下一代Internet拥塞控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet的飞速发展,用户数量的急剧增加,新的网络应用不断涌现,虽然网络带宽以摩尔定理的速率增长,但仍无法满足人们对带宽资源的需求。拥塞控制问题在新的网络运营环境下继续成为研究热点。同时,针对层出不穷的不良行为甚至恶意行为流造成的网络拥塞,TCP拥塞控制机制显得力不从心,迫切需要研究新的拥塞控制理论与方法。拥塞控制的目标就是高效、公平地利用网络资源,提高网络的综合性能和服务质量。所以有效地解决拥塞问题是改善网络系统性能、提高网络通讯服务质量的主要手段;并且网络拥塞控制也是当前计算机网络和控制理论交叉领域研究的一个热点课题,不仅具有重要的理论研究背景和意义,同时具有广泛的应用价值。
     本文主要工作如下:
     1、在TCP拥塞控制理论上采用流体模型,建立了新的Reno拥塞控制算法延迟微分方程的动态模型,并对该Reno算法模型控制器的局部鲁棒性进行了分析,结果发现Reno协议的一个自身鲁棒性缺陷:在网络延迟猛增或者是链路带宽很大时Reno将变得不稳定。这使得Reno不适合下一代Internet工作环境,然后通过基于包模型的网络仿真实验平台验证了理论推导结果。
     2、基于TCP源端算法在稳定状态下的循环模型,详细分析了Vegas在公平性能方面的不足,设计了F-Vegas(Fairness-Vegas)算法。所设计的算法可以有效的解决Vegas连接在网络路由改变造成的吞吐量持续下降问题,同时有效的改善Vegas与Reno之间竞争的公平性,通过仿真验证了F-Vegas的高效性和公平性。
     3、针对Vegas在非对称链路上出现反向通路拥塞导致的TCP连接吞吐量劣化问题,提出了改进算法E-Vegas。E-Vegas利用新的时延测量方法来估计前向通路的可用带宽,有效的提高了传统Vegas连接的吞吐量,同时也有效降低了算法执行的复杂度。
     4、从协议工作性能的角度对TFRC协议进行了分析,得出了TFRC不适合MANET网络环境的结论。针对此问题提出了Vegas Virtual TFRC协议。与TFRC协议不同,Vegas Virtual TFRC采用Vegas隐式检测策略判断拥塞,并通过虚丢包指示(VLPN)报告拥塞。这两种技术很好的克服了TFRC自身的设计缺陷,很大程度上屏蔽了非拥塞丢包对连接吞吐率的影响,改善了TFRC在MANET网络中的数据传输性能。
With the rapid development of Internet size and the explosive increase of the number of users, the new various network applications appear almost every day. Although the network bandwidth increases under Moore rule, it never meets the bandwidth resources requirement of people. Congestion control problem in the new networks environment continues to be the hotspot in the researcher circles. At the same time, more and more users and various applications lead to that traffic increases doubly in the Internet, which makes network congestion frequent. Moreover multiform bad even malice flux behaviors make it more serious. It is difficult for TCP congestion control mechanism to meet the network requirement. So it is imperative to research new congestion control theory and method. The goal of congestion control is to make full use of the network resources effectively and fairly, and to improve the network integrated performance and quality of service. So, the network congestion control is the main way to improve the network performance and reform the quality of service. And the research about network congestion control problem has also been a current hot subject in both computer network and control theory, which makes great sense in theory as well as a wide range of practical application.
     The main research works and results are listed as follows:
     1、To the problem of analytic model of the TCP congestion control protocol, using the fluid-flow approximation which we simulate the dynamic behavior of the Reno congestion controller. By means of the theory of function differential equation, we analyze the local Robustness of this model and derive a sufficient Robustness condition. The result indicates that Reno algorithm in the Internet today becomes unstable when delay increases, or when link capacity increases. The instability of Reno makes it unsuitable for high-speed large capacity of Next Generation Internet (NGI), which is inherent. The simulation results coincide with the theoretical results, which demonstrated by the well-known ns-2 simulator.
     2、Based on the cyclical model for the steady state behavior of the source algorithm, the limits of Vegas are analysis in detail. A new adaptive mechanism for Vegas called the F-Vegas (Fairness-Vegas) algorithm was designed, which can solve the continuous decline in throughput by rerouting. Simulation show that the F-Vegas is able to obtain a fairer share of the network bandwidth when competing with other TCP flows such as Reno. The performance and fairness of the designed algorithm are verified using NS simulations.
