铅在茶树体内累积分布及其对茶树生育、生理影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以水培和盆栽的浙农117、浙农113和龙井43为材料,对其进行了不同铅浓度的叶面和根部处理,研究了茶树叶片和根系吸收铅之后,铅在茶树体内的累积分布及其在茶园土壤、茶树中的主要存在形态,铅对茶树生育、生理的影响,茶树体内保护酶类活性的变化等,结果表明:
     1.铅在茶树体内具有可移动性,叶面吸收的铅可以向地下部转移,根系吸收的铅也可以向地上部运送,并分布于茶树的各个器官中。无论是通过叶面吸收,还是通过根系吸收,铅在茶树体内都表现出相同的累积分布规律:铅被吸收后,在茶树的吸收根和老茎累积量高;地下部的铅含量高于地上部;地下部铅含量依次为,吸收根>细根>主根;地上部铅含量的大小依次为,老茎>嫩叶>老叶>嫩茎>芽。
     2.茶树体内铅主要以草酸铅和磷酸氢铅、磷酸铅等难溶于水的磷酸盐的形态存在,其次为果胶酸铅、与蛋白质呈结合态或吸附态的铅,依次为水溶性有机酸铅和磷酸铅、硝酸铅和氯化铅为主的无机物及氨基酸铅。其中,在茶树的根、茎、叶中两种主要形态的铅含量分别为全铅量的97.34%、98.35%和99.65%。根细胞中的铅,主要分布在细胞壁和细胞核中,茎细胞中的主要分布在细胞核中,而叶片细胞中的主要分布在细胞质和细胞壁中。
     在未加入铅处理时,铅的存在形态及对应的铅含量大小顺序为硫化物残渣态>碳酸盐结合态>吸附态>有机结合态>交换态>水溶性铅,加入外源铅后,变化顺序为硫化物残渣态>交换态>碳酸盐结合态>有机结合态>吸附态>水溶性铅,硫化物残渣态和交换态的铅含量相对较高。
     3.受铅影响,不同茶树品种生育状态有不同的表现。在试验处理浓度范围内,铅能促进浙农113和龙井43两个品种的生长,具体表现为:新梢生长量增大、百芽重(一芽二叶)和节间长度增加、萌芽期提早。浙农117茶树生长受到抑制,具体表现为:在160mg/kg铅处理浓度下,初期对生长有促进作用,之后作用消失、百芽重(一芽二叶)和节间长度降低、萌芽期推迟。
     4.净光合速率测定表明,浙农117在铅的浓度为160mg/kg时,净光合速率已受影响;在试验浓度范围内,铅对浙农113品种的净光合速率影响不大,龙井43品种在160mg/kg浓度条件下对光合作用起到促进作用,430mg/kg铅的处理浓度下
    
    对茶树光合作用产生抑制。
     三个品种的细胞膜透性变化为,浙农113和龙井43茶树品种细胞膜透性随着错
    浓度增加有升高现象,但差异未达显著水平;浙农117在铅浓度为16Omg/kg时,细
    胞膜透性增加不显著,而在4309/kg铅浓度处理下,细胞膜透性发生极显著变化
    (P<0.01),细胞膜透性比对照增加了174.57%。
     铅处理后茶树体内丙二醛的含量的变化基本与细胞膜透性变化一致,而龙井43
    茶树品种在两种不同铅处理浓度下,先是显著升高,接着是显著下降。
     5.在不同铅浓度的处理下,三个茶树品种体内保护性酶类的活性发生了变化。
    过氧化物酶活性(POD)增加,浙农117茶树的各处理间的差异达到极显著水平(p
    <0.01);浙农113茶树的POD活性在铅处理浓度为430mg/kg时,该酶活性显著升
    高(p<0.05);龙井43的POD活性在160mg/kg铅处理浓度下极显著(p<0.01)升
    高,430mg/kg铅浓度处理时,POD活性又极显著(p<0.01)下降。
     三个茶树品种的超氧歧化酶活性均随着铅浓度的增加而升高,浙农113和龙井
    43的酶活性在铅处理浓度430mg/kg时,酶活性提高达到极显著水平(p<0.01);
    浙农117茶树品种的各种铅处理浓度间的超氧歧化酶活性均达到极显著提高(p<
    0 .01)。
     受铅影响,过氧化氢酶活性(CAT)也有升高的表现。三个茶树品种的以T活性
    在铅处理浓度为160mg/kg下,均显著升高(p<0.05),当铅处理浓度为43Omg/kg时,
    浙农117的CAT活性显著下降(p<。.05);浙农1 13和龙井43的CAT活性升高,但均
    未达到显著水平。
     因而,受铅污染的茶园土壤,在之后的一个较长时期内会对茶树生长产生影响。
This study examined the characteristics of Pb uptake, accumulation and distribution by tea plant (Camellia sinensis L.) with solution culture and pot experiment. Pb contents were analyzed in samples of absorptive root, radicella root, main root, mature stem, young leaf, mature leaf, young stem and tea shoot were taken from three newly bred varieties, i. e. Zhenongll3 Zhenongll3, and Longjing43, grown in trophic solution and pot trial. After spraying Pb on leaves, adding Pb to the solution and pot soil, a series of physiological index, Pb conformation in vivo, and shoot growth rate, and protective enzyme activities were also investigated. The results showed as follows:
    1. Pb can be taken up not only by leaves of tea plant and transported to the roots , but also by roots and transported to the upper parts . Pb uptaken can be distributed in all parts of tea plant. The behavior of accumulation and distribution of Pb in tea plant showed similar rules in this two different uptake ways. The concentration of Pb in underground parts was higher than that of aerial parts. The highest concentration was in absorptive roots and mature stems. Pb concentration in underground parts was sequenced as: absorptive roots > radicella roots > main roots. In upper parts, the sequence showed as: mature stems > young leaves > mature leaves > young stems) bud.
