中生菌素对水稻悬浮细胞主要防卫反应基因转录表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中生菌素是一种非常有应用前景的农用抗生素类生物农药,但是对中生菌素的作用机制我们还没有深入的了解。长期大规模的田间应用表明农用抗生素在田间防治有些病害时具有比化学农药更好的防治效果,而离体抑菌(杀菌)效果却不及化学农药;预防效果好于治疗效果;研究还发现长期应用这些农用抗生素,病原菌也未出现抗药性。所有这些研究结果和现象都说明农用抗生素不仅直接抑制或杀死病原菌,而且可能对植物体也发生了作用,提高了植物体的抗病性。因此我们试图在水稻抗、感白叶枯病菌近等位基因系悬浮细胞体系中,用RNA斑点杂交方法研究中生菌素对重要的植物防卫反应基因过氧化物酶(PO)基因、苯丙氨酸解氨酶(PAL)基因、查尔酮合成酶(CHS)基因转录表达的影响,从而阐明中生菌素的作用机制。
     首先,我们对粳稻品种感病品系沈农1033及其携带Xα-4抗病基因的近等位基因系CBB_4的愈伤组织培养、悬浮细胞系的建立进行了探索。结果表明:水稻品种的遗传特性、2,4-D浓度是诱导水稻愈伤组织、水稻悬浮细胞系培养的关键因素。根据以上研究基础,建立了一套感病品种沈农1033和抗病品种CBB_4的愈伤组织培养、悬浮细胞系培养的程序,对这一程序前人未有完全一致的报道。
     其次,我们在水稻抗、感白叶枯病菌近等位基因系悬浮细胞体系中,研究白叶枯病菌在水稻细胞悬浮液中的生长情况及中生菌素对PO基因、PAL基因、CHS基因诱导转录表达的影响,结果表明:
     在接种白叶枯病菌后,水稻感病品种悬浮细胞系中的白叶枯病菌的数量远多于抗病品种悬浮细胞系,这说明水稻抗病品种悬浮细胞系与感病品种悬浮细胞系相比有明显的抑制细菌的生长和繁殖的作用,即水稻对白叶枯病抗性与抑菌作用有关。
     在接种白叶枯病菌后,水稻抗病品种PO基因、PAL基因、CHS基因这3个重要的植物防卫反应基因诱导转录表达比感病品种早,而且表达的量大,这说明PO基因、PAL基因、CHS基因诱导转录表达量与水稻品种的抗病性呈正
    
     中国农科院研究生院 沏*:学位论义
    相关,水稻PO基因、PAL基因、CHS基因诱导转录表达量也许能作为水稻白
    叶枯病抗性鉴定的指标。
     无论白叶枯病菌存在与否,中生菌素对感病品种沈农1033和抗病品种CBB。
    的PO基因、PAL基因的转录表达均有较强的诱导作用;但中生菌素对抗病品
    种CBB。的CHS基因的转录表达的诱导作用比对感病品种沈农1033诱导作用
    弱。这说明中生菌素即能抑制水稻白叶枯病菌的生长,又能显著地诱导PO基
    因、PA L基因、**8基因这3个重要的植物防卫反应基因的转录表达,而且对
    抗、感白叶枯病菌水稻品种有相近的诱导效果。PO基因、PAL基因、CHS基
    因参与的植物防卫反应中的木质素前体物质、酚类物质、自由基、活性氧、植
    保素等物质的合成,这些物质都具有抗菌活性。因此,中生菌素诱导和增强了
    植物的防卫反应,增强了植物的抗病性。
     通过对中生菌素处理的水稻悬浮细胞体系中植物防卫反应基因转录表达规
    律的研究,不仅为中生菌素的作用机制的阐明奠定了基础,同时也为建立新型
    农用抗生素杀菌剂筛选模型,为我国丰富的微生物资源的开发利用提供新的技
    术手段;也为中生菌素适时、适量及适当的田间应用技术提供理论指导。
Zhongshengmycin (a new, commercially available agricultural antibiotic from 1996) has been widely utilized for controlling plant diseases, particularly on bacterial diseases. However the mode of action of Zhongshengmycin do not completely be understood. The previous research had discovered that Zhongshengmycin was less to inhibit the growth and reproduction of Xanthomonas oryzae pv. oryzae (Xoo) than chemical pesticides, but Zhongshengmycin protected Xoo infection to rice better than chemical pesticides. In addition, the resistance of plant pathogens to Zhongshengmycin is not found up to now. In order to settle the query, temporal accumulation of several important defense gene transcripts in suspension-cultured cells of the near-isogenic lines for bacterial blight resistance of rice was detected.
