解决了连续性路径规划不连续可微和动力学奇异点的问题,增加了机械臂规划轨迹的灵活性。
     (4)提出了遗传进化算法与包围盒碰撞检测算法、分段算法相结合的方法解决空间机械臂的避障规划与任务规划,可解决避障规划中所产生的对基座扰动大且耗能过多的问题。
Manipulators play an increasingly important role in the on-orbit service(OOS) due to its efficiency and lower cost. Studies on OOS are gradually focusing on free-floating space manipulator attribute to the lower fuel-consuming and longer life.
     Five key technologies including the kinematic modeling, motion planning, multi-objects task planning, obstacle-avoiding and comprehensive planning of space robot are studied in this paper supported by National863research projects, moreover, the results are simulated by Obiter to verify the methods proposed in this paper.
     The contents are as follows:
     (1) The development of space manipulator at home and abroad is investigated and space mission architecture and several typical tasks are introduced in the paper. The focal points of all kinds of space manipulator theories are described in detail.
     (2) Based on four assumptions, the space manipulator system is established, the generalized Jacobi matrix method and virtual manipulator theory are analyzed. In addition, A mutual-mapping method is proposed in the paper in order for less computation complexity and intuitive model.
     (3) Path planning algorithms of free-flowing space manipulator is studied in the paper, including point-to-point motion planning in joint space, point-to-point motion planning in Cartesian space and continuous path planning of space manipulator based on Cartesian space.
     (4) Based on the complexity of task tracing and on-orbit servicing, the on-orbit multi-objects task model is established, the non-linear subsection optimal algorithm is combined with the neighborhood searching algorithm on the multi-object task model to solve the multitask problems.
     (5) Different obstacles bounding boxes are established and the collision detection algorithm is proposed in the paper. Then, the obstacle-avoid problem is handled by position-attitude space subsection algorithm. Finally, a global obstacle-avoidance algorithm which based on Genetic Algorithm is proposed.
     (6) Eventually, All of the simulation results are demonstrated using Orbiter software, and a camera viewpoint mounted on the end-effector is simulated.
     The innovations are as follows:
     (1) A mutual-mapping approach is prpposed to advance the traditional generalized Jacobi matrix method. The results shows the more intuitive model and the less computational complexity.
     (2) In Cartesian path planning part, a dual-parameters method is proposed for the manipulator path planning., the iterative calculation of Newtown and Secant algorithm is used for high efficiency.
     (3)In the continuous path planning part, a subsection evolution algorithm is proposed to solve the general continuous path tracking problems, and also the non-differentiable and non-continuous path problems, the approach can also obtain the more flexible path.
     (4) The Genetic Algorithm is combined with the collision detection algorithm and the subsection evolution algorithm together because of the large base disturbance and more consume.
引文
[1]孙自法.我国首颗直播卫星鑫诺二号出现技术故障[J].中国航天,2006(12):45-50.
    [2]于登云,孙京,马兴瑞.空间机械臂技术及发展建议[J].航天器工程,2007(4):1-8.
    [3]魏岳江.空间机器人大战序幕开启[J].发明与创新,2011(5):4-5.
    [4]孙汉旭.加拿大、美国空间机械臂研究情况[J].航天技术与民品,1999,4:33-35.
    [5]Gibbs Graham, Sachdev Savi, Marcotte Benoit,et al. Proceedings of 54th International Astronautical Congress of the International Astronautical Federation (IAF),2002[C]. Montreal:Canadian Space Agency,2003.
    [6]Gibbs Graham, Poirier, Alain. Proceedings of Canada and the International Space Station Program Overview and Status,1995[C]. Montreal:Canadian Space Agency, 1996.
    [7]Asker J R. Canada Gives Station Partners a Hand and an Arm[J]. Aviation Week & Space Technology,1997,147(23):71-73.
    [8]Gibbs G, Sachdev S. Canada and the International Space Station Program:Overview and Status[J]. Acta. Astronaut,2002,51(1):591-600.
    [9]翟光,仇越,梁斌.在轨捕获技术发展综述[J].机器人,2008,30(5):467-477.
    [10]黄涣.空间机器人功能行为建模与飞行任务仿真[D].长沙:国防科学技术大学,2009.
    [11]张国亮.空间机器人遥操作中基于视觉的局部自主控制研究[D].哈尔滨:哈尔滨工业大学,2010.
    [12]Hirzinger G, Landzettel K, Brunner B. DLR's Robotics Technologies for On-orbit Servicing[J]. Advanced Robotics,2004,18(2):139-174.