    2. Lead in tea plant is mainly in the form of oxalic acid lead .phosphoric acid hydrogen lead (PbHPO4) and phosphoric acid lead( Pb3(P04 )2) , and some acid hydrogen lead and so on . The contents of main Pb forms in the roots ,stems and leaves are 97. 34% , 98. 35% and 99.65% respectively of the total lead that presents in tea plant . In root, Pb is mainly distributed in cell wall and the cell nucleus . In stem, it is distributed in cell nucleus, and which in cytoplasm and in leaves it is located in cytoplasm and cell wall.
    In non Pb - treated soil, the sequence of Pb forms in soil is showed as : sulphide united lead >carbonate united lead>adsorbed lead >organic and residual united lead >exchangeable lead > water dissolved lead .After lead is added to soil, the Pb forms are sequenced as : sulphide united lead >exchangeable lead > carbonate united lead > organic and residual united lead >adsorbed lead> water dissolved lead. Sulphide united lead and exchangeable lead contents are higher as compared with other forms.
    
    
    
    3. The growth of tea plant under the effect of Pb was significantly different among the three varieties. In the concentrations of the experiment, Pb could hasten the growth of Zhenong113 and Longjing43, while the growth of Zhenongll7 was restrained when the concentration was 430rag/kg.
    4. The net photosynthetic rate also showed different results among the three varieties in the same concentration of Pb (160mg/kg). This Pb concentration restrained the growth of Zhenongll7 greatly and ZhenongllS slightly, while enhanced that of Longjing43. The Pb concentration of 430mg/kg decreased the growth of all the three varieties.
    The permeability of cell membrane changed after the Pb uptake by tea plant. The permeability of cell membrane in leaves increased lightly with Pb concentration increasing in Zhenongll3 and Longjing43. The permeability increased abruptly in Zhenongll7 when the Pb concentration is 430mg/kg (P < 0.01) and is 174.57% higher than control.
    The trend of MDA concentration in leaves was similar to the permeability of cell membrane except that in Longjing43.
    5. The protective enzyme activities in tea plant changed under the Pb treatment. The activity of POD increased in these three varieties .The POD activity in Zhenongll7 increased significantly (p<0. 01) . The POD activity in Zhenongll3 increased significantly (p<0. 05) under the concentration of 430mg/kg . The POD activity in Longjing43 increased significantly (p<0. 01) under the concentration of 160mg/kg , While it dropped significantly (p <0.01) under the concentration of 430mg/kg.