    The results showed that genetic trait of rice and quantity of 2,4-D were the key elements to callus induction from mature rice seeds and suspension culture of rice cells. The procedure of callus induction from mature rice seeds and suspension culture of rice cells was set up.
    Kinetics of Xoo multiplication in rice suspension cells was studied. The quantity of Xoo multiplication was obviously less in the rice suspension cells of resistant rice cultivar CBB4 than in the rice suspension cells of susceptible rice cultivar Shennong 1033. The result indicated that inhibition of Xoo multiplication in the rice suspension cells was related to rice resistance to Xoo.
    The transcripts of PO, PAL and CHS genes, three defense genes encoding respectively peroxidase (PO), phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) in suspension-cultured cells of the near-isogenic lines for bacterial blight resistance of rice were discovered during interactions with Xoo. Northern blot analysis showed that the accumulation of PO, PAL and CHS gene transcripts in susceptible rice cultivar Shennong 1033 was generally delayed, attenuated and lasted for a shorter period of time as compared with the accumulation of PO, PAL and CHS gene transcripts in resistant rice cultivar CBB4. The accumulation of PO, PAL and CHS gene transcripts in suspension-cultured cells of the near-isogenic lines for bacterial blight resistance of rice was positively related to rice resistance to bacterial blight disease, and was analyzed as the indicator of rice resistance to bacterial blight disease.
    The transcripts of PO, PAL and CHS genes in suspension-cultured cells of the near-isogenic lines for bacterial blight resistance of rice were detected during interactions with Zhongshengmycin. Northern blot analysis suggested that the
    
    
    
    ABSTRACT
    bactericide Zhongshengmycin could greatly strengthen PO, PAL gene transcripts in the rice suspension cells of susceptible rice cultivar Shennong 1033 and resistant rice cultivar €884 regardless of the presence or absence of Xoo. During interactions with Zhongshengmycin, the accumulation of PO and PAL gene transcripts in the rice suspension cells of susceptible rice cultivar Shennong 1033 and resistant rice cultivar €884 was markedly a higher level than interactions between rice and Xoo. In addition, the bactericide Zhongshengmycin could greatly strengthen CHS gene transcripts in the rice suspension cells of susceptible rice cultivar Shennong 1033 regardless of the presence or absence of Xoo, while the transcripts of CHS gene in the rice suspension cells of resistant rice cultivar CBB4 accumulated moderately in response to Zhongshengmycin regardless of the presence or absence of Xoo. Interestingly, during interactions with Zhongshengmycin all these transcripts of PO, PAL and CHS genes in suspension-cultured cells of the near-isogenic lines for bacterial blight resistance of rice accumulated to a higher level than the interactions between rice and Xoo regardless of the presence or absence of Xoo.
    The findings of this study demonstrated that Zhongshengmycin could not only inhibit the growth and reproduction of Xoo, but also induce the accumulation of PO, PAL and CHS gene transcripts in suspension-cultured cells of th
引文
1.陈寊,高必达,罗宽(1995)<<水稻细菌性病害研究进展>>.北京:气象出版社,15-18.
    2.董海涛,吴玉良,程志强,何祖华,李德葆(1998)差异显示法克隆水稻抗白叶枯病相关蛋白激酶基因.浙江农业大学学报,24(5),548-552.
    3.范军,彭友良(1996)一种新的水稻植保素的诱导、纯化及特性研究.植物病理学报,26(3),217-221.
    4.郭红莲,陈捷,高增贵,崔澍,王桂清,邹庆道(2000)不同诱抗剂诱导玉米对灰斑病的抗性及其与PAL的关系.沈阳农业大学学报,31(5),465-467.
    5.蒋细良,谢德龄(1994)农用抗生素的作用机理.生物防治通报,10(2),76-81.
    6.蒋细良,谢德龄,倪楚芳,朱昌雄,宋培国(1997)中生菌素的抗生作用.植物病理学报,27(2),133-138.
    7.蒋细良,谢德龄,倪楚芳,朱昌雄,宋培国(1997)中生菌素的抗生作用.植物病理学报,27(2),133-138.
