硅提高水稻抗锰毒害的生理和分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在揭示硅调控水稻锰营养的生理效应及分子机制,为减轻水稻的锰毒害、提高水稻产量并促进水稻生产的持续发展提供理论依据。通过水培试验,采用两个对Mn耐性不同的水稻品种,XXY640(锰敏感型)和ZLY99(耐锰型)作为试验材料,研究了硅(1.5mmol·L-1)对高锰(2mmol·L-1)胁迫下水稻的生长、元素吸收、运输及分布、抗氧化体统和光合作用的影响;利用敏感型品种为材料,采用Solexa高通量测序技术获得了高锰胁迫下加硅和不加硅处理的水稻基因表达图谱;根据测序结果,通过Gene Ontology和Pathway显著性富集分析,得到有关光合作用过程中差异表达显著基因;并利用实时荧光定量PCR技术研究这些关键基因相对表达量的影响。主要结果如下:
     (1)两个水稻品种对高锰胁迫反应存在巨大差异,高锰胁迫严重抑制了敏感品种的干物质重,使其叶片毒害症状明显。加硅处理增强了两个品种对锰毒的抗性,硅抑制了锰从敏感品种地下部到地上部的转移,而对耐性品种来说,硅则抑制了锰的吸收,从而降低了锰的毒害。
     (2)高锰胁迫下,耐性品种叶片和根系的Mn含量都显著高于敏感品种。高锰胁迫抑制了敏感品种K元素从根部向叶片的转移,而降低了耐性品种的根部吸收K元素的能力。高锰胁迫下,施硅处理,增加了敏感品种叶片中K、Fe和Zn的相对含量;显著增加耐性品种叶片中K和Zn的相对含量,显著降低其Ca和Fe的相对含量。高锰胁迫下施硅可以促进敏感品种K元素的转运。Si对耐性品种根系中各元素含量保持相对平衡具有重要作用。
     (3)在Mn胁迫下,敏感品种根系的超氧化物歧化酶(SOD)活性、抗坏血酸(AsA)和非蛋白巯基(NPT)含量显著增加,但过氧化物酶(CAT)和抗坏血酸过氧化物酶(APX)酶活性显著降低,谷胱甘肽(GSH)含量也显著降低,最终导致膜脂过氧化加剧,丙二醛(MDA)含量升高,质膜完整性遭到破坏,根系受到伤害。Mn胁迫下,耐性品种根系的GSH和AsA含量增加,但CAT酶活性和NPT含量降低,导致MDA含量升高,根系受到伤害。加Si后增强了水稻根系抗氧化系统物质活性,降低MDA和过氧化氢(H2O2)含量,缓解水稻根系受到的伤害。且这种缓解效应在敏感品种根系的更为显著。高锰胁迫显著增加了敏感品叶片的SOD、CAT和APX活性,但是显著降低了NPT和GSH含量,因此导致了H2O2和MDA大量累积,植株受到伤害。加硅后显著降低了其MDA和H2O2含量,促进了植物生长。对于耐性品种来说,高锰胁迫下,叶片中SOD活性和和GSH含量显著增加,增强了其清除自由基的能力,导致低的氧化胁迫。高锰胁迫下,加硅处理显著影响了敏感品种非酶抗氧化物质的活性。
     (4)锰胁迫下,敏感品种的叶绿素a、叶绿素b、类胡萝卜素和叶绿素总量显著降低,而耐性品种仅类胡萝卜素含量显著下降。两个品种的光合速率在锰胁迫下都显著降低。扫描电镜和透射电镜结果表明,锰胁迫使敏感品种叶片气孔关闭,基粒片层紊乱,而耐性品种气孔开度略有减小,叶绿体片层结构基本不受影响。加硅之后,锰胁迫下敏感品种的叶绿素总量和类胡萝卜素含量显著增加,耐性品种的类胡萝卜素含量也增加,敏感品种的光合速率也显著增加,气孔开度增大。
     (5)高锰胁迫下有效差异表达(fdr≤0.001和|log2Ratio|≥1)的基因为2831个,其中上调1336个,下调1495个。高锰胁迫下施硅后差异表达基因上调表达647个,下调表达892个。正常锰浓度下,施硅后基因表达16525个,其中上调表达1558个,下调2028个。同时进行硅处理和锰处理时与单硅处理相比,表达基因16273个,上调表达320个,下调表达172个。锰胁迫下施硅后差异表达基因功能分析表明:差异表达基因涉及到转录因子,转运子,转移酶蛋白等基因,涉及到植物体内的初生代谢和次生代谢等过程。研究结果表明水稻应答锰胁迫的机理非常复杂,涉及到代谢调节、离子转运、信号传导、转录调节和逆境应答等大量基因协调表达结果。
     (6)根据高通量测序结果,通过实时荧光定量PCR分析了敏感品种中光合作用显著差异表达基因表达量变化情况。结果表明,高锰胁迫下,叶绿素合成受阻,天线色素捕光过程受影响,PSI结构受损,卡尔文循环过程CO2固定的受体大大减少,这些因素综合导致植物体的光合作用下降。锰胁迫下加硅后,可以增加叶绿素含量、光能利用率和ATP数量,稳定PSI结构,促进CO2的同化,因此减轻了作物锰毒害的程度。
This study aimed to explore the physiological and molecular mechanisms of Si-enhanced toleranceto Mn toxicity, and improve rice growth and yield to sustain rice production. The roles of Si inenhancing tolerance to manganese (Mn) toxicity were studied in two rice (Oryza sativa L.) cultivars: i.e.cv. Xinxiangyou640(XXY), a Mn-sensitive cultivar and cv. Zhuliangyou99(ZLY), a Mn-tolerantcultivar. Plants were cultured in nutrient solution containing normal Mn (6.7μM) or high Mn (2.0mM),both with or without Si supply at1.5mM Si. We investigated the effects of Si on plant growth, elementsuptake, transport, distribution, antioxidative defense capacity and photosynthetic parameters of bothcultivars under high Mn stress; Using high-throughput sequencing, we performed a comprehensiveanalysis of the influence of Mn on gene expression of the sensitive rice with or without Si. Using thesignificant enrichment analysis of Gene Ontology and Pathway combined with the analysis ofphysiological indicators, we obtained the key genes related to photosynthesis; Using real-timequantitative PCR technique, we further studied the relative expression levels of the key genes ofinterest.The main results are presented as follows:
     1. Plant growth was severely inhibited by high Mn stress in cv. XXY, but was enhanced by Sisupply. Mn toxicity symptoms observed in leaves were more severe in the Mn-sensitive cultivar (XXY)than in the Mn-resistant cultivar (ZLY) under high Mn stress. In the high Mn treatment, greater Mnconcentrations in shoots and roots respectively were found in the Mn-tolerant cultivar than in theMn-sensitive cultivar. In cv. XXY, Si-enhanced tolerance resulted from a restriction of Mn transport,whereas Mn uptake was depressed in cv. ZLY.
     2. Mn concentration in foliage and roots of Mn-tolerant cultivar was much greater than that ofMn-sensitive cultivar at the high Mn level. In cv. XXY, the suppression of Mn resulted from arestriction of K transport, whereas K uptake was depressed in cv. ZLY. Supply with Si significantlyincreased the relative contents of K, Fe and Zn in foliage at the high Mn level compared with theSi-untreated plants in the Mn-sensitive cultivar. Supply with Si significantly increased the relativecontents of K and Zn in foliage at the high Mn level, whereas considerably decreased the relativecontents of Ca and Fe compared with the Si-untreated plants in the Mn-sensitive cultivar. Supply withSi considerably decreased the relative content of K in roots of Mn-sensitive cultivar, but significantlyincreased it in foliage at the high Mn level. This suggests that Si can promote K transport from roots toshoots under high Mn stress. This indicates that Si plays an important role in keeping the relativebalance between elements in roots of Mn-tolerant cultivar.