    In Pb concentration of 430mg/kg , the activities of SOD in ZhenongllS and Longjing43 increased significantly
引文
1.彭珊珊,石燕.茶叶中的铅.广东微量元素科学.1998,5(6):32~33
    2.谢正苗.土壤环境中铅的化学.广东微量元素,1996,2(11):24~28
    3.潘文毅.乌龙茶初制加工对茶叶铅污染的研究报告.福建茶叶,2002,(3):9~10
    4.甘宗祁,王林云等.茶叶铅污染及控制措施研究.中国食品卫生杂志,2001,13(2):37~38
    5.张寿宝,包文权.汽车尾气中的铅对茶园污染的研究.江苏环境科技,2000,13(3):1~2
    6.吴永刚,姜志林 等.公路边茶园土壤与茶树中重金属的积累与分布.南京林业大学学报:自然科学版.2002,26(4):39~42
    7.石元值,马立峰等.汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响.茶叶.2001,27(4):21~24,34
    8. Arvik, J.H., R.L. Zimdahl. J. Environ. Qual, 1974,3(3):369~376
    9.顾淑华,旭军,朱忠精 等.红壤性水稻土铅环境容量研究.环境科学学报,1989,9(1):27~36.
    10. Davies B E. Heavy Metals in Soils. Alloway, B J ed. Glasgow and London:Blackie, 1990.
    11.段文锋.重视茶叶中的铅含量.上海计量测试,1996,(5):30
    12. Adriano, D.C.. Trace Element in the Terrestrial Environment, 1988, Springer-Verlay Inc.,New York, 219~244
    13.缪天成,王惠琪.环境背景值研究.中国环境科学,1990,10(4):255~262
    14.中华人民共和国农业行业标无公害食品 茶叶生产技术规.中国茶叶,2002,24(1):1~3
    15.中国环境监测总站.中国土壤元素背景值.中国环境科学出版社,1990.
    16.石元值,马立峰.韩文炎 等.浙江省茶园中铅元素含量现状研究茶叶科学 2003,23(2):163~166
    17.石元值.我国茶叶中铅含量研究及思考.中国茶叶,2001,23(4):18~19
    18.中国农科院茶叶研究所主编.中国茶树栽培学,上海科技出版社,1986年1月第一版.
    19.陆景冈著.土壤地质学.地质出版社发行,1997年第一版,北京.
    20.陈宗懋,吴询.关于茶叶中铅含量问题.中国茶叶,2000,22(5):3~5
    21.李继明,叶学春,张全智 等.农产品的肥料污染与对策.河南农业科学,2002,(9):29~30
    22 廖自基 编著.环境中微量重金属的污染危害与迁移转化.科学出版社1989年第二版.
    23.孟可,张学林.我国大城市环境污染影响因素分析.环境科学学报,1995,15(2):135~141
    24.王露兰.汽车废气中的铅危害.上海劳动保护技术,1991,(6):43,40
    
    
    25.Smith D R,Koeppe D E.生物圈中的铅:最近的趋势.Ambio,1995.34(1):20~22
    26.李湘洲.公路系统沿线作物铅累积状况的研究.中南林学院学报,2002,22(1):40~42
    27.李湘洲,祝浩.长株潭公路系统土壤铅累积分布格局及其植物对铅累积状况的研究.环境科学,2003,(9):48~52
    28.江用文,陈宗懋等.我国茶叶的安全质量现状与建议.中国农业科技导报,2002,4(5):24~27
    29.陈怀满等著.土壤-植物系统中的重金属污染,科学出版社,1996年9月第1版.
    30.刘秀梅.聂俊华.王庆仁.6种植物对Pb的吸收与耐性研究.植物生态学报,2002,26(5):533~537
    31.杜应琼,何江华,陈俊坚 等.铅、镉和铬在叶类蔬菜中的累积及对其生长的影响.园艺学报,2003,30(1):51~55
    32.汤茶琴,曾晓维 等.茶叶中的铅及其安全性检测.茶叶,2003,29(1):20~22
    33.窦争霞,胡荣梅.土壤中的铅对三种蔬菜的影响.环境科学学报,1987,7(3):360~370
    34.林舜华,黄银晓,姚依群 等.铅在植物-土壤系统中的分配规律及其生态效应.植物生态学与地植物丛刊,1985,9(2):85~91
    35.杨树华,曲仲湘,王焕校.铅在水稻中的迁移累积及其对水稻生长发育的影响.生态学报,1986,6(4):312~322
    36.江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白.植物生理与分子生物学报,2002,28(3):169~174
    37.冯绍元,邵洪波,黄冠华.重金属在小麦作物体中残留特征的田间试验研究.农业工程学报,2002,18(4):113~115
    38.任继凯,陈清朗,陈灵芝 等.土壤中镉铅锌及其相互作用对作物的影响.植物生态学与地植物丛刊,1982,6(4):320~328