    8.蒋细良,孙东园,朱昌雄,李少杰,姬金红(2000)中生菌素对水稻白叶枯病防治机制的初步研究.<<全国生物防治暨第八届杀虫微生物学术研讨会论文摘要集>>.187-189.
    9.景涛,熊慧玉(1999)植物同工酶与抗病关系研究.亚热带植物通讯,28(1),72-75.
    10.孔凡明,许志刚(1998)水稻不育系抗白叶枯病与体内酶活性变化的关系.植物病理学报,25(3),217-223.
    11.林祖纶,林刚,粟燕(1991)应用柱前衍生化方法测定中生菌素(751)在蔬菜、土壤中残留量.生物防治通报,7(2),67-70.
    12.刘桂富,王润华(1996)水稻过氧化物酶活性变化值遗传效应的组合分析.华南农业大学学报,17(4),35-40.
    13.刘学瑞,肖启明(1997)植物源农药防治烟草花叶病机理初探.中国生物防治,13(3),128-131.
    14.欧阳叶新,李中奎,刘成运(2000)抗白叶枯病菌水稻体细胞无性变异系离体筛选后代的生理生化特性.植物病理学报,30(1),42-47.
    15.齐放军,高学文,王金生,何晨阳(2000)携带不同抗白叶枯病基因的水稻防卫基因pal和chs的转录特征.农业生物技术学报,8(4),337-340.
    16.萨姆布鲁克,J.,弗里奇,E.F,&曼尼阿蒂斯著,金冬雁&黎孟枫等译(1999)<<分子克隆实验指南>>.北京:科学出版社.
    
    
    17.沈其益,阎隆飞,李庆基,张元恩,腾晓月,李筠宜,王正芬,傅翠贞(1978)棉花感染枯萎病过氧化物酶同工酶的变化.植物学报,20(2),108-113.
    18.王金生(1999)<<分子植物病理学>>.北京:中国农业出版社.
    19.吴功振,陈素文(1981)对白叶枯病的抗性不同的水稻品种同工酶凝胶电泳的观察.植物学报,23(3),251-253.
    20.吴岳轩,曾富华,王荣臣(1996)杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统的初步研究.植物病理学报,26(2),127-131.
    21.夏正俊,顾本康,吴蔼民,傅正擎(1997)棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化.江苏农业学报,13(2),99-101.
    22.薛应龙,欧阳光察(1992)植物抗病的物质基础.<<植物生理与分子生物学>>.北京:科学出版社,417-430.
    23.杨海莲,孙晓璐,宋未,王云山(1999)植物促生细菌诱导水稻对白叶枯病抗性初步研究.植物病理学报,29(3),286-287.
    24.杨荣金,彭新湘,姜子德,郭振飞,李明启(2000)草酸诱导黄瓜抗炭疽病的机理研究.植物病理学报,30(2),153-157.
    25.尹庆良,刘世强(1994)水稻细胞悬浮系及其单细胞培养的研究.沈阳农业大学学报,25(4),366-372.
    26.赵羹梅,张鹏宴,蒋小满(1996)过氧化物酶活性与玉米自交系对丝黑穗病抗性的关系.植物病理学报,26(1),37-39.
    27.张桂芬,鲁传涛,申效诚,孔建,王克荣,王宏庆(1996)秧田期施用中生菌素对本田期白叶枯病发生的影响.植物保护,22(5),6-8.
    28.张桂芬,王克荣(1998)水稻白叶枯病防治技术研究.植物保护学报,25(4),295-299.
    29.张元恩(1992)非杀菌剂化合物防治瓜类病害.植物病理学报,22(3),240-243.
    30.张元恩,葛根林(1994)氟乐灵(Trifluralin)对棉花枯萎病的诱抗作用.植物病理学报,24(1),80-84.
    31.中生菌素田间试验报告,1992—1996.
    32.朱友林,吴健胜,王金生(1997)水稻白叶枯病菌诱导水稻悬浮细胞防卫基因表达的初步研究.植物病理学报,27(3),250
    33. Bell, J.N., Ryder, T.B., Wingate, V.P.M., Bailey. J.A., & Lamb, C.J. (1986) Differential accumulation of Plant defense gene transcripts in a compatible and incompatible plant-pathogen interaction. Mol. Cell. Biol., 6, 1615-1623.