     3、E-Vegas is presented to solve the unnecessary throughput deterioration of Vegas when congestion occurs in the backward path. E-Vegas estimates the available bandwidth of the forward path by a new forward path measurement. The E-Vegas can effectively improve the connection throughput and greatly reduces the complexity of the implementation of the algorithm.
     4、From the perspective of protocol design, the paper reach the conclusions that TFRC is unsuitable for the MANET environment. According to the problem of TFRC, an enhancement for TFRC called Vegas Virtual TFRC was present. Unlike TFRC, it estimates the congestion by implicit Vegas detection strategy and notifies the congestion by Virtual Loss Packet Notification (VLPN). The two techniques preferably overcome the defects of TFRC, shield the effect of non-congestion packet loss on the connection throughput to a large extent, and improve the performance of TFRC in the MANET.
引文
[1]A. Gurtov, S. Floyd,. Modeling Wireless Links for Transport Protocols[J], November 2003, ACM Computing and Communication Review,2004,34(2): 85-96.
    [2]周建新,邹玲,石冰心.无线网络TCP研究综述[J].计算机研究与发展,2004,41(1):53-59.
    [3]Niculescu D, Americ NL. Communication paradigms for sensor networks[J]. IEEE Communications Magazine,2005,43(3):116-122.
    [4]Gevros, P., Crowcroft, J., Kirstein, P., et al. Congestion control mechanisms and the best effort service model [J]. IEEE Network,2001,15(3):16-26.
    [5]Ee CT, Bajcsy R. Congestion control and fairness for many-to-one routing in sensor networks[A]. In:Stankovic JA, Arora A, Govindan R, eds. Proc. of the 2nd ACM Conf. on Embedded Networked Sensor Systems (SenSys)[C].2004. 148-161.
    [6]铁玲,诸鸿文,蒋玲鸽等.一种能处理无线链路拥塞的TCP/ARQ改进算法[J].高技术通讯,2002(8):17-21.
    [7]A Bakre, B Badrinath. I-TCP:Indirect TCP for Mobile Hosts[A]. In:Proc of the 15th Int'l Conf on Distributed Computing Systems[C]. Vancouver, CA:IEEE Computer Society,1995.
    [8]K Brown, S Singh. M-TCP:TCP for Mobile Cellular Networks[J]. ACM Computer Communication Review,1997,27(5):19-43.
    [9]K Ratnam, I Matta. WTCP:An efficient mechanism for improving TCP performance over wireless Iinks[A]. Proc of 3rd IEEE Symposium on Computer and Communications[C]. IEEE Computer Society,1998.
    [10]T Goff, J Moronski et al. Freeze-TCP:A True End-to-End TCP enhancement mechanism for mobile environments[A]. Proc of IEEE INFOCOM'00[C]. Tel-Aiv, Israel:IEEE Computer and Communications Societies,2000.
    [11]李云,陈前斌,隆克平.无线自组织网络中TCP稳定性的分析及改进[J].软件学报,2003,14(6):1178-1186.
    [12]Claudio Casetti, Mario Gerla, Saverio Mascolo, et al,. TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks[J]. Wireless Networks,2002:467-479.
    [13]C. P. Fu, Soung C. Liew. TCP Reno:TCP Enhancement for Transmission over Wireless Access Networks[J]. IEEE (JSAC) Journal of Selected Areas in communications,2006,21(2):216-228.
    [14]S.Cen, P.C.Cosman, G.M. Voelker. End-to-end differentiation of congestion and wireless losses[A]. Proc. Multimedia Computing and Networking (MMCN) conf 2002[C], San Jose, CA,2002,23-25.
    [15]H Balakrishnan, V Padmanabhan et al. A Comparison of Mechanisms for Improving TCP Performance over Wireless links[J]. IEEE/ACM Trans on Networking,1997,5(6):756-769.
    [16]Sarma Vangala, Miguel A. Labrador. The TCP SACK-Aware Snoop Protocol for TCP over Wireless Networks[A]. In proceedings of IEEE VTC 2003 [C].