     3. For the Mn–sensitive cultivar, high Mn significantly increased the activities of superoxidedismutase (SOD), the concentrations of ascorbate (AsA) and non-protein thiols (NPT), while itsignificantly decreased the activities of catalase (CAT) and ascorbate peroxidase (APX) and theconcentrations of glutathione (GSH), thus leading to accumulation of high levels of malondialdehyde(MDA) in root tissues and destruction of plasma membrane integrity. However, high Mn significantlyincreased the concentrations of GSH and AsA, but significantly decreased the activities of CAT and the concentrations of NPT, thus leading to accumulation of high level of MDA in the Mn-tolerant cultivar(ZLY). The addition of Si significantly decreased the concentrations of MDA and H2O2in Mn-stressedroot tissues, thereby mitigating the damage. Under high Mn stress, application of silicon enhances theantioxidant activities of rice roots, and reduces lipid peroxidation and damage to the integrity of theapical membrane, thereby enhancing rice resistance to manganese toxicity. This alleviative effect ismore pronounced in Mn-sensitive rice (XXY) than in Mn-tolerant rice (ZLY). In cv. XXY, high Mnsignificantly increased SOD, CATand APX activities but decreased NPT and GSH concentrations,leading to accumulation of H2O2and MDA in leaves of rice. The addition of Si significantlycounteracted high Mn-elevated MDA and H2O2concentrations and enhanced plant growth. In cv. ZLY,high Mn considerably raised SOD activities and GSH concentrations in leaves of rice, thus leading torelatively low oxidative damage. Silicon mainly influenced non-enzymatic antioxidants in Mn-sensitiverice cultivars under high Mn stress.
     4. High Mn stress considerably decreased the content of chlorophyll‘a’, chlorophyll‘b’,carotenoids and Chlorophyll‘a+b’ in cv. XXY, while only carotenoids content was decreased in cv. ZLY.Net photosynthetic rates (Pn) of the two rice cultivars tested were all decreased under high Mn stress.By scanning electron microscopy and transmission electron microscopy, high Mn stress made leafstomata closed and grana lamellae disorder in cv. XXY, while stomatal aperture was slightly decreasedand the chloroplast lamellar structure was not affected in cv. ZLY. By the addition of silicon thecontent of carotenoids and Chlorophyll‘a+b’ were significantly increased in cv. XXY, also thecarotenoid content was significantly increased in cv. ZLY. The addition of Si improved thephotosynthetic efficiency and alleviated the chloroplast ultrastructure under high Mn level in cv. XXY.
     5. There were about lots of differently expressed genes (The false discovery rate (FDR)≤0.001and|log2ratio(Mn/CK)|≥1) in which1336appeared to be up-regulated and1495appeared to bedown-regulated in rice treated with high level of Mn compared with the normal level of Mn. Under highMn stress, Si addtion induced647up-regulated genes,892down-regulated genes compared with theMn-treated plants. Under the normal Mn level, Si addtion induced1558up-regulated genes among16525genes, and2028down-regulated genes. In the high Mn-treated plants amended with Si,16273genes were expressed, with320genes up-regulated and172genes down-regulated compared with theSi-treated plants. The differentially expressed genes were relating to various transcription factors (TFs),large number of transporters, numerous transferase proteins, etc, involving in the major primary andsecondary metabolisms. Functional analysis showed that these differentially expressed genes wereinvolved in metabolism, ion transport, signal transduction, transcription regulation, and stress responsegenes etc. Manganese resistance mechanism in rice is very complex and is a consequence ofcoordinated expression of a large number of genes.
     6. Mn-induced inhibition of photosynthesis can be attributed to the suppressed chlorophyllbiosynthesis, light-harvesting process and ATP synthesis, the impaired stability of PSI structure and theimpaired regeneration of the acceptor molecule for CO2fixation of the Calvin cycle. Si apparentlyallows plants to respond to Mn toxicity more efficiently by increasing chlorophyll content, light-use-efficiency and ATP quantity, stabilizing the structure of PSI, and promoting CO2assimilation.Our findings suggest active involvement of Si in Mn detoxification ranging from physiologicalresponses to gene expression.
引文
1.蔡德龙,小林均,硅肥对水稻镉吸收影响初探.地域研究与开发,2000,19:69-71
    2.陈同斌,黄泽春,黄宇营,等,蜈蚣草羽叶中砷及植物必需营养元素的分布特点.中国科学C辑,2004,34:304-309
    3.陈阳,王贺,硅盐互作下小獐毛植物体内元素分布及生理特性的研究.植物生态学报,2003,27:189-195
    4.戴伟民,张克勤,段彬伍,等,测定水稻硅含量的一种简易方法.中国水稻科学,2005,19:460-462
    5.房江育,王贺,张福锁,硅对盐胁迫烟草悬浮细胞的影响.作物学报,2003,29:610-614
    6.高尔明,赵全志,水稻施用硅肥增产的生理效应研究.耕作与栽培,1998,20-28
    7.高柳青,杨树杰,硅对小麦吸收镉锌的影响极其生理效应.农业环境科学,2004,20:246-249
    8.宫海军,陈坤明,王锁民,等,植物硅营养的研究进展.西北植物学报,2004,24:2385-2392
    9.顾明华,黎晓峰,硅对减轻水稻的铝胁迫效应及其机理研究.植物营养与肥料学报,2002,8:360-366
    10.胡蕾,施益华,刘鹏,等,锰对大豆膜脂过氧化及POD和CAT活性的影响研究.金华职业技术学院学报,2003,3:29-32
    11.黄秋婵,韦友欢,韦良兴,硅对水稻生长的影响及其增产机理研究进展.安徽农业科学,2008,36:919-920
    12.黄泽春,陈同斌,雷梅,等,砷超富集植物中砷化学形态及其转化的EXAFS研究.中国科学C辑,2003,33:488-494
    13.靳鹏,黄立钰,王迪,等,水稻AP2/EREBP转录因子响应非生物胁迫的表达谱分析.中国农业科学,2009,42:3765-3773
    14.瞿廷广,施正连,丁江妹,硅吧对直播水稻的抗逆性和产量的影响.土壤肥料,2003:26-28
    15.柯玉诗,黄小红,张壮塔,等,硅肥对水稻氮磷钾营养的影响及增产原因分析.东北农业科学,1997,5:25-27
    16.黎晓峰,顾明华,路申年,等,铅对水稻锰毒拮抗效应及对稻体营养的处理初报.广西农大学报,1996,15:306-308
    17.李合生,孙群,赵世杰,等,叶绿素含量的测定.植物生理生化实验原理和技术.高等教育出版社,2000,134-138
    18.李明,王根轩,干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22:503-507
    19.李文彬,王贺,张福锁,高温胁迫条件下硅对水稻花药开裂及授粉量的影响.作物学报,2005,31:134-136
    20.李玉影,刘颖,刘双全,等,黑龙江省水稻硅肥效果研究.黑龙江农业科学,2009,60-63.