    39.徐应明,李军幸,戴晓华等.钝化作用对大豆污染土壤铅行为影响的研究.农业环境科学学报,2003,22(6):685~688
    40.匡少平,张书圣.作物对土壤中环境激素铅的吸收效应及污染防治.农业环境保护,2002,21(6):481~484
    41.刘建国,李坤权,张祖建 等.水稻不同品种对铅吸收、分配的差异及机理应用生态学报,2004,15(2):291~294
    42.冯绍元,齐志明,黄冠华 等.重金属在夏玉米作物体中残留特征的田间试验研究.灌溉排水学报,22(6):9~13
    43.龙健,黄昌勇,滕应 等.天台铅锌矿区香根草等几种草本植物的重金属耐性应用与环境生物学报,2003,9(3):226~229
    44.徐和宝,王嘉熙,谢明云.铅对几种作物生长的影响极其在植物体内的累积.植物生态学与地植物学丛刊,1983,7(4):273~278
    45.沙济琴,郑达贤.黄赕品种茶树不同器官中矿质元素的分布.茶叶科
    
    学,1996,16(2):141~146
    46.石元值,马立峰,韩文炎 等.铅在茶树中的吸收累积特性.中国农业科学,2003,36(11):1272~1278
    47.卢国伟.土壤与茶叶中铅含量测定.预防医学文献信息,2002,8(2):221~221
    48.许嘉林,鲍子平,杨居荣 等.农作物体内铅、镉、铜的化学形态研究.应用生态学报,1991,2(2):244~248
    49.杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探.中国环境科学,1999,19(6):500~504
    50.刘军,李先恩,王涛 等.药用植物中铅的形态和分布研究.农业环境保护,2002,21(2):143~145
    51.杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态.中国环境科学,1993,13(4):263~268
    52.陈英旭,林琦,陆芳 等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467~472
    53. Zimdahl, R.L. 68th Annu. Meeting of the Air Pollution Control Assciation, Boston, Mass.,1975,2~9
    54.杨卓亚,张福锁.土壤-植物体系中的铅.土壤学进展,1993,21(1):1~10
    55. Matos, A.T.,C. Uhlig, E. Hansen, et al. Ecophysiological responses of Empertrum nigrum to heavy metal pollution. Enviromental Pollution, 2001, 112:121~129
    56.黄会一等.木本植物对大气重金属污染物铅镉吸收累积作用的初步研究.林业科学,1982,18(1):93~97
    57.周鸿,刘成运.玉米幼根对铅的吸收途径及有关的两种酶活性变化初探.环境科学学报,1986,6(1):66~70
    58. Kloke, A., Riebartsoh. Naturewissenschaften, 1964,51(3):367~368
    59. Vassil A D, Kapulniky, Raskinl, et al. The role of EDTA in lead transport and accumulation by indian Mustard. Plant Physiol, 1998,117:447~453.
    60.王宏康.土壤中金属污染的研究进展.环境化学,1991,10(5):35~42
    61.李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果.土壤与环境,2002,11(4):348~351
    62.林琦,陈怀满,郑春荣 等.根际环境中铅的形态转化.应用生态学报,2002,13(9):1145~1149
    63.刘霞,刘树庆,王胜爱河北主要土壤中C d和P b的形态分布及其影响因素.土壤学报,2003,40(3):393~400
    64.王林云.土壤对茶叶含铅量影响研究.中国公共卫生管理.2001,17(4).318~319
    65.张亚丽,沈其新,姜洋.有机肥料对镉污染土壤的改良效应.土壤学报,2001,38(2):212~218
    66.王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响.农业环境科学学报,2003,22(5):541~545
    
    
    67.陈晓婷,王果.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响.土壤与环境,2002,11(1):17~21
    68.陈晓婷,王果.钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响.福建农林大学学报:自然科学版,2002,31(1):109~112
    69. Jones, L.H.. Plant and Soil, 1973, 38(4): 605~610
    70.顾淑华,罗宗艳.红壤性水稻土添加铅、磷、石灰、紫云英对水稻吸收铅的综合效应初探土壤环境容量研究(夏增禄主编),气象出版社,1986,109~116.