    [17]Leandros Tassiulas, Saswati Sarkar, Maxmin fair scheduling in wireless networks[A], IEEE infocom2002[C]. New York,2002,23-27.
    [18]纪阳,李迎阳,邓钢等.一种适用于宽带无线IP网络的分组调度算法[J].电子学报,2003,31(5):733-746.
    [19]S. Kunniyur, R. Srikant. Stable, Scalable, Fair Congestion Control and AQM Schemes that Achieve High Utilization in the Internet[J]. IEEE Transactions on Automatic Control,2003:2024-2029.
    [20]马天翼,蒋铃鸽,何晨等一种基于区分服务的无线分组公平调度算法[J].上海交通大学学报,2003,37(10):1628-1633.
    [21]J. C. R. Bennett, C. Partridge, N. Shectman, Packet Reordering is Not Pathological Network Behavior[J], IEEE/ACM Transactions on Networking, 2006,7(6):789-798.
    [22]S. Shenker, Fundamental Design Issues for the Future Internet[J], IEEE Journal on Selected Areas in Communications,2005,13(7):1176-1188.
    [23]Postel J B. Transmission Control Protocol. Network Working Group[S], RFC793,1981,9. http://www.rfc.net/rfc793.html.
    [24]Floyd S. A report on some recent developments in TCP congestion control[J]. IEEE Communications Magazine,2001,39(4):84-90.
    [25]CNNIC[EB/OL]. http://www.cnnic.net.cn/,2006-10/2007-03.
    [26]CERT/CTT[EB/OL]. http://www.cert.org,2006-01/2007-03.
    [27]KINGSOFT[EB/OL]. http://www.kingsoft.com,2005-09/2007-03.
    [28]卿斯汉,王超,何建波,等.即时通信蠕虫研究与发展[J].软件学报,2006,17(10):2118-2130.
    [29]Avizienis A, Laprie J C, Randell B, et al. Basic concepts and taxonomy of dependable and secure computing[J]. IEEE Transactions on Dependable and Secure Computing,2004,1(1):11-33.
    [30]Gates B. Trustworthy computing [EB/OL]. http://www.wired.com/news/business/0,1367,49826,00.html,2002-05/2007-03.
    [31]刘拥民,蒋新华.下一代互联网的可信性[J].信息与控制,2008,35(3):6-12.
    [32]Recovery oriented computing [EB/OL]. http://www.stanford.edu, or http://roc.cs.berkeley.edu.2002-05/2007-01.
    [33]武延军,梁洪亮,赵琛.一个支持可信主体特权最小化的多级安全模型[J].软件学报,2007,18(3):730-738.
    [34]邢栩嘉,林闯,蒋屹新.计算机系统脆弱性评估研究[J].计算机学报,2004,27(1):1-11
    [35]Neumann P G. Principled assuredly trustworthy composable architectures [EB/OL]. http://www.csl.sri.com/neumann/chats4.html,2002-05/2006-12.
    [36]Clark D. A new vision for network architecture[EB/OL]. http://www.isi.edu/know-plane/DOCS/DDC_knowledgePlane_3.pdf,2002-05/2007-02.
    [37]International Standards Organization. Information processing systems-OSI/RM [S].
    [38]LIU Yong-Min, JIANG Xin-Hua. A Extended DCCP Congestion Control in Wireless Sensor Networks[A]. International Workshop on Intelligent Systems and Applications (ISA 2009)[C].2009.146-151.
    [39]Kozat U C, Koutsopoulos I, Tassiulas L. A framework for cross-layer design of energy-efficient communication with QoS provisioning in multi-hop wireless networks[A]. Proceedings of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies[C]. Hong Los Alamitos, CA, USA:IEEE Computer Society,2004.1446-1456.
    [40]Nicol D M, Sanders W H, Trivedi K. S. Model-based evaluation:From dependability to security[J]. IEEE Transactions on Dependable and Secure Computing,2004,1(1):48-65.
    [41]刘拥民,蒋新华,年晓红,鲁五一,杨胜跃.可能的WSN协议分层模型[J].计算机工程与应用,2008,44(18):91-93.
    [42]Barabasi A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999,286(5439):509-512.
    [43]Barabasi A L, Albert R, Jeong H, et al. Power-law distribution of the world wide web [J]. Science,2000,287(5461):2115.