    21.刘武定,微量元素营养与微肥施用.北京:中国农业出版社,1995,65-78
    22.刘鑫,朱端卫,雷宏军,等,酸性土壤活性锰与pH、Eh关系及其生物反应.植物营养与肥料学报,2003,9:317-323
    23.刘学军,吕世华,张福锁,等,土壤中锰的化学行为及其生物有效性I土壤中锰的化学行为及其影响因素.土壤农化通报,1997,12:414-475
    24.刘学军,不同水分状况对水稻吸锰及土壤有效锰的影响.迈向21世纪的土壤与植物营养科学.北京:中国农业出版社,1997,403-405
    25.刘贞琦,刘振业,曾淑芬,等,水稻某些光合生理特性的研究.中国农业科学,1982,5:33-39
    26.刘振业,刘振琦,赵玫,等,水稻净光合速率(Pn)的遗传研究.种子,1984,2:14-16
    27.刘铮,土壤与植物中锰的研究进展.土壤学进展,1991,6:1-10.
    28.罗虹,刘鹏,李淑,硅、钙对水土保持植物荞麦铝毒的缓解效应.水土保持学报,2005,19:101-104.
    29.庞晓斌,毛新国,景蕊莲,等,小麦幼苗水分胁迫应答基因表达谱分析.作物学报,2007,33:333-336
    30.饶立华,金承焕,龚兰,等,硅对水稻的生理效应.浙江农业大学学报,1981,7:35-50
    31.饶立华,覃连祥,朱玉贤,等,硅对杂交水稻形态结构和生理的效应.植物生理学通讯,1986,3:20-24
    32.施益华,刘鹏,锰在植物体内生理功能研究进展.江西林业科技,2003,2:26-28
    33.史庆华,朱祝军,应泉盛,等,不同光强下高锰对光合作用特性的影响.应用生态学报,2005,16:1047-1050
    34.台萃,武泰存,王景安,缺锰胁迫对不同基因型小麦生理效应的研究.华北农学报,2004,19:53-56
    35.万国江,胡其乐,曹龙,等,资源开发-环境灾害-地球化学-以贵州阿哈湖铁锰污染为例.地学前缘,2001,8:353-35
    36.汪耀富,杨天旭,刘国顺,等,渗透胁迫下烟草叶片基因的差异表达研究.作物学报,2007,33:914-920
    37.王敬国,植物营养的土壤化学.北京:北京农业大学出版社,1995,174
    38.王曼玲,Rocha Pedro,李落叶,等,应用基因表达芯片分析水稻高温胁迫相关基因.生物技术通报,2009,10:92-97
    39.王世华,罗群胜,刘传平,等,叶面施硅对水稻籽实重金属积累的抑制效应.生态环境,2007,16:875-878
    40.韦克苏,程方民,董海涛,等,水稻胚乳贮藏物代谢相关基因响应花后高温胁迫的微阵列分析.中国农业科学,2010,43:1-11
    41.魏国强,朱祝军,李娟,等,硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究.应用生态学报,2004a,15:2147-2151
    42.魏国强,朱祝军,钱琼秋,等,硅对瓠瓜酚类物质代谢的影响及与抗白粉病的关系.植物保护学报,2004b,31:185-189
    43.魏国强,朱祝军,钱琼秋,等,硅对黄瓜白粉病抗性的影响及其生理机制.植物营养与肥料学报,2004c,10:202-205
    44.徐呈祥,马艳萍,胡恒康,硅对盐胁迫下金丝小枣生长与生理的效应.西北农林科技大学学报,2005,33:143-146
    45.徐根娣,孙和和,刘鹏,等,大豆过氧化物酶和酯酶同工酶对锰胁迫的反应.浙江师范大学学报(自然科学版),2006,29:195-200
    46.徐向华,施积炎,陈新才,等,锰在商陆叶片的细胞分布及化学形态分析.农业环境科学学报,2008,27:515-520
    47.许州达,景蕊莲,甘强,等,用水稻基因芯片筛选小麦耐旱相关基因.农业生物技术学报,2007,15:821-827
    48.杨超光,豆虎,梁永超,等,硅对土壤外源镉活性和玉米吸收镉的影响.中国农业科学,2005,38:116-121
    49.杨利,马朝红,范先鹏,等,硅对水稻生长发育的影响.湖北农业科学,2009,48:90-991
    50.杨艳芳,梁永超,娄运生,等,硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,2003,36:813-817.
    51.俞慧娜,徐根娣,杨卫韵,等,锰处理对大豆生理特性的影响.河南农业科学,2005,7:35-38
    52.袁可能,植物营养元素的土壤化学.北京:科学出版社.1983,538
    53.臧小平,土壤锰毒与植物锰的毒害.土壤通报,1999,30:139-141
    54.曾琦,耿明建,张志江,等,锰毒害对油菜苗期Mn、Ca、Fe含量及POD、CAT活性的影响.华中农业大学学报,2004,23:300-303
    55.张福锁,植物营养生态生理学和遗传学.北京:中国科学技术出版社,1993
    56.张国良,戴其根,张洪程,施硅增强水稻对纹枯病的抗性.植物生理与分子生物学学报,2006,32:600-606
    57.张佳,李军,董善辉,等,硅对外源镉在水稻籽实中积累及水稻产量的影响.沈阳农业大学学报,2009,40:224-226
    58.张子佳,王迪,傅彬英,水稻转录因子bHLH家族基因响应环境胁迫表达谱分析.分子植物育种,2008,6:425-431
    59.周秀杰,赵红波,马成仓,硅提高作物抗逆性.安徽农业科学,2006,12:2769-2771.
    60. Abioye O. F., Lena Q.M., Xinde C., et al., Effects of heavy metals on growth and arsenicaccumulation in the arsenic hyperaccumulator Pteris vittata L. Environmental pollution2004,132:289-296.
    61. Aebi H., Catalase in vitro. Methods in Enzymology1984,105:21-26.
    62. Agarwal M., Hao Y., Kapoor A., et al., A R2R3type MYB transcription factor is involved in thecold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry2006,281:37636–37645.
    63. Akio M., Hiromi Y., Maryam R. l., et al., Changes in peroxidase activity and lignin content ofcultured tea cells in response to excess manganese. Soil Science and plant Nutrition2006,52:26-31.
    64. Al-Aghabary K., Zhu J.Z., Qin H.S., Influence of silicon supply on chlorophyll content, chlorophyllfluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of PlantNutrition2004,27:2101-2115.
    65. Alam S., Kamei S., Kwaai S., Amelioration of manganese toxicity in young rice seedlings withpotassium. Journal of Plant Nutrion2003,26:1301-1304.
    66. Alam S., Rhanman M.H., Kamei S., et al., Alleviation of manganese toxicity andmanganese-induced iron deficiency in barley by additional potassium supply in nutrient solution.Soil Science and Plant Nutrion,2002,48:387-392.
    67. Ananyev G.M., Zaltsman L., Vasko C., et al., The inorganic biochemistry of photosynthetic oxygenevolution/water oxidation. Biochimica et Biophysica Acta2001,1503:52-68.
    68. Audic S., Claverie J.M., The significance of digital gene expression profiles. Genome Research1997,7:986-995.
    69. Baker A.J.M., Metal tolerance. New phytology,1987,106:93-111.
    70. Banerjee S., Goswami R., GST profile expression study in some selected plants: in silico approach.Molecular and Cellular Biology2010,336:109-126.
    71. Beauchmap E.G., Rossi N., Effects of Mn and Fe supply on the growth of barley in nutrientsolution. Canadian Journal of Plant Science1972,52:575-581.