    [13]Hirzinger G, Brunner B, Dietrich J. Proceedings of IEEE International Conference on Robotics and Automation,1994[C] San Diego:IEEE Computer Society Press,1994.
    [14]查世红.空间机械臂六自由度浮游目标捕获功能地面验证系统研究[D].合肥:中国科技大学,2008.
    [15]Peter J S, Sarjoun S, Chris U. Proceedings of the IEEE Conference on Robotics and Automation,2001[C]. Seoul:Kyung Hee Information Printing Co,2002.
    [16]Masanori N, Chikara H, Yasuo I, et al. Results of the Manipulator Flight Demonstration (MFD) Flight Operation[C]. spaceOp98,1998.
    [17]Oda M. Experiences and Lessons Learned from the ETS-Ⅶ Robot Satellite[C]. Proceedings of the 2000 IEEE Internatilnal Conference on Robotics and Automation, 2000.
    [18]Oda M. Proceedings of the 1999 IEEE International Conference on Robotics and Automation,1999[C]. Detroit:OMNI Press,2000.
    [19]Kuwao Fumihiro, Motohashi Shoichi, Hayashi Masato, et al. Proceedings of the 21st International Symposium on Space Technology and Science,1998[C]. Omiya:The Symposium Press,1998.
    [20]Fukazu Y, Hara N, Kanamiya Y, Sato D. Proceedings of IEEE Conference on Robotics and Biomimetics,2008[C]. Bangkok:IEEE Computer Society Press,2009.
    [21]Visentin G, Brown D L. Robotics for Geostationary Satellite Service[J]. Robotics and Autonomous System,1998(23):45-51.
    [22]Boumans R, Heemskerk C. The European Robotic Arm for the International Space Station[J]. Robotics and Autonomous Systems,1998(23):17-27.
    [23]Heemskerk C J M, Schoonejans P H M. Overview of Software Engineering Applications in the European Robotic Arm[J]. ESASP(417),317-322.
    [24]张晓东.空间柔性机械臂控制策略研究[D].北京:北京邮电大学,2008.
    [25]蔡远文,郭会,李岩.航天器在轨组装技术进展[J].兵工自动化,2009,(10):6-14.
    [26]赵阳,张大伟,田浩,关英姿.飞行器在轨服务[J].上海航天,2009,(3):38-41.
    [27]赵兵.基于MAS技术的多机器人智能装配系统的任务规划[D].北京:北京工业大学,2002,
    [28]Vafa Z, Dubowsky S. On the Dynamics of Manipulators in Space Using the Virtual Manipulator Approach Proceedings of IEEE International Conference on Robotics and Automation, North Carolina State University,1987[C]. Raleigh:IEEE Computer Society Press,1988.
    [29]Vafa Z, Dubowsky S. The Kinematics and Dynamics of Space Manipulators:The Virtual Manipulator Approach [J]. Journal of Robotics Research,1990,9(4):3-21.
    [30]Papadopoulos E G. On the Dynamics and Control of Space Manipulators[D]. Cambridge: Massachusetts Institute of Technology,1990.
    [31]Liang B, Xu Y S, Bergerman M. Mapping a Space Manipulator to a Dynamically Equivalent Manipulator[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1998,120(1):1-7.
    [32]梁斌,刘良栋,李庚田.空间机械臂的动力学等价臂[J].自动化学报,1998,24(6):761-767.
    [33]Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix [J]. IEEE Trans. Robotics and Automation,1989, 5(3):303-314.
    [34]Nenchev D, Umetani Y. Analysis of a Redundant Free-Flying Spacecraft/Manipulator System [J]. IEEE Trans. Robotics and Automation,1992,8(1):1-6.
    [35]Nakamura Y, Mukherjee R. Nonholonomic Path Planning of Space Robots via a Bidirectional Approach [J]. IEEE Trans. On Robotics and Automation,1991, 7(4):500-514.
    [36]Mukherjee R, Nakamura Y. Formulation and EfficientComputation of Inverse Dynamics of Space Robots [J]. IEEE Trans. On Robotics and Automation,1992,8(3):400-406.
    [37]Nakamura Y, Mukherjee R. Exploring Nonholonomic Redundancy of Free-Flying Space Robots [J]. IEEE Trans.on Robotics and Automation,1993,9(4):499-506.
    [38]Yamada K, Tsuchiya K. Efficient Computation Algorithm for Manipulator Control of Space Robots [J]. Soc. Instrument Control Engineering Trans,1990,26(7):765-772.
    [39]Sasha S K. A Unified Approach to Space Robot Kinematics [J]. IEEE Trans. Robotics Automat,1996,12(13):401-405.