    [44]Corson M S, Macker J P, Cirincione G H. Internet-based mobile ad hoc networking [J]. IEEE Internet Computing,1999,3(4):63-70.
    [45]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor network:A survey[J]. Computer Networks,2002,38(4):393-422.
    [46]Theodorakopoulos G, Baras J S. Trust evaluation in ad-hoc networks[A]. Proceedings of the 2004 ACM Workshop on Wireless Security[C]. New York, USA:Association for Computing Machinery,2004.1-10.
    [47]Xio H. Trust management for mobile IPv6 binding update[A]. Proceedings of the International Conference on Security and Management[C]. Bogart, GA, USA:CSREA Press,2003.469-474.
    [48]Paulson L D. Stopping intruders outside the gates[J]. Computer,2002,35(11): 20-22.
    [49]Jacobson V. Congestion avoidance and control [J]. IEEE/ACM Transaction Networking,1998,6(3):314-329.
    [50]S. Floyd, K. Fall. Promoting the Use of End-to-End Congestion Control in the Internet[J]. IEEE/ACM Transactions on Networking. August,1999,458-472.
    [51]Tanenbaum, A.S. Computer Networks[M].3rd ed., Prentice Hall, Inc.,1996.
    [52]汪小帆,卢俊国等,Internet业务流的自相似性.建模、分析与控制[J],控制与决策,2002,17(1):1-5
    [53]Matsuo T K, Hasegawa G. Comparison of fair service among connections on the Internet [J]. IEEE Computer Society,2000.
    [54]J. Postel, Transmission Control Protocol[S], RFC 793,1981.
    [55]刘拥民,蒋新华,年晓红,鲁五一.Internet端到端拥塞控制研究综述[J].计算机科学,2008,35(2):6-12.
    [56]Allman M, Paxson V, Stevens W. TCP congestion control. Network Working Group[S], RFC2581,1999,4. http://www.rfc.net/rfc2581.html.
    [57]J. M. Jaffe, Bottleneck Flow Control[J], IEEE Transactions on Communication, 1981,29(7):954-962.
    [58]J. Saltzer, D. Reed, D. Clark, End-to-end Arguments in System Design [J], ACM Transactions on Computer Systems,1984,2(4):195-206.
    [59]汪小帆,孙金生,王执全.控制理论在Internet拥塞控制中的应用[J].控制与决策.2002,17(2):129-134.
    [60]Dah-Ming Chiu, R. Jain, Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks[J], Computer Networks and ISDN Systems,2004,17(1):1-14.
    [61]V. Visweswaraiah, J. Heidemann, Improving Restart of Idle TCP Connections, Technical Report[R], USC TR 97-661,1997. http://www.isi.edu/-johnh/papers/.
    [62]Floyd, S. Handley, M., Padhye, J. A comparison of equation-based and AIMD congestion control[EB/OL].2000. http://www.aciri.org/floyd/papers.htmls.
    [63]Wang, H.A., Schwartz, M. Achieving bounded fairness for multicast and TCP traffic in the Internet[A]. In:Black, R., ed. Proceedings of the ACM SIGCOMM[C]. Vancouver:ACM Press,2008.81-92.
    [64]W. Willinger, M. S.Taqqu, R. Sherman, D. V. Wilson. Self-Similarity Through High Variability[A]:Statistical Analysis of Ethernet LAN Traffic at the Source Level[C]. ACM SIGCOMM 2005:100-113.
    [65]S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Networking,1993,1(4):397-413.
    [66]王彬,TCP/IP网络拥塞控制策略研究,[Ph.D. Thesis],浙江大学,2004年.
    [67]B. Braden, D. Clark, J. Crowcroft, J., et al. Recommendations on Queue Management and Congestion Avoidance in the Internet[S]. RFC 2309,1994.
    [68]W. Feng, D. Kandlur, D. Saha, K. Shin, A Self-Configuring RED Gateway[A], In:Doshi, B. ed. Proceedings of IEEE INFOCOM[C]. New York, USA:IEEE Communications Society,1999.1320-1328.
    [69]T. J. Ott, T. V. Lakshman, L. H. Wong, SRED:Stabilized RED[A], In:Doshi, B. ed. Proceedings of IEEE INFOCOM[C]. IEEE Communications Society,1999. 1346-1355.