    72. Belanger R.R., Benhamou N., Menzies J.G.., Cytological evidence of an active role of silicon inwheat resistance to powdery mildew Blumeria graminis. Phytopathology2003,93:402-4l2.
    73. Benjamini Y., Yekutieli D., The control of the false discovery rate in multiple testing underdependency. The Annals of Statistics2001,29:1165-1188.
    74. Bidwell S.D., Woodrow I.E., Batianoff G.N., et al., Hyperaccumulation of manganese in therainforest tree Austromyrtus bidwillii (Myrtaeeae) from Queensland, Australia Functional plantBiology2002,29:899-905.
    75. Bondarava N., Beyer P., Krieger-Liszkay A., Function of the23kDa extrinsic protein ofPhotosystem II as a manganese binding protein and its role in photoactivation. Biochimica etBiophysica Acta2005,1708:63-70.
    76. Bot J.L., Goss M.J., CarvalhoM J.G.P.R., et al., The significance of the magnesium to manganeseratio in plant tissues for growth and alleviation of manganese toxiecity in tomato and wheat plants.Plant and Soils1990,124:205-210.
    77. Bot J.L., Kirkby E.A., Beusicchem M.L.V., Manganese toxicity intomato Plants: effects on cationuptake and distribution. Journal of Plant Nutrion1990,13:513-525.
    78. Bowen J.E., Manganese-silicon interaction and its effedt on growth of Sudangrass. Plant and Soil1972,37:577-588.
    79. Cailliatte R., Schikora A., Briat J.F., et al., High-affinity manganese uptake by the metal transporterNRAMP1is wssential for Arabidopsis growth in low manganese conditions. Plant cell2010,22:904-917.
    80. Chen Y.H., Yang X.Y., He K., et al., The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant MolecularBiology2006,60:107-124.
    81. Clairmont K.B., Hagar W.G., Davis E.A., Manganese toxicity to chloryphyll synthesis in tobaccocallus. Plant Physiology1986,80:291-293.
    82. Clark R.B., Pier P.A., Knudsen D., et al., Effect of trace element deficiencies and excesses onmineral nutrients in sorghum. Journal of Plant Nutrition1981,3:357-374.
    83. Cocker K.M., Evans D.E., Hodson M.J., The amelioration of aluminium toxicity by silicon inhigher plants: Solution chemistry or an in planta mechanism. Physiologia Plantarum1998,104:608-614.
    84. ConlinT.S.S., Crowder A.A., Location of radial oxygen1oss and zones of potential in iron uptakein a grass and two non-grass emergent species. Canadian Journal of Botany-Revue Canadienne deBotanique198967:717-722.
    85. Csatorday K., Gombos Z., Szalontai B., Mn2+and Co2+toxicity in chlorophyll biosynthesis.Proceedings of the National Academy of Sciences of the United States of America1984,81:476-478.
    86. Cunha K.P.V., Clístenes W.A. do N., Silva1A. J., Silicon alleviates the toxicity of cadmium andzinc for maize (Zea mays L.) grown on a contaminated soil. Journal of Plant Nutrition and SoilScience2008,171:849-853.
    87. Dai X.Y., Xu Y.Y., Ma Q.B., et al., Overexpression of a R1R2R3MYB Gene, OsMYB3R-2,increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology2007,143:1-13.
    88. Davey M.W., Montagu M.V., Inzé D., et al., Plant-ascorbic acid: chemistry, function, metabolism,bioavailability and effects of processing. Journal of the Science of Food and Agriculture2000,80:825-860.
    89. Delhaize E., Kataoka T., Hebb D.M., et al., Genes encoding proteins of the cation diffusionfacilitator family that confer manganese tolerance. The Plant Cell2003,15:1131-1142.
    90. Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., et al., Biochemical changes in barleyplants after excess supply of copper and manganese. Environmental and Experimental Botany2004,52:253-266.
    91. Devaiah B.N., Karthikeyan A.S., Raghothama K.G., WRKY75transcription factor is a modulator ofphosphate acquisition and root development in Arabidopsis. Plant Physiology2007,43:1789-1801.
    92. Doncheva S.N., Poschenriederb C., Stoyanovaa Z.L., et al., Silicon amelioration of manganesetoxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany2009,65:189-197.
    93. Doncheva S.N., Amenós M., Poschenrieder C., et al., Root cell patterning:a primary target foraluminium toxicity in maize. Journal of Experimental Botany2005,56:1213-1220.
    94. Dragi i Maksimovi J., Bogdanovi J., Maksimovi V., et al., Silicon modulates the metabolismand utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excessmanganese. Journal of Plant Nutrition and Soil Science2007,170:739-744.
    95. EI-Jaoual T., Cox DA., Manganese toxieity in Plants. Journal of Plant Nutrition1998,24:353-386.
    96. Eisen M.B., Spellman P.T., Brown P.O., et al., Cluster analysis and display of genome-wideexpression patterns. Proceedings of the National Academy of Sciences of the United States ofAmerica-Physical Sciences1998,95:14863-148638.
    97. Elstner E.F., Oswald W., Mechanism of oxygen activation during plant stress. Proceedings of theRoyal Society of Edinburgh Section B-Biological Sciences1994,102:131-154.
    98. Epstein E., Silicon. Annual Review of Plant Physiology and Plant Molecular Biology1999,50:641-664.
    99. Eugene M.G., Christie H.D., Isolation of iron-containing superoxide dismutase from bacteroxidesfragilis. Archives of Biochemistry and Biophysics1983,220:293-300.
    100. Fabien M., Nathalie V., Philippe V., et al., Relationship between PSII activity, CO2fixation, and Zn,Mn and Mg contents of Lolium perenne under zinc stress. Journal of Plant Physiology2001,158:1137-1144.
    101. Fecht-Christoffers M M., Braun H P, Lemaitre-Guillier C., et al., Effect ofmanganese toxicity on thep roteome of the leaf apop last in cowpea. Plant Physiology2003,133:1935-1946.
    102. Fecht-Christoffers M.M., Maier P., Horst W.J., Apoplastic peroxidases and ascorbate are involved inmanganese toxicity and tolerance of Vigna unguiculata. Plant Physiology2003,117:237-244.
    103. Fernando C. L., Miguel G.T., Oxy radicals production and control in the chloroplast of Mn-treatedrice. Plant Science2000,152:7-15.
    104. Fernando C. L., Miguel G.T., Rice tolerance to excess Mn: Implications in the chloroplast lamellaeand synthesis of a novel Mn protein. Plant Physiology and Biochemistry2000,38:969-978.
    105. Fernando C. L., Maria G.B., Jose C.R., Manganese accumulation in rice: implications forphotosynthetic functioning. Journal of Plant Physiology2004,161:1235-1244.
    106. Fernando S., Henriques., Reduction in chloroplast number accounts for the decrease in thephotosynthetic capacity of Mn-deficient pecan leaves. Plant Science2004,166:1051-1055.
    107. Ferreira K.N., Iverson T.M., Maghlaoui K., et al., Architecture of the photosyntheticoxygen-evolving center. Science2004,303:1831-1838.
    108. Ferroni L., Baldisserotto C., Fasulo M.P., Adaptive modifications of the photosynthetic apparatus inEuglena gracilis Klebs exposed to excess manganese. Protoplasma2004,224:167-177.
    109. Foy C.D., Chaney R.L., White M.C., The physiology of metal toxicity in plants. Ann RevPlant Physiology1978,29:511-66.
    110. Foy C.D., Scott B.J., Fisher J.A., Genetic differences in plant tolerance to manganese toxicity. In:Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in soils and plant. Dordrecht: KluwerAcademic Publishers,1988,293-307.