    [40]吴为民.空间机器人位姿空间分层量化建模方法[J].机器人.1997(9):384-389.
    [41]Hooker W, Margulies G. Dynamical attitude equations for n-body satellite[J]. J. Astronaut. Sci.,1965,12(4),123-128.
    [42]Hooker W. Set of r dynamical attitude equations for arbitrary n-body satellite with r rotational degrees of freedom[J]. Am. Inst. Aeronaut. Astronaut. J.,1970, 8(7):1205-1207.
    [43]Jerkovsky W. Structure of multibody dynamics equations [J]. Guidance and Control, 1978,1(3),173-182.
    [44]Hughes P. Dynamics of a chain of flexible bodies. J. Astronaut. Sci.,1979,27(4), 359-380.
    [45]Grewal A, Modi V. Dynamics and control of multibody systems:an approach with applications[J]. Acta Astronaut.,1996,39(5):323-346.
    [46]Grewal A, Modi V. Robust attitude and vibration control of the Space Station [J]. Acta Astronaut,1996,38(3):139-160.
    [47]Van Woerkom P. Synthesis and summary of control laws for large flexible spacecraft [J]. Control Theory and Advd Technol,1993,9(3):639-669.
    [48]Goel P, Maharama P. Active damping technique for satellites with flexible appendages [J]. Acta Astronaut,1995,36(5):239-250.
    [49]Van Woerkom P, Misra A. Robotic manipulators in space:a dynamics and control perpective [J]. Acta Astronaut,1996,38(4-8),418-421.
    [50]Paul R. Robot manipulators:mathematics, programming and control[D]. Cambridge: Massachusetts Institute of Technology,1981.
    [51]Fu K, Gonzalez R, Lee C. Robotics:Control, Sensing, Vision and Intelligence[D]. Singapore:McGraw-Hill,1987.
    [52]Rodriguez G. Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics [J]. Robotics and Automn,1987,3(6):624-639.
    [53]Johnson D, Hill J. Kalman filter approach to sensor based robot control [J]. Robotics and Automn,1985,1(3):159-162.
    [54]Silver W. On equivalence of Lagrangian and Newton-Euler dynamics for manipulators. [J]. Robotics Res,1982,1(2):60-69.
    [55]Lumia R, Wavering A. Trajectory generation for space telerobots [C]. In Proceedings of NASA Workshop on Space Telerobotics Ⅱ,1989.
    [56]Khatib 0. Unified approach for motion and force control of robotic manipulators: operational space formulation. Trans[J]. ASME, Basic Engr,1987(3):35-45.
    [57]Luh J, Walker M, Paul, R. On-line computational scheme for mechanical manipulators. Trans[J]. ASME, J. Dynamic Syst. Measmt and Control,1980(6):69-76.
    [58]Jain A, Rodriguez G. Recursive flexible multibody dynamics using spatial operators [J]. Guidance, Control and Dynamics,1992,15(6):1453-1466.
    [59]Van Woerkom P, De Boer A. Development and validation of a linear recursive'order n'algorithm for the simulation of flexible space manipulator dynamics [J]. Acta Astronaut,1995(35):175-185.
    [60]Hollerbach J. Recursive Lagrangian formulation of manipulator dynamics and comparative study of dynamics formulation complexity [J]. IEEE Trans. Syst. Man and Cybernetics,1980,10(11):730-736.
    [61]Nagashima F, Nakaruma Y. Efficient computation scheme for the kinematics and inverse dynamics of a satellite-based manipulator[C]. In Proceedings of IEEE International Conference on Robotics and Automation,1992.
    [62]Kane T, Levinson D. Formulation of equations of motion for complex spacecraft [J]. Guidance and Control,1983,6(2):99-122.
    [63]Kane T, Levinson D. Use of Kane's equations in robotics [J]. Robotics Res,1983, 2(3):3-21.
    [64]Konigstein R. Computed torque control of freeflying cooperating arm robot [C]. In Proceedings of NASA Workshop on Space Telerobotics V,1989.
    [65]田志祥.自由漂浮空间机器人多体动力学及目标捕获研究[D].南京:南京航空航天大学,2011.
    [66]Longman R. Kinetics and workspace of robot mounted on satellite that is free to rotate and translate[C]. AIAA 88-4097-CP,1988.
    [67]Vafa Z, Dubowsky S. On dynamics of manipulators in space using the virtual manipulator approach[C]. In Proceedings of IEEE International Conference on Robotics and Automation,1987:579-585.
    [68]Vafa Z, Dubowsky S. Kinematics and dynamics of space manipulators:the virtual manipulator approach [J]. Robotics Res.,1990,9(4):852-872.