    [70]LIU Yong-Min, JIANG Xin-Hua. A trustworthy next generation Internet protocol model. International Conference on Networks Security[A], Wireless Communications and Trusted Computing (NSWCTC 2009)[C].2009. Volume (2) pp:473-476.
    [71]W. Feng, D. Kandlur, D. Saha, K. Shin, K. Blue:A New Class of Active Queue Management Algorithms[R], Technical Report, U. Michigan CSE-TR-387-99, 1999. http://www.eecs.umich.edu/-wuchang/blue/.
    [72]S. Athuraliya, V. H. Li, S. H. Low, Q. Yin, REM:Active Queue Management[J], IEEE Network,2001,15(3):48-53.
    [73]Kunniyur S., Srikant R. Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management[J]. ACM Computer Communication Review,2001,31(4):123-134.
    [74]任丰原,林闯,刘卫东,IP网络中的拥塞控制[J],计算机学报,2003,26(9):1025-1034.
    [75]Wydrowski, B. and Zukerman, M. GREEN:An Active Queue Management Algorithm for a Self Managed Internet[A], Proceedings of ICC 2002[C], New York,2002,4:2368-2372.
    [76]Ao Tang, et al. Understanding CHOKe[A]. Proceedings of IEEE Infocom[C], San Francisco, CA, April 2003:82-93.
    [77]Clark D.,Fang, W. Explicit Allocation of Best effort Packet Delivery Service[J]. IEEE/ACM Transactions on Networking,1998,6(3) 362-373.
    [78]M. May, C. Diot, B. Lyles and J. Bolot, Influence of active queue parameters on aggregate traffic performance[S], Technical Report no.3995, INRIA, Sophia Antipolis, France, http://www.inria.fr/RRRT/RP-3995.html,2000/2005-11.
    [79]S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED:robustness of RED's Active an algorithm for increasing the Queue Management[S].2001-08/2005-11
    [80]Gang Feng, A.K. Agarwal, A. Jayaraman, Chee Kheong Siew, Modified RED gateways under bursty traffic[J], IEEE Communications Letters,2004,8(5): 323-325.
    [81]Liujia Hu, Ajay D. Kshemkalyani, HRED:a simple and efficient active queue management algorithm[A],13th IEEE Internation Conference on Computer and Communication Networks (ICCCN) [C],2004:387-393.
    [82]Pierre-Francois Quet, Hitay Ozbay, On the design of AQM supporting TCP flows using robust control theory[J], IEEE Transactions on automatic control, 2004,49(6):1031-1036.
    [83]Andreas Pitsillides, Petros Loannou, Marion Lestas, Loukas Rossides, Adaptive nonlinear congestion controller for a differentiated-services framework[J], IEEE/ACM Transactions on networking,2005,13(1):94-107.
    [84]Norio Yamagaki, Hideki Tode, Koso Murakami, DMFQ:Hardware design of flow-based queue management scheme for improving the fairness[J]. IEICE Trans. Commun.,2005, E88-B(4):1413-1423.
    [85]Jinsheng Sun, Ko, K.-T., Guanrong Chen, et al., PD-RED:to improve the performance of RED[J], IEEE Communications Letters,2003,7(8):406-408.
    [86]朱瑞军,王俊伟等,神经网络白校正预测拥塞控制算法研究[J],系统工程与电子技术,2004.26(6):792-795
    [87]朱瑞军,索东海等,ATM网络预测拥塞控制器设计,控制与决策[J],2004,19(1):61-64
    [88]黄朝晖,孙济洲等,基于队列的模糊拥塞控制算法,软件学报[J],2005,16(2):286-294
    [89]LIU Yong-Min, JIANG Xin-Hua, NIAN Xiaohong. Fairness for Extend DCCP Congestion Control in Wireless Sensor Networks[A]. The 2009 Chinese Control and Decision Conference (2009 CCDC)[C].2009. pp:4732-4737.
    [90]Ramakrishnan, K.K., Floyd, S., Black, D., The Addition of Explicit Congestion Notification (ECN) to IP[S]. IETF RFC 3168.2001.
    [9l]刘拥民,蒋新华,年晓红.无线传感器网络拥塞控制研究[J].计算机应用研究,2008,25(2):565-569.
