太阳能飞机飞行路线及溴化锂吸收式空调研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对太阳能飞机的飞行纬度和飞行方向对能够获得的太阳能辐射量的影响进行了研究,以及对应用于汽车空调的两种溴化锂制冷机组,即单效溴化锂制冷机组和两级溴化锂制冷机组进行了热力分析和研究,同时,结合太阳能集热器作为整个制冷系统的热源,对系统的最优综合性能进行了分析和研究。太阳能飞机在飞行时,飞行纬度和太阳方位角都在随时发生变化,所以本文着重讨论了每个时段使太阳能飞机获得最大辐射量的纬度和方向(太阳方位角)。由此,可以得到每天每个时间段的最佳纬度的分布,以及太阳能飞机的理想的飞行方向。
     溴化锂吸收式汽车空调以汽车发动机冷却水的热量为热源,具有油耗少、运行安全、无污染、无噪音等优点,本文主要是从热力性质上对其进行了分析。又在此基础上,结合太阳能集热器作为系统的热源,对整个系统的最优综合性能进行分析,得出了最优集热器的运行温度以及在该温度下的系统最优综合效率性能系数。
In this article, a research on how the change of latitude and direction of a solar powered long endurance aircraft effect the received solar power was developed. And on the basis of the car air conditioning, the thermal properties of the single-effect lithium bromide absorption hot-coldwater unit and two-stage lithium bromide absorption hot-coldwater unit applied in car and driven by high temperature cooling fluid of the car engine are advanced and compared. The technique of energetic optimization is employed to investigate the optimal performance of an irreversible hybrid air-conditioning system consisting of a vapor compression refrigerator cascaded with a solar-driver absorption refrigerator. During flight of a solar powered aircraft, latitude and direction are changing at all times, therefore the optimal latitude and the optimal direction at different period is developed.
    The lithium bromide absorption hot-coldwater units have many merits, such as low consumption of oil, safety in operation, pollution-free and noiseless, and their thermal properties are analysised in this article. On the basis of these results, the optimal operating temperature of the solar collector and the maximum overall coefficient of performance (COP) of the cooling modes of the system are derived.
引文
1.高峰、孙成权、刘全根.“太阳能开发利用的现状及发展趋势”,科学前沿和学术评论,23卷4期。
    2.黄飞、陶进庆.“太阳能利用大有可为”,太阳能利用,2001/4。
    3.黄飞,“太阳能利用前景广阔”,RURAL ENERGY,No2 2002 102。
    4.张鹤飞,《太阳能热利用原理与计算机模拟》,西北工业大学出版社.1990.3。
    5.喜文华,魏一康.,张兰英,《太阳能实用工程技术》,兰州大学出版社,2001.9
    6. Thomas R.Lamp,Kitt C.Reinhardt and Anthony J.Colozza, "photovoltaic power for long endurance unmanned aerial vehicles," Wright Laboratory, Philips Laboratory and Aerospace Technology Department of NYMA Corporation.
    7. Nicholas J.Colella and Gordon S.Wenneker, "Pathfinder and the Development of Solar Rechargeable Aircraft, " E&TR July 1994.
    8. Ilan Kroo, Juan Alonso and Peter Kunz, "Structural Design and Testing of Solar Powered UAV Wing," AA241X,Aircraft Design Stanford University, March 22,2002.
    9. Youngblood,J.W.and Talay,T.A., "Design of Long-Endurance Unmanned Airplanes incorporating Solar and Fuel Propulsion," AIAA 84-1430.
    10. Omourtag A.Velev, "Regenerative Fuel Cell System for An Unmanned Solar Powered Aircraft," AIAA 2002-2873.
    11. Patrick Berry, "The Sunriser-A Design study in Solar Powered Flight," American Institute of Aeronautics & Astronautics,2000-01-5507.
    12. T.TANI,N.SEKIGUCHI,M.SAKAI and D.OHTA, "Optimization of Solar Hydrogen Systems Based on Hydrogen Production Cost." Solar Energy Vol.68.No.2.,2000.
    13. David K Scheiman,David J.Brinker,David J.Bents,and Anthony J.Colozza, "Design of A GaAs/Ge Solar Array for Unmanned Aerial Vehicles," NASA TM-106870,Mareh 1995.
    14. MacCready, EB.,Lissaman,P.B.S.Morgan,W.R.,and Burke,J.D.: "Sun-Powered Aircraft Design," AIAA Paper 81-0916,May 1981.
    15. Youngblood,J.W.and Talay, T.A. : "Solar-Powered Aircraft Design for Long-Endurance,High Altitude Flight," AIAA Paper 82-0811.