    111. Foy C.D., Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils.2ndEdition. In: Fred Adams (ed.). Soil Acidity and Liming,1984,57-97.
    112. Führs H., Hartwig M., Molina L.E.B., et al., Early manganese-toxicity response in Vignaunguiculata L.–a proteomic and transcriptomic study. Proteomics2008,8:149-159.
    113. Galvez L., Clark R.B., Gourley L.M., et al., Effects of silicon on mineral composition of sorghumgrown with excess manganese. Journal of Plant Nutrition1989,12:547-561.
    114. Gao X., Zou C., Wang L., et al., Silicon decreases transpiration rate and conductance from stomataof maize plants. Journal of Plant Nutrition2006,29:1637-1647.
    115. Gerretsen F.C., Manganese in relation to photosynthesis. II. Redox potentials of illuminated crudechloroplast suspensions. Plant and Soil1950,11:159-193.
    116. Giannopolitis C.N., Ries S.K., Superoxide dismutase I. Occurrence in higher plants. PlantPhysiology,1977,59:309-314.
    117. Gong H., Chen K., Chen G., et al., Effects of silicon on growth of wheat under drought. Journal ofPlant Nutrition2003,26:1055-1063.
    118.González A., Lynch J.P., Effects of manganese toxicity on leaf CO2assimilation of contrastingcommon bean genotypes. Physiologia Plantarum1997,101:872-880.
    119. González A., Steffen K.L., Lynch J.P., Light and excess manganese. Implications for oxidativestress in common bean. Plant Physiology1998,118:493-504.
    120. González A., Lynch J.P., Subcellular and tissue Mn compartmentation in bean leaves under Mntoxicity stress. Aust. Journal of Plant Physiology1999,26:811-822.
    121. Grabov A., Blatt M., A steep dependence of inward-rectiyfing potassium channels on cytosolic freecalcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology1999,119:277-287.
    122. Guri A., Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolusvulgaris prior to and after exposure to ozone. Canadian Journal of Plant Science1983,63:733-737.
    123. Hammond K.E., Evans D.E., Hodson M.J., Aluminium/silicon interactions in barley (Hordeumvulgare L.) seedlings. Plant and Soil1995,173:89-95.
    124. Hattori T., Inanaga S., Araki H., et al., Application of silicon enhanced drought tolerance inSorghum bicolor. Plant Physiology2005,123:459-466.
    125. Hauck M., Paul A., Gross S., et al., Manganese toxicity in epiphytic lichens: chlorophylldegradation and interaction with iron and phosphorus. Environmental and Experimental Botany2003,49:181-191.
    126. Heath R.L., Pacher L., Photoperoxidation in isolated chloroplast: I. Kinetics and stoichemistry offatty acid peroxidation. Archives of Biochemistry and Biophysics1968,125:189-198.
    127. Hendrik F., Moritz H., Laura E.B.M., Early manganese-toxicity response in Vigna unguiculata L.–a proteomic and transcriptomic study. Proteomics2008,8:149-159.
    128. Hirschi K.D., Korenkov D., Wilaganowski N.L., et al., Expression of Arabidopsis CAX2in tobacco.Altered metal accumulation and increased manganese tolerance. Plant Physiology2000,124:125-133.
    129. Hirschi K.D., Korenkov V.D., Wilaganowski N.L., et al., Expression of Arabidopsis CAX2intobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology,2000,124:125-133.
    130. Hoen P.A., Yavuz A., Helene H.T., et al., Deep sequencing-based expression analysis shows majoradvances in robustness, resolution and inter-lab portability over five microarray platforms. NucleicAcids Research,2008,36:141.
    131. Horiguchi T., Morita S., Mechanism of manganese toxicity and tolerance of plants. VI: Effect ofsilicon on alleviation of manganese toxicity of barley. Journal of Plant Nutrition,1987,10:2299-2310.
    132. Horiguchi T., Mechanism of manganese toxicity and tolerance of plants. IV. effect of silicon onalleviation of manganese toxicity of rice plants. Soil Science and Plant Nutrition1988,34:65-73.
    133. Horiguchi T. Mechanism of manganese toxicity or tolerance of plants.Ⅱ. Deposition of oxidizedmanganese in plant tissues. Soil Science and Plant Nutrition1987,33:595-606.
    134. Horst W.J., Marschner H., Effect of silicon on manganese tolerance of bean plants (Phaseolusvulgaris L.). Plant and Soil,1978,50:287-303.
    135. Horst W.J., Fesht-Christoffers M., Naumann A., et al., Physiology of manganese toxicity andtolerance in Vigna unguiculata (L.) Walp. Journal of Plant Nutrion and Soil Science1999,162:263-274.
    136. Horst W.J., The physiology of manganese toxicity. In: Graham RD. Hannam R.J., Uren U.C., eds.Manganese in soils and plants. Dordrecht, Kluwer Publishers, the Netherlands.1988,175-188.
    137. Houtz R.L., Nable R.O., Cheniae G.M., Evidence for effects on the in vivo activity ofribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. PlantPhysiology.1988,86,1143-1149.
    138. Huang J., Wang J.F., Wang Q.H., et al., Identification of a rice zinc finger protein whose expressionis transiently induced by drought, cold but not by salinity and abscisic acid. DNA Sequence2005,16:130-136.
    139. Huang J., Yang X., Wang M.M., et al., A novel rice C2H2-type zinc finger protein lackingDLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta2007,1769:220-227.
    140. Hughes N.P., Williams R.J.P., An introduction to manganese biological chemistry. In: Graham R.D.,Hannam R.J., Uren N.C., editors. Manganese in soils and plant. Dordrecht: Kluwer Academic,1988,7-19.
    141. Husted S., Hebbern C.A., Schmidt S.B., et al., Photosystem Ⅱ stability contributes to differentialmanganese efficiency in barley genotypes. Plant Physiology.2009,150:825-833.
    142. Islam A., Saha R.C., Effects of silicon on the chemical composition of rice plants. Plant and Soil1969,30:446-458.
    143. Issa A.A., Abdek-Basset R., Adam M.S., Abolition of heavy metal toxicity on Kirchneriella hmaris(Chlorophyta) by calcium. Annals of Botany1995,75:189-192.
    144. Iwasaki K., Maier P., Fecht M., et al., Effects of silicon supply on apoplastic manganeseconcentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata(L.)Walp.). Plant and Soil2002,238:281-288.
    145. Iwasaki K., Matsumura A., Effect of silicon on alleviation of manganese toxicity in pumpkin(Cucurbita moschata Duch cv. Shintosa). Soil Science and Plant Nutrion1999,45:909-920.
    146. Jensen P.E., Bassi R., Boekema E.J., et al., Structure, function and regulation of plant photosystem I.Biochimica et Biophysica Acta2007,1767:335-352.
    147. Jones D.L., Darrah P.R., Role of root derived organic acids in the mobilization of nutrients from therhizosphere. Plant and Soil1994,166:247-257.
    148. Jones L.H.P., Handreck K.A., Silica in soils, plants, and animals. Advances in Agronomy1967,19:107-149.
    149. Jucker E.I., Foy C.D., Paula J.C., et al., Electron paramagnetic resonance studies of manganesetoxicity, tolerance, and amelioration with silicon in snapbean. Journal of Plant Nutrition.1999,22:769-782.
    150. Kanehisa M., Araki M., Goto S., et al., KEGG for linking genomes to life and the environment.Nucleic Acids Research,2008,36:480-484.