    71.席玉英,郭栋生,宋玉仙等.钙、锌对玉米幼苗吸收镉、铅的影响.山西大学学报(自然科学版),1994,17(1):101~103
    72.李玉红,宗良纲,黄耀 等.不同有机酸对水稻吸收铅的影响.南京农业大学学报,2002,25(3):45~48
    73.匡少平.玉米对铅的吸收及阴离子影响效应.青岛化工学院学报,2003,23(3):222~224
    74. Kabata-pendias, A., Pendias, H.. Trace Elements in Soil and Plant, 1992, 2ed, CRC Press Inc, Florida.
    75.李素英,王焕校,吴玉树.Pb、Cd、Zn单元素及其不同组合污染对烟草品质的影响.中国环境科学,1990,10(6):457~460
    76. Bazzaz. F.A.. Differing sensitiveity of corn and soybean photosynthesis and transpiration to lead contamination. J. Environ. Qual, 1974, 3(2):156~158
    77. Merry, R.H.. Plant and Soil, 1986,9(1):115~128
    78.钟蓉,童启庆,庄晚芳.茶树花粉固体培养法监测环境污染物的初步研究.农业环境保护,1993,12(6):263~266,280
    79.刘登义.谢建春,杨世勇等.铜尾矿对小麦生长发育和生理功能的影响.应用生态学报,2001,12:126~128
    80. Verkelij, J.A. C& H. Schat. Mechanism of metal tolerance in high plant: evolutionary aspects. Bcca Raton, Florida: CRC Press Inc. 1990:179~193
    81. Kumar R.L., Malik Y.M., LI S.L. Broown et al. Phytoremediation of soil metal. Current Opinions in Biotechnology, 1997,8:279~284
    82.秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响.生态学报,1994(1):46~49
    83.任安芝,高玉葆 等.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报,2000,6(2):112~116
    84.谢正苗,黄昌勇.铅锌砷复合污染对水稻生长的影响.生态学报,1994,14(2):215~217
    85.唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响.沈阳农业大学学报,2001~2002,32(1):26~28
    86.庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响.环境科学,2001,22(5):108~111
    
    
    87.陈宏,徐秋曼,王葳 等.镉对小麦幼苗脂质过氧化和保护酶活性的影响.西北植物学报,2000,20(3):399~403
    88.李方远.铅对小麦幼苗某些生理特性的影响.河南科学,2001,19(2)209~211
    89.庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响.环境科学,2001,22(5):108~111
    90. Kakuzo kitagishi, et al. Heavy Metal Pollution in Soil of Japan, Japan Scientific Societies Press, Tokyo, 1981
    91.周毅,李应学,戴碧琼等.土壤中的铅对作物的影响.农业环境保护,1986,5(2):9~12
    92.刘登义.铜尾矿对小麦生长发育和生理功能的影响.应用生态学报,2001,12(1):121~126.
    93.周青,黄晓华,施国新等.镉对5种常绿树木若干生理生化特性的影响.环境科学研究,2001,14(3):9~11.
    94.张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社,1993:43
    95.王东红,庞欣,冯雍等.铅胁迫下La(N01)1对油菜抗氧化酶的影响。环境化学,2002,21(4):324~328
    96.张福锁主编.环境胁迫与植物营养.北京:北京农业大学出版社,1993.79~91
    97 刘霞,刘树庆,王胜爱.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系.河北农业大学学报,2002,25(1):33~60
    98 朱广廉等编.植物生理学实验.北京,北京大学出版社,1990.
    99.沈振国,刘友良.重金属超积累植物研究进展.植物生理学通讯,1998,34(2):133-139
    100.刘秀梅,夏俊华,王庆仁.Pb对农作物的生理生态效应.农业环境保护,2002,21(3):201~203
    101.赵春燕,孙军德,宁伟等.重金属对土壤微生物酶活性的影响.土壤通报,2001,32(2):93~94
    102.谢建治,刘树庆,刘玉柱 等.保定市郊土壤重金属污染对蔬菜营养品质的影响.农业环境保护,2002,21(4):325~327
    103. Nishizooo H, Ichikawa H, suziki S, et al. Plant and Soil,1987,101:15
    104.许嘉琳,鲍子平,杨居荣 等.应用生态学报,1991,2(3):244
    105.吴伯千,潘根生.茶树对水分胁迫的生理生化效应.浙江农业大学学报,1995,21(5):451~456
    106.龚志华,黄意欢,罗军武等.重修剪对衰老茶树保护酶影响的研究.茶叶科学,2002,22(2):152~155
    107. Zimdahl, R.L., Koeppe, D.E.. Uptake by plant lead in the environment, National Science Foundation, Washington, D.C. 1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700