    [69]Yamada K, Yoshikawa S. Feedback control of space robot attitude by cyclic cone motions [J]. Guidance, Control and Dynamics,1997,20(4):715-720.
    [70]Vafa Z. Space manipulator motions with no satellite attitude disturbances[C]. In Proceedings of IEEE International Conference on Robotics and Automation,1990.
    [71]Umetani Y, Yoshida K. Resolved motion rate control of space manipulators using a generalised Jacobian matrix [J]. Robotics and Automn,1989,5(3):303-314.
    [72]Papadopoulos E, Dubowsky S. On the nature of control algorithms for free-floating manipulators [J]. Robotics and Automn,1991,7(6):750-758.
    [73]Papadopoulos E, Dubowsky S. Coordinated manipulator/spacecraft motion control for space robotic systems [C].In Proceedings of IEEE International Conference on Robotics and Automation,1991.
    [74]Masutani Y, Mayazako F, Arimoto S. Sensory feedback control for space manipulators [C]. In Proceedings of IEEE International Conference on Robotics and Automation, 1989.
    [75]Xu Y. Measure of dynamic coupling of space robot system [C]. In Proceedings of IEEE International Conference on Robotics and Automation,1993.
    [76]Kowano I, Mokuno M, Kasai T, Suzechi T. Result of autonomous rendezvous docking experiment of ETS VII [J]. Spacecraft and Rockets,2001,38(1):105-111.
    [77]Papadopoulos E, Dubowsky S. On dynamic singularities in the control of free-floating manipulators. Trans [J]. ASME, Dynamic Syst. and Control,1989,15: 45-52.
    [78]Papadopoulos E, Dubowsky S. Kinematics, dynamics and control of freeflying and freefloating space robotic systems [J]. Robotics and Automn,1993,9(5):531-543.
    [79]Vafa Z,Dubowsky S. On the dynamics of space manipulator using the virtual manipulator with application to path planning[J]. The Journal of the Astronautical Science,1990,38 (4):441-472
    [80]Fernandes C, Gurvits L, Li Z X. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies[J]. IEEE Transactions on Automatic Control,1994, 39(3):450-463
    [81]Nakaruma Y, Mukherjee R. Nonholonomic path planning of space robots via the bidirectional approach [J]. Robotics and Automn,1989,7(4):500-514.
    [82]Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant freeflying spacecraft manipulator system [J]. Robotics and Automn,1992,8(1):1-6.
    [83]Dubowsky S, Vance E, Torres M. Control of space manipulators subject to spacecraft attitude control control saturation limits [C]. In Proceedings of NASA Workshop on Space Telerobotics IV,1989.
    [84]Spofford J, Akin D. Redundancy control of freeflying telerobots [C]. AIAA 88-4094-CP,1988.
    [85]Slotine J J, Li W. On the adaptive control of manipulators [J]. Robotics Res,1987, 6(3):49-59.
    [86]Papadopoulos E, Dubowsky S. On the nature of control algorithms for space manipulators [C]. In Proceedings of IEEE International Conference on Robotics and Automation,1990.
    [87]Walker M, Wee L. Adaptive control of space based robot manipulator [J]. Robotics and Automn,1991,7(6):828-835.
    [88]Walker M, Wee L Adaptive control strategy for space based robot manipulators [C]. In Proceedings of IEEE Conference on Robotics and Automation,1991.
    [89]Rui C, Kolmanovsky I, McClamroch N. Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels [J]. Autom. Control, 2000,45(8):1455-1469.
    [90]Lindberg R, Longman R, Zedd M. Kinematics and reaction moment compensation for the spaceborne elbow manipulator [C]. AIAA 86-0250,1986.
    [91]Longman R, Lindberg R, Zedd M. Satellite-mounted robot manipulators-new kinematics and reaction compensation [J]. Robotics Res,1987,6(3):87-103.
    [92]Yoshida K. Dual arm coordination of a space freeflying robot [C]. In Proceedings of IEEE International Conference on Robotics and Automation,1992.
    [93]Murphy S, Wen S, Saridis G. Simulation of cooperating robot manipulators on a mobi le platform [J]. Robotics and Automn,1991,7(4):468-477.
    [94]Mitsuskige 0. Motion control of the satellite mounted robot arm which assures satellite attitude stability [J]. Acta Astronaut,1997,41(11):739-750.
    [95]张福海,付宜利,王树国.自由漂浮空间机器人回避动力学奇异的轨迹规划[J].机器人.2012(1):38-43.