    [92]Braden, B., Clark, D., Crowcroft, J., et al. Recommendations on Queue Management and Congestion Avoidance in the Internet[S]. RFC 2309,1994.
    [93]W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms[S]. IETF RFC 2001.1997.
    [94]Mathis, M., Mahdavi, J., Floyd, S., et al. TCP Selective Acknowledgment Options[S]. RFC 2018,1996.
    [95]Lawrence S, Brak M, Larry L.TCP Vegas:End to end congestion avoidance on a global Internet[J]. IEEE Journal on Selected Areas in Communications. Oct. 1995,13(8):1465-1480.
    [96]M. Nabeshima, K. Yata, Improving the Convergence Time of HighSpeed TCP[A], IEEE International Conference on Networks (ICON2004)[C], pp. 19-23, Nov.2004.
    [97]Cheng Jin, David X. Wei, Steven H. Low. FAST TCP:motivation, architecture, algorithms[A], performance IEEE Infocom[C], March 2004, Hong Kong. http://netlab.caltech.edu.
    [98]H. Balakrishnan, N. Dukkipati, N. McKeown,et,al. Stability Analysis of Switched Hybrid Time-Delay Systems Analysis of the Rate Control Protocol [R]. Stanford University Department of Aero/Astro Technical Report, June 2004.
    [99]Z. Wang, J. Crowcroft. A New Congestion Control Scheme:Slow start and Search (Tri-S)[J]. ACM computer Communication Review Jan.1991.
    [100]Sally Floyd Eddie Kohler. Internet research needs better models[J]. ACM SIGCOMM Computer Communication Review, Jan 2003,33(1):29-34.
    [101]Samios, C. (Babis), M. K. Vernon. Modeling the Throughput of TCP Vegas[A]. Proc. ACM SIGMETRICS 2003[C].
    [102]UC Berkeley, LBL, USC/ISI. Xerox PARC[EB/OL]. The Network Simulator (version2). http://www.isi.edu/nsnam/ns,2005.11.
    [103]M.Mitzenmacher, R.Rajaramany. Towards more complete models of TCP latency and throughput[J]. Journal of Supercomputing,2001,20(2):137-160.
    [104]J. Hale S. M. V Lunel. Introduction to functional differential equation[M].2nd edition, Spriger Verlag, New York.
    [105]Mark Allman. A web server's view of the transport layer[J]. ACM Computer Communication Review, Oct.2000.30(5)
    [106]S.H.Low, L.Peterson, and L.Wang, Understanding Vegas:A duality model[EB/OL], J. ACM,2002,49(2):207-235. Available:http://netlab.caltech.edu
    [107]S Low. F Paganini, J C Doyle. Internet Congestion Control[J]. IEEE Control Systems Magazine,2002,22(1):28-43
    [108]Low S H. A Duality Model of TCP and Queue Management Algorithms[J]. IEEE/ACM Trans. Netw.2003,11(4):525-536
    [109]J. S.Ahn, P. B.Danzig, Z. Liu, L.Yan. Evaluation of TCP Vegas:emulation and experiment[J]. IEEE Transactionson Communications.1995,25(4):185-195
    [110]T. Bonald. Comparison of TCP Reno and TCP Vegas via fluid approximation[R]. Technical Report. INRIA,1998. Avalible at: http://netlab.caltech.Edu/FAST/references/
    [111]K. Kurata, G. Hasegawa, M. Murata. Fairness comparisons between TCP Reno and TCP Vegas for future deployment of TCP Vegas[EB/OL]. Avalible at: http://www-ana.nal.ics.es.Osaka-u.ac.jp/-murata/papers/
    [112]Yuan-Cheng Lai,Chang-Li Yao. Performance comparison between TCP Reno and TCP Vegas[EB/OL]. January 2000. Avalibel at: http://csdl.computer.Org/comp/proceedingsincpads/2000/0571/00/05710061abs.html
    [113]J. Hale Verlag, S. M. V Lunel. Introduction to functional differential equation[M].3rd edition, Spriger New York.