    151. Karina P.V. da C., Clístenes W.A. do N., Silicon effects on metal tolerance and structural changesin Maize (Zea mays L.) grown on a Cadmium and Zinc enriched Soil. Water Air Soil Pollut.2009,197:323-330.
    152. Kawasaki S., Borchert C., Deyholas M., et al., Gene expression profiles during the initial phase ofsalt stress in rice. Plant Cell2001,13:889-905.
    153. Kaya C., Tuna A.L., Sonmez O., et al., Mitigation effects of silicon on maize plants grown at highzinc. Journal of Plant Nutrition.2009,33:1788-1798.
    154. Kidd P.S., Llugany M., Poschenrieder C., et al., The role of root exudates in aluminium resistanceand silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L).Journal of Experimental Botany,2001,52:1339-1352.
    155. Kilili K.G., Atanassova N., Vardanyan A., et al., Differential roles of tau class glutathioneS-transferases in oxidative stress. Journal of Biological Chemistry2004,279:24540-24551.
    156. Kim D.Y., Bovet L., Maeshima M., et al., The ABC transporter AtPDR8is a cadmium extrusionpump conferring heavy metal resistance. Plant Journal2007,50:207-218.
    157. Kiribuchi K., Jikumaru Y., Kaku H., et al., Involvement of the basic helix-loop-helix transcriptionfactor RERJ1in wounding and drought stress responses in rice plants. Bioscience Biotechnologyand Biochemistry2005,69:1042-1044.
    158. Kiribuchi K., Sugimori M., Takeda M., et al., RERJ1, ajasmonic acid-responsive gene from rice,encodes a basic helix-loop-helix protein. Biochemical and Biophysical Research Communications2004,325:857-863.
    159. Kitao M., Lei T.T., Koike T., Effects of manganese toxicity on photosynthesis of white birch(Betula platyphylla var. japonica) seedlings. Physiologia Plantarum1997,101:249-256.
    160. Korshunova Y.O., Eide D., Clark W.G., et al., The IRT1protein from Arabidopsis thaliana is a metaltransporter with a broad substrate range. Plant Molecular Biology1999,40:37-44.
    161. Küpper H., Zhao F.J., McGrath S.P., Cellular compartmentation of Zinc in leaves of thehyperaccumulator Thlaspi caerulescens. Plant Physiology1999,119:305-311.
    162. Law M.Y., Charles S.A., Halliwell B., Glutathione and ascorbic acid in spinach (Spinacia oleracea)chloroplasts, the effect of hydrogen peroxide and of paraquat. Biochemical Journal,1983,210:899-903.
    163. Li J., Leisner S.M., Alleviation of Copper Toxicity in Arabidopsis thaliana by Silicon Addition toHydroponic Solutions. Journal of the American Society for Horticultural Science2008,133:670-677.
    164. Li Q., Chen F., Sun L.X., et al., Expression profiling of rice genes in early defense responses toblast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular PlantPathology2006,68:51-60.
    165. Liang Y.C., Hua H.X., Zhu Y.G., et al., Importance of plant species and external siliconconcentration to active silicon uptake and transport. New Phytologist2006,172:63-72.
    166. Liang Y.C., Shen Q.R., Shen Z.G., Effects of silicon on salinity tolerance of two barley cultivars.Journal of Plant Nutrition1996,19:173-183.
    167. Liang Y.C., Sun W.C., Si J., et al. Effect of foliar-and root-applied silicon on the enhancement ofinduced resistance in Cucumis sativus to powdery mildew. Plant Pathology,2005,54:678-685.
    168. Liang Y.C., Sun W.C., Zhu Y.G., et al., Mechanisms of silicon-mediated alleviation of abioticstresses in higher plants: A review. Environmental Pollution2007,147:422-428.
    169. Liang Y.C., Wong J.W., Wei L., Silicon-mediated enhancement of cadmium tolerance in maize(Zea mays L.) grown in cadmium contaminated soil. Chemosphere2005,58:475-483.
    170. Liang Y.C., Yang C.G., Shi H.H., Effects of silicon on growth and mineral composition of barleygrown under toxic levels of aluminum. Journal of Plant Nutrition2001,24:229-243.
    171. Liang Y.C., Zhang W.H., Chen Q., et al., Effects of silicon on tonoplast H+-ATPase and H+-PPaseactivity, fatty acid composition and fluidity in roots of salt-stressed barley (Hordeum vulgare L.).Environmental and Experimental Botany2005,53:29-37.
    172. Liang Y.C., Zhang W.H., Chen Q., et al., Effect of exogenous silicon (Si) on H+-ATPase activity,phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgareL.). Environmental and Experimental Botany2006,57:212-219.
    173. Liang Y.C., Effects of silicon on enzyme activity and sodium, potassium and calcium concentrationin barley under salt stress. Plant and Soil1999,209:217-224.
    174. Lidon F.C., Barreiroc M.G. Ramalhob J.C., Manganese accumulation in rice: implications forphotosynthetic functioning. Journal of Plant Physiology2004,161:1235-1244.
    175. Lidon F.C., Rice plant structural changes by addition of excess manganese. Journal of PlantNutrition2002,25:287-296.
    176. Lidon F.C., Teixeira M.G., Oxy radicals production and control in the chloroplast of Mn-treated rice.Plant Science2000,152:7-15.
    177. Lidon F.C., Teixeira M.G., Rice tolerance to excess Mn: implications in the chloroplast lamellae andsynthesis of a novel Mn-protein. Plant Physiology and Biochemistry2000,38:969-978.
    178. Lin C.C., Kao C.H., Effect of NaCl stress on H2O2metabolism in rice leaves. Plant GrowthRegulation2000,30:151-155.
    179. Livak K J, Schmittqen T D. Analysis of relative gene expression data using real-time quantitativePCR and the2(-Delta Delta C (T)) method. Methods2001,25:8-402.
    180. Llugany M., Lombini A., Poschenrieder C., et al., Different mechanisms account for enhancedcopper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant and Soil,2003,251:55-63.
    181. Lopez-Millan A.F., EllisD R., GrusakM A., Identification and characterization of several newmembers of the zip family of metal ion transporters in Medicago truncatula. Plant MolecularBiology2004,54:583-596.
    182. Lyubenova L., G tz C., Golan-Goldhirsh A., et al., Direct effect of Cd on glutathione S-transferaseand glutathione reductase from Calystegia sepium. International Journal of Phytoremediation2007,9:465-473.
    183. Ma C.C., Li Q.F., Gao Y.B., et al., Effects of silicon application on drought resistance of cucumberplants. Soil Science and Plant Nutrition2004,50:623-632.
    184. Ma J.F., Takahashi E., Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil1990,126:115-119.
    185. Ma J.F., Takahashi E., Functions of silicon in plant growth. In: Ma J.F., Takahashi E.(eds) Soil,fertilizer, and plant silicon research in Japan,1st edn. Elsevier Science, Amsterdam, TheNetherlands,2002,107-180.
    186. Ma Q.B., Dai X.Y., Xu Y.Y., et al., Enhanced tolerance to chilling stress in OsMYB3R-2transgenicrice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology2009,150:244-256.
    187. Macfie S.M., Taylor G.J., The effects of excess manganese on photosynthetic rate andconcentration of chlorophyll in Triticum aestivum grown in solution culture. Physiologia Plantarum1992,85:467-475.
    188. Marion M.F., Hendrik F., Hans-Peter B., et al., The role of hydrogen peroxide-producing andhydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance.Plant Physiology2006,140:1451-1463.