    [96]Nagata T, Modi V, Matsuo H. Dynamics and control of flexible multibody systems [J]. Part I:general formulation with an order n forward dynamics. Acta Astronaut,2001, 49(11):581-594.
    [97]Nagata T, Modi V, Matsuo H. Dynamics and control of flexible multibody systems [J]. Part II:simulation code and parametric studies with nonlinear code and parametric studies with nonlinear control. Acta Astronaut,2001,49(11):595-610.
    [98]Denavit, Jacques, Hartenberg, Richard Scheunemann. A kinematic notation for lower-pair mechanisms based on matrices [J]. Appl. Mech,1995,23:215-221.
    [99]You Liang Gu, Yangsheng Xu. A normal form augmentation approach to adaptive control of space robot systems [J]. Dynamics and Control,1995,5(3):275-294.
    [100]Shin J H, Lee J J. Dynamic Control with Adaptive Identification for Free-Flying Space Robots in Joint Space [J]. Robotica,1994,12:541-551.
    [101]Dubowsky S, Papadopoulos E. The Kinematics, Dynamics, and Control of Free-Flying and Free-Float ing Space Robotic Systems[J]. IEEE Transactions on Robotics and Automation,1993,9(5):531-543.
    [102]Masayuki Shimizu, Hiromu Kakuya,Woo-Keun Yoon. Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution[J]. IEEE TRANSACTIONS ON ROBOTICS,2008,24(5):1131-1142.
    [103]钱东海,王新峰,赵伟.基于旋量理论和Paden-Kahan子问题的6自由度机器人逆解算法[J].机械工程学报.2009(9):72-81.
    [104]Jian Xie, Wenyi Qiang, Bin Liang, Cheng Li. Inverse Kinematics Problem for 6-DOF Space Manipulator Based On the Theory of Screws[C]. in:Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, China,2007.
    [105]Papadopoulos E. Teleoperation of Free-floating Space Manipulator Systems [J]. SPIE OE/Technology, Boston, MA,1992:122-133.
    [106]Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots[C]. in: Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA,1989.
    [107]Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via a bidirectional approach [J], IEEE Transactions on Robotics and Automation,1991, 7(4):500-514.
    [108]Vafa Z. On the dynamics of manipulators in space using the virtual manipulator Approach[C]. in:Proc. of IEEE Int. Conf. Robotics Automat. Raleigh, NC,1987.
    [109]Vafa Z, Dubowsky S. On the dynamics of space manipulator using the virtual manipulator with application to path planning[J]. The Journal of the Astronautical Science,1990,38(4):441-472.
    [110]Dubowskys S, Torres M. Path Planning for space manipulators to minimizing spacecraft attitude disturbance[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA,1991.
    [111]Yoshida K, Hashizume K, Abiko S. Zero reaction maneuver:flight validation with ETS-VII space robot and extension to kinematically redundant arm[C]. in: Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, USA,2001.
    [112]Yoshida K, Kurazume R, Umetani Y. Dual arm coordination in space free-flying robot[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway,1991.
    [113]Huang P F, Xu Y, Liang B. Dynamic Balance Control of Multiarm Free-Floating Space Robots [J]. International Journal of Advanced Robotic Systems,2005,2(2):117-124.
    [114]Papadopoulos E, Tortopidis I, Nanos K. Smooth Planning for Free-floating Space Robots Using Polynomials[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation Barcelona, Spain,2005.
    [115]Mineta T, Qiu J, Tani J. Trajectory Planning of a Manipulator of a Space Robot Using a Neural Network[C]. in:IEEE International Workshop on Robot and Human Communication,1997.
    [116]郭琦,洪炳熔,张华.用Hopfield网络优化空间机械臂的路径[J].哈尔滨工业大学学报,2003,35(8):970-973.
    [117]戈新生,张奇志,刘延柱.基于遗传算法的空间机械臂运动规划的最优控制[J].空间科学学报,2000,20(2):185-191.
    [118]Wang C H, Feng B M, Ma G C. Robust tracking control of space robots using fuzzy neural network[C]. in:Proceedings IEEE InternationalSymposium on Computational Intelligence in Robotics and Automation,Espoo, Finland,2005.
    [119]吴为民.基于隐式位姿空间分层量化的空间机械手无碰撞路径规划方法[J].宇航学报,1996,17(4):44-49.
    [120]吴为民.自由浮动空间机械手的无碰撞路径规划[J].机械科学与技术,1997,16(5):838-841.
    [121]王鸿鹏,洪炳熔,郭恒业.双臂空间机械臂的通用运动学路径规划算法[J].系统工程与电子技术,2000,22(7):65-68.