    16. Raymer, D.P.Aircraft Desing: A Conceptual Approach. 1989,AIAA Education Series.
    17. Tada,H.Y.and Carter,J.R..Jr.: "Solar Cell Radiation Handbook," Jet Propulsion
    
    Laboratory Publication 77-56,November 1,1976.
    18. Hall,D.W.and Hall,S.A., "Structural Sizing of a Solar Powered Aircraft," Lockheed Missiles and Space Company, NASA Contractor Report 172313,April 1984.
    19. Abell,G.o.,Exploration of the Universe,1982,CBS College Publishing.
    20. Piszczor, M.,Specifications of Various PV Blankets,Internal Report,Photoboltaics Branch, NASA Lewis Research Center, June 1990.
    21. Raymer D.P.,Aircraft Design: A Conceptual Approach,AIAA Education Series.
    22. Anthony J.Colozza, "Effect of Power System Technology and Mission Requirements on High Altitude Long Endurance Aircraft" ,Sverdrup Technology Incorporated NASA lewis Group Brook Park,Ohio,November 1993.
    23. Stansell,J.: "Planes that Fly by the Sun," New Scientist,June 25,1981.
    24. Lorenlzen G and Pettersen J, "A new efficient and environmentally benign system for car air conditioning", International Journal of Refrigeration, 1993: 16 (1)
    25. Douss N and Meunier F, "Experimental study of cascading adsorption cycle", Chem Engsci, 1993.44 (2).
    26. Anthony J.Colozza, "Effect of Power System Technology and Mission Requirements on High Altitude Long Endurance Aircraft", Sverdrup Technology Incorporated NASA lewis Group Brook Park,Ohio,November 1993.
    27. Patrick Berry, "The Sunriser-A Design study in Solar Powered Flight", SAE international,and the American institute in Aeronautics and Astronautics,Inc.,2000-01-5507.
    28. MacCready.P.B.,Lissaman,P.B.S.Morgan,W.R.,and Burke,J.D.: "Sun-Powered Aircraft Design," AIAA Paper 81-0916,May 1981.
    29. Mostafavi M and Agnew B, "Thermodynamic analysis of combined diesel engine and absorption refrigeration unit—naturally aspirated engine with precooling". Applied Thermal Engineering, 1997, 17 (6).
    30. Akerman J R, "Automtlve air—conditioning system with absorption refrigeration", SAE Paper, 710037, 1969.
    31. Lavan Z, "A truck exhaust gas operated absorption refrigeration system", ASHRAEtrans, 1982, Part B.
    32.张鹤飞,《先进空调技术》,西北工业大学出版社,2001.11。
    33.戴永庆,《溴化锂吸收式制冷技术及应用》.机械工业出版社,1996。
    34.王如竹,丁国良,吴静怡等,《制冷原理与技术》.科学出版社.2003。
    
    
    35.肖尤明,孙恒,朱鸿梅.徐烈,刘振全,“一种新的轿车空调方案一单效溴化锂吸收式冷热水机组”.低温工程,2002.4。
    36.何嘉鹏,王东方,姜正良,鄢建平,“利用低势能源的双级溴化锂制冷循环中间压力的数学模型”,南京建筑工程学院学报,1998
    37.何嘉鹏,方贤德,“双级溴化锂制冷循环中间压力分析”,太阳能学报,1997(1)。
    38.杨世铭,《传热学》高等教育出版社,1980.13
    39.肖瑞珍,“节约用电的澳化钡吸收式制冷机节能技术”,1983,20
    40.郑爱平,赵乱成,“利用汽车废热驱动的新型汽车主调器”,制冷,1996(2).
    41. Selahattin Goktun and Ismail Dehaer, "the Optimum Performance of A Solar-Assisted Combined Absorption—Vapor Compression System for Air Conditioning", Solar Energy Vol.71 .NO.3,2001.
    42. Chinnapa J.V.C,Crees M.R, Murthy S.S and Srinivasan K, "Solar-assisted vapor compression/absorption cascaded air-conditioning systems", Solar Energy 50,1993.
    43. Chen J, "Thermodynamic analysis of the performance of a solar absorption heat transformer at maximum coefficient of performance", Int.J.Energy Res.21,1997.
    44. Hammad M.and Zurigat Y, " performance of a secondd generateon solar cooling unit" ,Solar Energy24,1998.
    45. Wu C,Chen L and Sun F, "Optimization of a solar absorption refreigerator" ,Appl.Thermal Eng, 17,1997.
    46. Yah Z and Chen J, "The maximum overall coefficient of performance of a solar-driven heat pump system" ,J.Appl. Phys,76,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700