    34. Boo, Y.C. & Jung, J. (1999) Water deficit-induced oxidative stresss and antioxidative
    
    defenses in rice plants. J. Plant Physiol., 155, 255-261.
    35. Brisson, L.F., Tenhaken, R. & Lamb, C.J. (1994) Function of oxidative cross-linking of cell wall structure proteins in plant disease resistance. J Plant Cell, 6(12) , 1703-1712.
    36. Cartwright, D., Langcake, P., Pryce, R.J. & Leworthy, D.P. (1977) Chemical activation of host defence mechanisms as a basis for crop protection. Nature, 267(9) , 511-513.
    37. Catedral, F. & Daly, J.M. (1976) Partial characterization of peroxidese isoenzymes from rust-affected wheat leaves. Phytochemistry, 15, 627-631.
    38. Chen, Z., Silva, H. & Klessing, D.F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by Salicylic acid. J Science, 262, 1883-1889.
    39. Chittoor, J.M., Leach, J.E., White, F.F. (1997) Differential induction of a Peroxidase gene family during infection of rice by Xanthomonas oryzaepv. Oryzae. MPMI, 10(7) , 861-871.
    40. Clark, T.A., Zeyen, R.J., Smith, A.G., Carver, T.L.W. & Vance, C.P. (1994) Phenylalanine ammonialyase mRNA accumulation enzyme activity and cytoplasmic responses in barley iaolines, differing at MI-a and MI-o loci, attacked by Erysiphe graminis f.sp. hordei. Physilo. Mol. Plant Pathology, 44, 171-185.
    41. Cohen, R., Cupprls, D.A., Brammall, R.A. & Lazarovits, G. (1992) Induction of resistance towards bacterial pathogens of tomato by exposure of the host to dinitroaniline herbicides. Phytopathology, 82(1) , 110-114.
    42. Collinge, D.B. & Slusarenko, A.J. (1987) Plant gene expression in response to pathogens. Plant Molecular Biology, 9, 389-410.
    43. Cui. Y.. Magill. J.. Frederiksen. R. & Magill. C. (1996) Chalcone synthase and phenylalanine ammonia-lyase mRNA levels followong exposure of sorghum seedlings to three fungal pathogens. Physiol. Mol. Plant Pathology, 49, 187-199.
    44. Dangl, J. & Holub, E. (1997) La dolce vita: Amolecular feast in plant-pathogen interactions. Cell, 91(1) , 17-24.
    45. Devadath, S. (1989) Chemical control of bacterial blight of rice. In : Bacterial Blight of Rice, Proceedings of the International Workshop on Bacterial Blight of Rice.14-18 March 1988,International Rice Reseach Institute , Manila, Philippines, pp. 89-98.
    46. Diswas, S & Purkayastha, R.P. (1988) Induction of resistance in rice plants sheath rot disease. Indian Phytopath, 41(1) , 51-56.
    47. Dixon, R.A. & Paiva N.L. (1995) Stress-induced phenylpropanoid matabolism. Plant Cell, 7, 1085-1097.
    
    
    48. Ebel, J. (1986) Phytoalexin synthesis: the biochemical analysis of the induction processs. Ann. Rev. Phytopathol., 24, 235-264.
    49. Elstner, E.F. (1982) Oxygen activation and oxygen toxicity. Anuu. Rev. Plant Physiol., 33, 73-96.
    50. Enyedi, A.J., Yalpani, N., silverman, P. & Raskin, I. (1992) Signal molecules in systemic plant resistence to pathogens and pests. Cell, 70, 879-886.
    51. Espelie, K.E., Franceschi, V.R. & Kolattukudy, P.E. (1986) Immunocychemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol., 81, 487-492.
    52. Esther, N.M.,Guo, Z.J. & Li D.B. (2000) Improved regeneration system and transformation of Xiu shui rice Cultivar. J. of Zhejiang University(Agric. & Life Sci.), 26(3) , 247-253.
    53. Farkas, G. I. & Stahmann, M.A. (1966) On the nature in peroxidase Isoenzymes in bean leaves infected by southern bean mosaic virus. Phytopathlogy, 56, 669-677.
    54. Fry, S.C. (1986) Gross-linking of matrix polymers in the growing cell walls of precursors in vitro. Annu.Rev.Plant Physiol., 37, 165-186.