    [122]戈新生,陈力,刘延柱.空间机械臂非完整运动规划的最优控制[J].应用力学学报,1999,15(4):6-11.
    [123]张青斌,唐乾刚,孙世贤.飘浮式空间机械臂路径规划的全局最优解析解[J].国防科技大学学报,1999,21(3):25-28.
    [124]顾晓勤,刘延柱.载体姿态无扰动的空间机械臂路径规划[J].空间科学学报,1996,16(4):322-325.
    [125]Belousov I, Esteves C, Laumond J-P, et al. Motion planning for the large space manipulators with complicated dynamics[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada,2005.
    [126]Franch J, Agrawal S, Fattah A. Design of Differentially Flat Planar Space Robots: A Step Forward in their Planning and Control[C]. in:Proc. IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems, Las Vegas, Nevada,2003.
    [127]石忠,王永智,胡庆雷.基于多项式插值的自由漂浮空间机器人轨迹规划粒子群优化算法[J].宇航学报,2011(7):1516-1521.
    [128]付京逊,R C冈萨雷斯,C S G.李.机器人学[M].第四版.北京:中国科学技术出版社,1989:26-29.
    [129]Paul R P. Manipulator Cartesian Path Control [J]. IEEE Trans. On System, Man, Cybern, 1979, SMC-9(11):702-711.
    [130]Taylor R H. Planning and Execution of Straight Line ManipulatorTrajectories[J]. Journal of Research and Development,1979,23(4):424-436.
    [131]Chang Y H, Lee T T, Liu C H. Online approximate Cartesian path trajectory planning for robotic manipulators [J]. IEEE Transactions on Systems, Man and Cybernetics. 1992,22(3):542-547.
    [132]Xu X R, Chen Y B. A method for trajectory planning of robot manipulators in Cartesian space[C]. in:Proceedings of the 3d World Congress on Intelligent Control and Automation, Hefei, P. R. China,2000.
    [133]Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix [J]. IEEE Transactions on Robotics and Automation,1989, 5(3):303-314.
    [134]Moosavian S A, Papadopoulos E. Control of Space Free-Flyers Using the Modified Transpose Jacobian Algorithm[C]. in:Proceedings of the International Conference on Intelligent Robots and Systems, Grenoble,France, September 1997.
    [135]Taira Y, Sagara S, Katoh R. Digital adaptive control of space robot manipulators using transpose of generalized Jacobian matrix[C]. in Proceedings of the IEEf/RSJ International Conference on Intelligent Robots and Systems,2000:1553-1558.
    [136]史也,梁斌.基于量子粒子群优化算法的空间机器人非完整笛卡尔路径规划[J].机械工程学报.2011(12):65-73.
    [137]徐文福,强文义.自由漂浮空间机器人路径规划研究进展[J].哈尔滨工业大学学报.2009(11):1-12.
    [138]胡荟,蔡秀珊.基于改进蚁群算法的三维空间机器人路径规划[J].计算机系统应用.2011(11):95-98.
    [139]刘海涛,杨乐平,张青斌.基于GauSS伪谱法的自由漂浮空间机器人运动规划研究[C].in: Proeeedings of the 31st Chinese Control Conference, Hefei, China,2012.
    [140]李保丰,孙汉旭.基于蒙特卡洛法的空间机器人工作空间计算[J].航天器工程.2011(7):79-85.
    [141]张福海,付宜利.一种笛卡儿空间的自由漂浮空间机器人路径规划方法[J].机器人.2009(3):187-192.
    [142]查世红.空间机器人六自由度浮游目标捕获功能地面验证系统研究[D].中国科学技术大学,2008.
    [143]梁捷,陈力.空间机器人时延下关节空间轨迹跟踪的改进控制算法设计、仿真[C].in:第七届全国多体系统动力学暨第二届全国航天动力学与控制学术会议,福州,中国,2008.
    [144]丰保民,马广程,温奇咏,王常虹.任务空间内空间机器人鲁棒智能控制器设计[J].宇航学报.2007(7):914-919.
    [145]王景,刘良栋.任务空间内空间机器人的复合自适应控制[J].航天控制.2001(1):1-5.
    [146]Nakamura Y, Hanafusa H. Inverse kinematic solutions with singularity robustness for robot manipulator control[J]. Trans. ASME J. Dynamic Syst. Meas. Contr,1986, 108:163-171.
    [147]Balestrino A, Maria G. De, Sciavicco L. Robust control of robotic manipulators[C]. in:Ninth IFAC World Congr,1984,6:80-85.