    189. Marrs K.A., The functions and regulation of glutathione S-transferases in plants. Annual Review ofPlant Physiology and Plant Molecular Biology1996,47:127-158.
    190. Marschner H., Mechanisms of adaptation of plants to acid soils. In: Wright R.J., Baligar V.C., andMoorman R.P.(eds), Plant-soil interactions at low pH. Proceedings of the Second InternationalSymposium on Plant-Soil Interactions at Low pH, June24-29,1990, Beckley, West Virginia, USA.Kluwer Academic.
    191. Mench M., MartinE., Mobilization of cadmium and other metals from two soil by root exudates ofZea mays L, Nicotiana tabacum L and Nicotiana rustica L. Plant and soil1991,132:187-196.
    192. Menon A.R., Yatazawa M., Nature of manganese complexes in manganese accumulator plant.Acanthopanax sciadophylloides. Journal of Plant Nutrition1984,7:961-74.
    193. Metwally A., Finkemeier I., Georgi M., et al., Salicylic acid alleviates the cadmium toxicity inbarley seedlings. Plant Physiology2003,132:272-281.
    194. Miziorko H.M., Phosphoribulokinase: Current perspectives on the structure/function basis forregulation and catalysis. Advances in Enzymology and Related Areas Molecular Biology2000,74:95-127.
    195. Monni S., Uhlig C., Hansen E., et al., Ecophysiological responses of Empetrum nigrum to heavymetal pollution. Environmental Pollution2001,112:121-129.
    196. Moons A., Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals,hypoxic stress and redox perturbations in rice roots. FEBS Letters2003,553:370-376.
    197. Moons A., Transcriptional profiling of the PDR gene family in rice roots in response to plantgrowth regulators, redox perturbations and weak organic acid stresses. Planta2008,229:53-71.
    198. Moroni J.S., Scott B.J., Wratten N., Differential tolerance of high manganese among rapeseedgenotypes. Plant and Soil2003,253:507-519.
    199. Morrissy A.S., Morin R.D., Delaney A., et al., Next-generation tag sequencing for cancer geneexpression profiling. Genome Research2009,19:1825-1835.
    200. Mukhopadhyay M.J., Sharma A., Manganese in cellmetabolism of higher plants. Botanical Review1991,57:117-49.
    201. Nable R.O., Houtz R.L., Cheniae G.M., Early inhibition of photosynthesis during development ofMn toxicity in tobacco. Plant Physiology1988,86,1136-1142.
    202. Nakano Y., Asada K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant and Cell Physiology1981,22:867-880.
    203. Negishi T., Nakanishi H, Yazaki J, et al., cDNA microarray analysis of gene expression duringFe-deficiency stress in barley suggests that polar transport of vesicles is implicated inphytosiderophore secretion in Fe-deficient barley roots. Plant Journal2002,30:83-94.
    204. Neumann D., Zur N.U., Silicon and heavy metal tolerance of higher plants. Phytochemistry2001,56:685-692.
    205. Norton G.J., Lou-Hing D.E., Meharg A.A., et al., Rice–arsenate interactions in hydroponics: wholegenome transcriptional analysis. Journal of Experimental Botany2008,59:2267-2276.
    206. Nougeira M.A., Cardoso E.J.B.N., Hampp R., Manganese toxicity and callose deposition in levaesare attenuated in mycorrhizal soybean. Plant and Soil2002,246: l-10.
    207. Nwugo C.C., Huerta A.J., Effects of silicon nutrition on cadmium uptake, growth andphotosynthesis of rice plants exposed to low-level cadmium. Plant and Soil2008,311:73-86.
    208. Ogo Y., Itai R.N., Nakanishi H., et al., Isolation and characterization of IRO2, a noveliron-regulated bHLH transcription factor in graminaceous plants. Journal of Experimental Botany2006;57:2867-2878.
    209. Ogo Y., Itai R.N., Nakanishi H., et al., The rice bHLH protein OsIRO2is an essential regulator ofthe genes involved in Fe uptake under Fe-deficient conditions. Plant Journal2007,51:366-377.
    210. Ohki K., Manganese deficiency and toxicity effects on photosynthesis, chlorophyll, andtranspiration in wheat. Crop Science1985,25:187-191.
    211. Pai P., Cecilie K.Y., Anja T.F., et al., Manganese Efficiency in Barley: Identification andCharacterization of the Metal Ion Transporter HvIRT1. Plant Physiology2008,148:455-466.
    212. Parsons J.G., Aldrich M.V., Gardea-Torresdey J.L., Environmental and biological application ofextended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure(XANE) spectroscopies. Applied Spectroscopy Reviews,2002,37:187-222.
    213. Paul A., Hauck M., Fritz E., Effects of manganese on element distribution and structure in thalli ofthe epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Environmental andExperimental Botany2003,50:113-24.
    214. Pierzynski G.M., Past, Present, and future approaches for testing metals for environmental concerns and regulatory approaches. Communications in Soil Science and Plant Analysis1998,29:1523-1536.
    215. Pignocchi C., Foyer C.H., Apoplastic ascorbate metabolism and its role in the regulation of cellsignaling. Current Opinion in Plant Biology2003,6:379-389.
    216. Pnueli L., Hallak-Herr E., Rozenberg M., et al., Molecular and biochemical mechanisms associatedwith dormancy and drought tolerance in the desert legume Retama raetam. Plant Journal2002,31:319-330.
    217. Pompella A., Maellaro E., Casini A.F., et al., Histochemical detection of lipid peroxidation in theliver of bromobenzene-poisoned mice. American Journal of Pathology1987,129:295-301.
    218. Qiu Y.P., Yua D.Q., Over-expression of the stress-induced OsWRKY45enhances disease resistanceand drought tolerance in Arabidopsis. Environmental and Experimental Botany2009,65:35-47.
    219. Rahman M.J., Kawamura K., Koyama H., Varieties differences in the growth of rice planbs inresponse to alumiriam and silicon.Soil Science and Plant Nutrition1988,44:423-443.
    220. Rea P.A., Plant ATP-binding cassette transporters. Annual Review of Plant Biology2007,58:347-375.
    221. Reiner A., Yekutieli D., Benjamini Y., Identifying differentially expressed genes using falsediscovery rate controlling procedures. Bioinformatics2003,19:368-375.
    222. Rezai K., Farboodnia T., Manganese toxicity effects on chorphyll content and antionxidantenzymes in pea plant (Pisum sativum L.c.v qazvin). Agricultural Journal2008,3:454-458.
    223. Rodrigues F.A., Benhamou N., Datnoff L.E., et a1., Ultrastructural and cytochemical aspects ofsilicon mediated rice blast resistance. Phytopathology,2003,93:535-546.
    224. Rogalla H., R mheld V., Role of leaf apoplast in silicon mediated manganese tolerance of Cucumissativus L. Plant Cell and Environment2002,25:549-555.
    225. Romero-Aranda M.R., Jurado O., Cuartero J., Silicon alleviates the deleterious salt effect on tomatoplant growth by improving plant water status. Journal of Plant Physiology2006,163:847-855.
    226. Santandrea G., Pandolfini T., Bennici A., A physiological characterization ofMn2tolerant tobaccoplants selected by in vitro culture. Plant Scice2000,150:163-170.
    227. Saldanha A.J., Java Treeview--extensible visualization of microarray data. Bioinformatics,2004,20:3246-3248.
    228. Sánchez H.J., Pérez C.A., Grenón M., SRXRF analysis with spatial resolution of dentalcalculus.Nuclear Instrumenst and Methods in Physics Research B,2000,170:211-218.