    55. Gabriel. D.W. & Rolfe. B.G. (1990) Working moldels of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol., 28, 365-391.
    56. Graham, M.Y. & Graham, T.L. (1991) Rapid accumulation of anionic peroxidese and phenolic polymers in soybean cotyledon tissues following treatment with Phytophthora megaspermaf. sp. glycinea wall glucan. Plant Physiol., 97, 1445-1455.
    57. Grisebach, H. (1981) Lignins. in: The Biochemistry of Plant. Conn, E.E. ed. Academic Press, New York, pp. 457-478.
    58. Gross, G.G. (1980) The biochemistry of lignification. Adv. Bot. Res., 8, 25-63.
    59. Guo, A., Reimers, P.J. & Leach, J.E. (1993) Effect of light on incompatible interactions between Xanthomonas oryzaepv. Oryzae and rice. Physiol. Mol. Plant Pathol., 42, 413-425.
    60. Hadwiger.L.A.& Schwochau.M.E.(1969) Host resistance responses-an induction hypothesis. Phytopathol., 59, 223-227
    61. Hahlbrock, K. & Grisebach, H. (1979) Enzymic controls in the biosynthesis or lignin and flavonoids. Ann Rev. Plant Physiol., 30, 105-130.
    62. Hahlbrock, K. & Scheel, D. (1989) Physiology and molecular biology of phenylpropanoid metabolism.,Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 347-369.
    63. Hammerschmidt, R., Nuckles, E. & Kuc, J. (1982) Association of enhanced peroxidese
    
    activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol., 20, 73-82.
    64. Hinnman, R.L. & Lang, J. (1965) Peroxidase catalyzed oxidation of indole-3-acetic acid. Biochemistry, 4, 144-158.
    65. Horino, O. & Kaku, H. (1989) Defense mechanisms of rice against bacterial blight caused by Xanthomonas oryzae pv. Oryzae, In Bacterial Blight in Rice, Internat. Rice Res. Institute, Los Banos, Philippines, pp. 135-152.
    66. Inui, T., Yamaguchi, Y.&Hirano, S. (1996) Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinases and L-phenyialanine ammonia-lyase induction in rice suspension culture. Biosci. Biotech. Biochem., 61(6) , 957-978.
    67. Inui, T., Yamaguchi, Y, Ishigami, Y, Kawaguchi, S., Yamada, T., Ihara, H. & Hirano, S. (1996) Three extracellular chitinases in suspension-cultured rice cells elicited by N-acetylchitooligosaccharides. Biosci. Biotech. Biochem., 60(12) , 1956-1961.
    68. Lamb, C.J., Lawton, M.A., Dron, M. & Dixon, R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 56, 215-224.
    69. Leach, J.E., Young, S.A., Chittoor, J.M., Zhu, W. & White, F.F. (1996) Induction of defense responses in rice, in: Molecular Aspects of Pathogenicity and Resistance: Requirement for Sigal Transduction. Mills, D., Kunoh, H., Keen, N.T. & Mayama, S. ed. APS Press, St. Paul, pp.115-128.
    70. Manandhar, H.K., Mathur, S.B., Smedegaard-Petersen, V. & Thcrdal-Christensen, H. (1999) Accumulation of transcripts for pathogensis-related proteins and peroxidase in rice plants triggered by Pyricularia oryzae, Bipolaris sorokiniana and u. v. light. Physiol. Mol. Plant Pahology, 55, 289-295.
    71. Mazzola, M., Leach, J.E., Nelson, R., & White, F.F. (1994) Analysis of the interaction between Xanthomonas oryzae pv. Oryzae and the rice cultivars IR24 and 1RBB21. Phytopathology, 84(4) , 392-397.
    72. Mew, T.W. (1987) Current status and futuree prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol, 25, 359-382.
    73. Mew, T.W, Alvarez, A.M., Leach, J.E. &Swings, J. (1993) Focus on bacterial blight of rice. Plant Dis., 77(1) , 5-12.
    74. Nicholson, R.L. & Hammerschmidt, R. (1992) Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathology, 30, 369-389.
    
    
    75. Rajappan, K. & Vidhyasekaran, P. (1995) Elicitor induction of phenolic compound in suspension cultured rice cells inoculated with Xanthomonas oryzae pv.Oryzae. Indian Phytopath,48(2) ,119-122.