    [148]Chiacchio P, Siciliano B. Achieving singularity robustness:An inverse kinematic solution algorithm for robot control [J]. IEE Control Engineering Series 36-Robot Control:Theory and Applications, K. Warwick and A.Pugh, Eds. Cambridge, U.K. Peter Peregrinus,1988:149-156.
    [149]Wolovich W A, Elliott H. A computational technique for inverse kinematics[C]. in: Proc.23rd IEEE Conf. Decision Control,1984:1359-1363.
    [150]Wampler Ⅱ C W. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[J]. IEEE Trans. Syst., Man., Cybern. 1986, SMC-16:93-101.
    [151]Maciejewski A A, Klein C A. Numerical filtering for the operation of robotic manipulators through kinematically singular configurations[J]. Journal of Robotic System,1988,5(6):527-552.
    [152]Maciejewski A A, Klein C A. The singular value decomposition:Computation and appl ication to robot ics[J]. International Journal of Robotics Research,1989,8(6): 63-79.
    [153]Deo A S, Walker I D. Robot subtask performance with singularity robustness using optimal damped least-squares[C]. in:Proc. IEEE Int. Conf. Robotics Automation, 1992.
    [l54]Deo A S, Walke 1 D. Adaptive Non-linear Least Squares for Inverse Kinematics[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation, 1993,1:186-193.
    [155]Chiaverini S, Siciliano B, Egeland 0. Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator[J]. IEEE Transactions on Control Systems Technology,1994,2(2):123-134.
    [156]黄磊光,李耀通.用阻尼伪逆法控制冗余度机器人的一种新方案[J].自动化学报,1998,24(3):315-322.
    [157]John E L, Vincent H. Singularity-Robust Trajectory Generation[J]. International Journal of Robotic Research,2001,20(1):38-56.
    [158]Nielsen L, Wit C C, Hagander P. Controllability Issues of Robots near Singular Configurations[C]. in:Advances in Robot Kinematics,2nd InternationalWorkshop, 1990.
    [159]Chevallereau C, Daya B. A New Method for Robot Control in Singular Configurations with Motion in any Cartesian Direction[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation,1994.
    [160]Kieffer J. Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms[J]. IEEE Transactions on Robotics and Automation,1994, 10(1):1-10.
    [161]Chevallereau C. Feasible Trajectories for a Non-Redundant Robot at a Singularity[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation,1996.
    [162]0'Neil K A, Cheng Y C, Seng J. Removing Singularities of Resolved Motion Rate Control of Mechanisms, Including Self-Motion[J]. IEEE Transactions on Robotics and Automation,1997,13(5):741-751.
    [163]Chevallereau C, Daya B. A New Method for Robot Control in Singular Configurations with Motion in any Cartesian Direction[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation,1994.
    [164]Lloyd J E. Desingularization of Non-Redundant Serial ManipulatorTrajectories Using Puiseux Series [J]. IEEE Transactions on Robotics and Automation,1998,14(4): 590-600.
    [165]Lloyd J E, Hayward V. Removing the Singularities of Serial Manipulators by Transforming the Workspace[C]. in:Proceedings of International Conference on Robotics and Automation,1998.
    [166]Nenchev D N, Tracking manipulator trajectories with ordinary Singularities:a null space-based approach [J]. Internation Journal of Robotic Research,1995,14 (4): 399-404.
    [167]Nenchev D N, Tsumaki Y, Uchiyama M. Singularity-consistent parameterization of robot motion and control [J]. Internation Journal of Robotic Research,2000, 19(2):159-182.
    [l68]Senft V, Hirzinger G. Redundant Motions of Non-Redundant Robots-A New Approach to Singularity Treatment[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation,1995.
    [169]Nenchev D N, Tsumaki Y, Uchiyama M. Two Approaches to Singularity-Consistent Motion of Nonredundant Robotic Mechanisms[C]. in:Proceedings of the IEEE International Conference on Robotics and Automation,1996.
    [170]Tchon K, Muszynski R. Singular inverse kinematic problem for robotic manipulators: a normal form approach [J]. IEEE Trans, on Robotics and Automation,1998,14(1): 93-104.
    [171]刘成良,张凯,曹其新等.机器人奇异形位分析及协调控制方法[J].上海交通大学学报,2002,38(8):1138-1142.
    [172]连广宇,孙增圻.分支点邻域内的奇异路径跟踪[J].机器人,2003,25(1),48-52.
    [173]Papadopoulos E, Dubowsky S. Dynamic Singularities in the Control of Free-Floating Space Manipulators [J]. ASME Journal of Dynamic Systems, Measurement and Control, 115(1),1993:44-52.