    229. Sasaki A., Yamaji N., Yolosho K., et al., Nramp5is a major transporter responsible for manganeseand cadmium uptake in rice. Plant Cell2012www,plantcell.org/cgi/doi/10.1105/tpd.112.096925
    230. Sasaki T., Matsumoto T., Yamamoto K., et al., The genome sequence and structure of ricechromosome I. Nature2002,420:312-316.
    231. Shenker M., Plessner O.E., Tel-Or E., Manganese nutrition effects on tomato growth, chlorophyllconcentration, and superoxide dismutase activity. Journal of Plant Physiology2004,161:197-202.
    232. Shi G.R., Cai Q.S., Liu C.F., et al., Silicon alleviates cadmium toxicity in peanut plants in relation tocadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation2010,1:45-52.
    233. Shi J.Y., Chen Y.X., Hunag Y.Y., et al., SRXRF microprobe as a technique for studying elementsdistribution in Elsholtzia Splendens. Micro2004,35:7-567.
    234. Shi Q.H., Bao Z.Y., Zhu Z.J., et al., Silicon-mediated alleviation of Mn toxicity in Cucumis sativusin relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry2005,66:1551-1559.
    235. Shi Q.H., Zhu Z.J., Xu M., et al., Effect of excess manganese on the antioxidant systemin Cucumissativus L. under two light intensities. Environmental and Experimental Botany2005,58:197-205.
    236. Shi X.H., Zhang C.C., Wang H., et al., Effect of Si on the distribution of Cd in rice seedlings. Plantand Soil2005,272:53-60.
    237. Sinha S., Mukherji S., Dutta J., Effect of manganese toxicity on pigment content, Hill activity andphotosynthetic rate of Vigna radiata L. Wilczek seedlings. Journal of Environmental Biology2002,23:253-257.
    238. Song A.L., Li Z.J., Zhang J., et al., Silicon-enhanced resistance to cadmium toxicity in Brassicachinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhancedantioxidant defense capacity. Journal of Hazardous Materials2009,172:74-83.
    239. Spencer D., Possingham J.V., The effect of Mn deficiency on photophosphorylation and theoxygen-evolving system in spinach chloroplasts. Biochimica et Biophysica Acta1961,52:379-381.
    240. Stoyanova Z., Zozikova E., Poschenrieder C., et al., The effect of silicon on the symptoms ofmanganese toxicity in maize plants. Acta Biologica Hungarica2008,59:479-487.
    241. Straczek A., Sarret G., Manceau A., et al., Zinc distribution and speciation in roots of variousgenotypes of tobacco exposed to Zn. Environmental and Experimental Botany2008,63:80-90.
    242. Subrahamanyam D., Rathore V.S., Influence of manganese toxicity on photosynthesis in ricebean(Vigna unguiculata) seedlings. Photosynthetica2001,38:449-453.
    243. Sultan M., Schulz M.H., Richard H., et al., A global view of gene activity and alternative splicingby deep sequencing of the human tran-scriptome. Science2008,321:956-960.
    244. Sun S.J., Guo S.Q., Yang X., et al., Functional analysis of a novel Cys2/His2-type zinc fingerprotein involved in salt tolerance in rice. Journal of Experimental Botany2010,61:2807-2818.
    245. Van Assche F.F., Clijsters H., Effects of metals on enzyme-activity in plants. Plant Cell andEnvironment1990,13:195-206.
    246. Velikova V., Yordanov I., Edreva A., Oxidative stress and some antioxidant systems in acidrain-treated bean plants protective role of exogenous polyamines. Plant Science,2000,151:59-66.
    247. Vlamis J., William D.E., Manganese and silicon interaction in the gramineae. Plant and Soil1967,27:131-140.
    248. Walia H.,Wilson C., Condamine P., et al., Comparative transcriptional profiling of two contrastingrice genotypes under salinity stress during the vegetative growth stage.Plant Physiology2005,139:822-835.
    249. Wang Y.S., Yang Z.M., Nitric oxide reduces aluminum toxicity by preventing oxidative stress in theroots of Cassia tora L. Plant and Cell Physiology2005,46:1915-1923.
    250. Wang Y.J., Zhang Z.G., He X.J., et al., A rice transcription factor OsbHLH1is involved in coldstress response. Theoretical and Applied Genetics2003,107:1402-1409.
    251. Wei W., Zhang Y., Han L., et al., A novel WRKY transcriptional factor from Thlaspi caerulescensnegatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports2008,27:795-803.
    252. Wiese H., Nikolic M., R mhel V., Silicon in plant nutrition. Effect of zinc, manganese and boronleaf concentrations and compartmentation. In: Sattelmacher B., Horst W.J.,(eds) The Apoplast ofHigher Plants: Compartment of Storage, Transport and Reactions. Springer, Dordrecht,2007,33-47.
    253. Williams D.E., Vlamis J., The effect of silicon on yield and manganese-54uptake and distributionin the leaves of barley plants grown in culture solutions. Plant Physiology1957,32:404-409.
    254. Wissemeier A.H., Horst W.J., Effect of light intensity on manganese toxicity symptoms and calloseformation in cowpea (Vigna unguiculata (L.)Walp.). Plant and Soil1992,143:299-309
    255. Wu J.Z., Maehara T., Shimokawa T., et al., A comprehensive rice transcript map containing6591expressed sequence tag sites. Plant Cell2002,14:525-535.
    256. Wu W.S., Chen B.S., Identifying stress transcription factors using gene expression and TF-Geneassociation data. Bioinformatics Biology Insights2007,1:9-17.
    257. Xie Z., Zhang Z.L., Zou X., et al., Annotations and functional analyses of the rice WRKY genesuper-family reveal positive and negative regulators of abscisic acid signaling in aleurone cells.Plant Physiology2005,137:176-189.
    258. Xie Z., Zhang Z.L., Zou X., et al., Interactions of two abscisic-acid induced WRKY genes inrepressing gibberellin signalling in aleurone cells. Plant Journal2006,46:231-242.
    259. Xu S., Wang X., Chen J., Zinc finger protein1(ThZF1) from salt cress (Thellungiella halophila) isa Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Reports2007,26:497-506.
    260. Xu S.Y., Yao Q., Wang H., et al. Accumulation and distribution ofmanganese in shoots of applecultivars with different sensitivity to manganese. Acta Hortic Sin2003,30:19-22.
    261. Xu X., Chen C., Fan B., et al., Physical and functional interactions between pathogen-inducedArabidopsis WRKY18, WRKY40and WRKY60transcription factors. Plant Cell2006,18:1310-1326.
    262. Yi K., Wu Z., Zhou J., et al., OsPTF1, a novel transcription factor involved in tolerance tophosphate starvation in rice. Plant Physiology2005,138:2087-2096.
    263. Zhu J., Verslues P.E., Zheng X.W., et al., HOS10encodes an R2R3-type MYB transcription factoressential for cold acclimation in plants. Proceedings of the National Academy of Sciences of theUnited States of America2005,102:9966-9971.
    264. Zimmerman S., Talke l., Ehrhardt T., et al., Characterization of SKTI, an inwardly rectifyingpotassium channel from potato by heterologous expression in insect cells. Plant Physiologist,1998,116:879-890.
    265. Zsoldos F., Vashegyi A., Pecsvaradi A., et al., Influence of silicon on aluminium toxicity incommon and durum wheats. Agronomie2003,23:349-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700