    [114]K. N. Srijith, Lillykutty Jacob, A. L.Ananda. TCP Vegas-A:Solving the Fairness and Rerouting Issues of TCP Vegas[A]. Proc. of the 22nd IEEE International Performance, Computing, and Communications Conference[C] 2003. Avalibel at:http://www.srijith.net/pubications
    [115]LIU Yong-Min, JIANG Xin-Hua. A protocol model for wireless sensor network[A]. International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC 2009)[M].2009. Volume (2) pp:588-591
    [116]Chen J R and Chen Y C. Vegas Plus:Improving the Service Fairness[J]. IEEE Commun. Lett., vol.4, No.5,, May 2000, pp.176-178.
    [117]C. P. Fu and S. C. Liew, A remedy for performance degradation of TCP vegas in asymmetric networks[J], IEEE Commun. Lett., vol.7, pp.42-44, Jan.2003.
    [118]Y C. Chan, C. T. Chan, and Y C. Chen, An enhanced congestion avoidance mechanism for TCP Vegas[J], IEEE Commun. Lett.,2003,(7):343-345.
    [119]H.Chaskar,T.Lsksbrnan. TCP over wireless with link level error control. Analysis and design methodology[J]. IEEE/ACM Trans On Networking. 1999,7(6):605-615.
    [120]W.T.Chen, J.S.Lee. Some mechanisms to improve TCP/IP performance over wireless and mobile computing environment[J]. Parallel and Distributes Systems,2000
    [121]H Balakrishnan, V Padmanabhan et al. Improving reliable transport and handoff performance in cellular networks[J]. ACM Wireless Networks,2005, 1(4):469-481.
    [122]刘拥民,蒋新华,年晓红,鲁五一.无线网络拥塞控制最新研究进展[J].计算机工程与应用,2007,43(24):24-28.
    [123]C.Partridge, T.Shepard. TCP performance over satellite links[J]. IEEE Network,2007,11(5):44-99.
    [124]T.Lakshman, U.Madhow. TCP/IP performance with random loss and bidirectional congestion[J]. IEEE/ACM Trans. On Networking,2000,8(5): 541-555.
    [125]N.Deshpande. TCP extensions for wireless networks[EB/OL].2000 http://hvww.cis.ohio-state.edu/-deshpand
    [126]K.Thompson, G,Miller, and M.Wilder. Wide-area Internet traffic patterns and characteristics[J]. IEEE Network,1997,11(6):10-23
    [127]LIU Yong-Min, JIANG Xin-Hua, etc. Improved DCCP Congestion Control for Wireless Sensor Networks[A].8th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2009) [C].2009:194-198
    [128]N.Samaraweera. Non-congestion packet loss detection for TCP error recovering using wireless links[J]. IEE Proceedings-Communications,1999, 146(4):222-230.
    [129]M.Zorzi, R.R.Rao. Energy effciency of TCP in a local wireless environment[J]. IEEE/ACM Baltzer Mobile Networks and Applications.2000
    [130]V.Tsaoussidis, H.Badr, X.Ge, K.Pentikousis. Energy/Throughput of TCP error control strategies[A]. Proc. Of 5th IEEE Symposium on Computers and Communications (ISCC)[C].2000
    [131]刘拥民,蒋新华,年晓红,鲁五一.无线传感器网络通信协议[J].微电子学与计算机,2007,24(10):71-73.
    [132]G.Holland and N.Vaidya. Analysis of TCP performance over mobile ad hoc networks-part Ⅱ:Simulation details and results[R]. Technical Report. Texas A&M University 1999.
    [133]B.Bakshi, P.Krishna, etc. Improving performance of TCP over wireless networks[R]. Texas A&U University technical report 96-104,1996
    [134]S.J. Seok and S.B.Joo. A-TCP:a mechanism for improving TCP performance in wireless environments[S]. IEEE Broadband Wireless Summit,2001
    [135]S.Floyd, K.Fall. Router Mechanisms to Support End-to-End Congestion Control[R]. LBL Technical Report,1997
    [136]B.Braden, D.Clark, etc. Recommendations on Queue Management and Congestion Avoidance in the Internet[S], RFC2309,1998
    [137]R.Yavatkar,N.Bhagawat. Improving End-to-End Performance of TCP over Mobile Internet works. IEEE Journal on Selected Area in Communications, 2005,13(5):850-857.
    [138]S.Biaz, N.Vaidya, etc. TCP over wireless networks using multiple Acknowledgement[R]. Texas A&M University technical report 97-001,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700