    [174]Papadopoulos E. Path Planning for Space Manipulators Exhibiting Nonholonomic Behavior[C]. in:Proc. of the Int. Conf. on Intelligent Robots and Systems, Raleigh, North Carolina,1992.
    [175]Xi F, Fenton R G. On the inverse kinematics of space manipulators for avoiding dynamic singularities [J]. IEEE International Conference on Robotics and Automation,1994:3460-3465.
    [176]Pandey S and Agrawal S. Path Planning of Free-Floating Prismatic-Jointed Manipulators [J]. Multibody System Dynamics,1997(1):127-140.
    [177]Lampariello R and Deutrich K. Simplified Path Planning for Free-Floating Robots. DLR Internal Report, DLR 515-99-04,1999:1-166.
    [178]顾晓勤,刘延柱.空间机械臂动力学奇点与回避[J].宇航学报,1998,19(4):32-36.
    [179]丁希仑,战强,解玉文.自由漂浮的空间机械臂系统的动力学奇异特性.分析及其运动规划[J].航空学报,2001,22(5):474-477.
    [180]徐文福,梁斌,李成,强文义.一种新的PUMA类型机器人运动学奇异回避方法[J].自动化学报,2008,6(34):670-675.
    [181]Wenfu Xu, Cheng Li, Bin Liang. The Cartesian Path Planning of Free-Floating Space Robot using Particle Swarm Optimization[J]. International Journal of Advanced Robotic Systems.2008, Vol.5, (3):301-310.
    [182]Wenfu Xu,Bin. Liang, Cheng Li. Path Planning of Free-Floating Robot in Cartesian Space Using Direct Kinematics[J].International Journal of Advanced Robotic Systems.2007, Vol.4, (1):17-26.
    [183]Wenfu Xu, Bin Liang, Cheng Li.Autonomous Path Planning and Experiment Study of Free-floating Space Robot for Target Capturing [J]. Journal of Intelligent Robotic Systems.2008 (51):303-331.
    [184]Jack C K C. Quaternion Kinematic and Dynamic Differential Equations[J]. IEEE Transactions On Robotics and Automatic,1992,8(1):53-64.
    [185]徐文福.空间机器人目标捕获的路径规划与实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [186]Yue Qiu, BiBo Guo, Li jun Xue,Bin Liang, Cheng Li. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics,2009[C]. Guilin:Robotics and Biomimetics(ROBIO),2010.
    [187]吕洁,吴季,孙波.天基雷达观测空间碎片的研究现状及关键技术分析[J].航天返回与遥感,2004.10.28-33.
    [188]李少敏,牛威,马鑫,祝开建.空间目标探测技术研究[J].国防科技,2009,3:6-13.
    [189]王钧.对地观测卫星综合任务调度模型与优化方法研究[D].国防科学技术大学,2007
    [190]Ehrgott M, Gandibleux X. An Annotated Bibliography of Multi-objective Combinatorial Optimization. Technical Report 62/2000, Fachbereich Mathematik [D]. Germany:Universitat Kaiserslautern,2000.
    [191]Ehrgott M, Gandibleux X. A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization[C]. OR Spektrurn,2000
    [192]Ehrgott M, Gandibleux X.Multiple Criteria Optimization:State of the Art Annotated Bibliographic Surveys[M] Boston:Kluwer Academic Publishers,2002.
    [193]李庆中,顾伟康,叶秀清,项志宇.移动机器人的路径跟踪的智能预瞄[J]。控制方法研究.机器人.2002(3):252-255.
    [194]Barnes, Noble. Webster's New Universal Unabridged Dictionary[J]. New York,1989: 1-2
    [195]罗枫.三维网格模型的快速碰撞检测及相交体计算[D].杭州:浙江大学硕士学位论文,2005.
    [196]张茂军.虚拟现实系统[M].北京:科学出版社,2001:289-38.
    [197]张俊坤.基于动态虚拟夹具的机器人遥操作系统[D].广州:华南理工大学硕士学位论文,2009.
    [198]Khatib. Real-time Obstaele Avoidance for ManiPulators and MobileRobots[J]. The International Journal of Roboties Research,1986,5(1):90-98
    [199]Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristie determination of minimum cost paths in graphs [J]. IEEE Trans. Syst. Sci. and Cybernetics,1968, 4(2):100-107.
    [200]Goldberg D E. Genetic Algorithms in Search, Optmization and Machine Learning [D]. Addison Wesley,1989.
    [201]蔡伟伟,朱彦伟,陈钦.空间机器人操作任务可视化仿真研究[J].计算机仿真.2011(8):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700