    76. Rasmussen, J.B., Hammerschmidt, R. & Zook, M.N. (1991) Systemic induction of Salicylic acid accumulation in cucumber after inoculation with pseudomonas syringae pv. Syringae. Plant Physiol., 97, 1342-1347.
    77. Reimers, P.J. & Leach, J.E. (1991) Race-specific resistance to Xanthomonas oryzae pv. Oryzae conferred by bacterial blight resistance gene Xa-10 in rice Oryza saliva involves accumulation of a lignin-like substance in host tissues. Physiol. Mol. Plant Patholo., 38, 39-55.
    78. Reimers, P.J., Guo, A. & Leach, J.E. (1992) Increased activity of a cationic peroxidese associated with an incompatible interaction between Xanthomonas oryzae pv. Oryzae and rice (Oryza saliva). Plant Physiol., 99(3) , 1044-1050.
    79. Reimmann,C., Ringli, C. & Doulder, R. (1992) Complementary DNA cloning and sequence analysis of a pathogen-induced putative peroxidese from rice.Plant Physiol..100, 1611-1612.
    80. Reuveni, R., Shimoni, M., Karchi, Z. & Kuc, J (1992) Peroxidase activity as a biochemical marker for resestance of muskmelon(Cucumis meld) to Pseudoperonospora cubensis. Phytopathology, 82(7) , 749-753.
    81. Richard.A.D.(1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol, 41, 339-367.
    82. Ride, J.P. (1983) Cell walls and other structural barriers in defense, In Biochemical Plant Pathology, Callow, J.A. ed., Wiley-Interscience, New York pp. 215-236.
    83. Rhodes, M.J.C. (1994) Physiological roles for secondary metaboloties in plants: some progresss, many outstanding problems. Plant Molecular Biology, 24, 1-20.
    84. Ryals, J.A., Neuenschwander, U.H., Will its, M.G., Molina, A., Steiner, H. & Hunt, M.D. (1996) Systemic acquired resistance. Plant Cell, 8, 1809-1819.
    85. Seevers, P.M., Daly, J.M. & Catedral, F.F. (1971) The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiol., 48, 353-360.
    86. Shimizu, T., Akada, S., Senda, M., Ishikawa, R., Harada, T., Niizeki, M. & Dube, S.K. (1999) Enhanced expression and differential inducibility of soybean chalcone synthase genes by supplemental UV-B in darkOgrown seedlings. Plant Molecular Biology, 39, 785-795.
    
    
    87. Siegel, B.Z. (1993) Plant peroxidase-an organismic perspective. Plant Growth Regulation, 12,303-312.
    88. Stahmann, M.A. & Demorest, D.M. (1973) Changes in enzymes of host and pathogen with special reference to peroxidase interaction.In: Fungal Pathogenicity and the Plant's Response, Byrde, R.J.W. & Cutting, C.V. ed., Academic Press, London, New York, pp. 405-422.
    89. Sutherland, M.W. (1991) The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Patholo., 39, 79-93.
    90. Toriyama, K. & Hinata, K. (1985) Cell suspension and protoplast in rice. Plant Science, 41, 179-183.
    91. Vance, C.P., Kirk, T.K. & Sherwood, R.T. (1980) Lignifigation as a mechanism of disease resistance. Ann. Rev. Phytopathol.,18, 259-288.
    92. Venere, R.J (1980) Role of peroxidese in cotton resistant to bacterial blight. Plant Sci. Lett., 20, 47-56.
    93. Wang, G.L. & Leung, H. (1999) Molecular biology of Host-pathogen interactions in rice diseases. In: Molecular Biology of Rice, Shimamoto, K. ed. Springer-Verlag Tokyo, pp. 201-232.
    94. Welinder, K.G. (1985) Plant Peroxidases Their primary, secondary and tertiary structures, and relation to cytochrome peroxidese. Eur. J. Biochem., 151,497-504.
    95. Xing, T., Higgins, V.J. & Blumwald, E. (1997) Race-specific elicitors of Cladosporium fulvum promote translotion of cytosolic components of NADPH oxidese to the plasma membrane of tomato cells. J Plant Cell, 9, 249-259.
    96. Young,S.A..Guo.A..Guikema.J.A..White.F.F..Leach.J.E.(1995) Rice cationic peroxidese accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. Oryzae. Plant Physiol., 107(4) , 1333-1341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700