填饲对鹅肥肝脂肪酸合成酶的表达及脂肪沉积规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅肥肝是一种高级营养食品,富含蛋白质、脂肪、维生素、卵磷脂、甘油三酯、各种酶、核糖核酸、脱氧核糖核酸和多种微量元素,具有较高的经济价值。鹅肥肝的形成受多种因素如遗传、营养、填饲方法、温度等的影响。鹅肥肝的脂肪沉积与其体内甘油三酯、高密度脂蛋白、脂肪酸合成酶活性的动态变化密切相关。从分子水平探讨填饲过程中FAS的多寡和活性的高低等动态变化规律,对控制动物肝脏脂肪的沉积具有重要意义,进而从分子生物学的角度研究酶活性在填饲诱发脂肪沉积差异中的表达与调控,不仅能明确调节机制,还可以为人类的肝病、糖尿病、心血管疾病等肝脂质代谢异常的研究提供某些依据。
     本研究以朗德鹅为研究对象,通过填饲试验及FQ-PCR等分子生物学技术,系统地研究在相同营养条件下不同填饲周龄朗德鹅的产肝性能、血清生化指标、肝组织中营养成分、不同填饲周龄FAS基因表达规律,揭示脂肪沉积规律和“肥肝”形成的某些分子机制,为进一步研究朗德鹅科学填饲及分子营养提供技术参考和依据。本研究还对鹅肥肝在不同贮藏温度和生物保鲜剂的贮藏特性进行了初步研究。通过安装电子感应称,比较准确地测定每只鹅不同周龄的填饲量,进而测定脂肪酸合成酶FAS在不同周龄的表达量及不同周龄肝内外脂肪的沉积量,从三位一体角度来研究填饲对脂肪合成酶的表达影响及其对肥肝增重的作用,为今后肥肝填饲提供有价值的技术参数。研究结果如下:
     1不同填饲周龄朗德鹅填饲量、体重增长及脂肪沉积规律
     朗德鹅平均每天及每周填饲量差异显著(P<0.05);填饲不同周龄朗德鹅肝屠比差异不显著(P>0.05),料肝比差异极显著(P<0.01)。鹅肥肝重显著增加,填饲不同周龄肥肝重分别增加了130.48%、92.98%、72.38%、23.60%,肝内脂肪沉积差异极显著(P<0.01)。填饲3周鹅肥肝即达到A级标准,平均重达805g,肝重指数增加了0.7,提高了666.67%;填饲4周鹅肥肝平均重995g,提高了847.62%。填饲第3周肝重增加迅速,且与填饲量正相关,料肝比最低,因此填饲期应选择3周为宜。
     填饲不同周龄朗德鹅屠宰体重、肠脂重、腹脂重及皮脂重等性能显著增加。随填饲周龄增加,肝外组织脂肪沉积也随之增加。填饲不同周龄朗德鹅体重分别增加了15.63%、34.51%、46.26%、47.46%,差异显著(P<0.05);肠脂重分别增加了39.85%、55.91%、31.72%、23.30%,差异显著(P<0.05);腹脂重分别增加了27.88%、36.84%、38.73%、6.53%,差异显著(P<0.05);皮脂重分别增加了341.91%、32.28%、21.07%、11.01%,差异显著(P<0.05)。
     2填饲不同周龄朗德鹅血清生化指标变化规律及肝内外脂肪沉积规律
     总胆固醇含量填饲前与填饲1周、填饲3周与填饲4周之间差异不显著(P>0.05);而填饲1周与填饲2周、填饲2周与填饲3周之间差异显著(P<0.05)。甘油三酯除填饲3周和4周之间差异不显著(P>0.05)外,填饲前、填饲1周、填饲2周、填饲3周之间差异显著(P<0.05)。高密度脂蛋白只有填饲1周和填饲2周之间差异显著(P<0.05),其它填饲周龄之间差异不显著(P>0.05)。低密度脂蛋白和极低密度脂蛋白填饲前与填饲1周、填饲3周与填饲4周之间差异不显著(P>0.05),填饲1周、填饲2周、填饲3周之间差异显著(P<0.05)。总蛋白填饲前与填饲1周、填饲2周与填饲3周之间差异不显著(P>0.05);填饲1周与填饲2周、填饲3周与填饲4周之间差异显著(P<0.05)。尿素和血糖各填饲周龄之间的水平差异不显著(P>0.05)。尿酸只有填饲前和填饲1周间差异显著(P<0.05),其它周龄之间差异不显著(P>0.05)。血清中ALT的活性在填饲前、填饲1周、填饲2周、填饲3周之间差异显著(P<0.05);而填饲3周与填饲4周差异不显著(P>0.05)。血清中AST活性在填饲1周、填饲2周、填饲3周、填饲4周之间差异不显著(P>0.05);而填饲前与填饲1周间差异显著(P<0.05)。血清中ALK的活性在填饲1周、填饲2周、填饲3周之间差异显著(P<0.05);而填饲前与填饲1周、填饲3周与填饲4周间差异不显著(P>0.05)。填饲后肝脏中水分和蛋白质含量逐渐降低,总脂、甘油三酯、不饱和脂肪酸含量明显升高,各阶段水平均与填饲前差异显著(P<0.05)。而饱和脂肪酸差异不显著(P>0.05)。鹅肥肝在填饲前、填饲不同周龄的卵磷脂含量分别为1.75%、2.40%、4.85%、6.85%、7.90%,差异显著(P<0.05);从填饲前到填饲4周含量增加4倍左右。
     3填饲不同周龄FAS基因表达及肝内外脂肪沉积规律
     FAS基因在填饲不同周龄的表达量逐渐增高。肥肝组织中FAS基因表达丰度与肥肝重、体重、肠脂、腹脂和皮脂均呈显著正相关(P<0.05)。肥肝组织中FAS基因表达量与肥肝组织中的总脂、饱和脂肪酸及不饱和脂肪酸、甘油三酯均呈显著正相关(P<0.05)。肥肝组织中FASmRNA表达量与血清中ALT、AST、ALK活性无显著相关性(P>0.05)。FAS表达量直接影响肥肝的沉积效率,肝脏FAS活性越高,肥肝性能就越好。FAS基因在鹅肥肝形成过程及体脂沉积过程中具有重要调控作用,它是促进鹅肝内外脂肪沉积的调控基因。
     4鹅肥肝的贮藏特性
     鹅肥肝在-20℃条件下冻藏效果最好。正交试验并经验证,0.05%溶菌酶、0.3%乳酸链球菌素、5%山梨酸钾的复合保鲜剂为鹅肥肝保鲜剂的效果最好。
Goose fatty liver is a senior nutritional food with high economic value, which is rich in protein, fat, vitamin, lecithin, TG, DNA, RNA and microelement. Formation of goose fatty liver is influenced by many factors such as heredity, nutrition, overfeeding method, temperature, etc. Fat deposition in goose fatty liver was closely correlated with dynamic changes of TG, HDL and activity of FAS in the body. Researching the dynamic changes of FAS and its activity during the force-feeding in molecular level is significant for controlling fat deposition in animal liver. It is very important to research expression and regulation of enzyme during the period of fat deposition induced by overfeeding from the aspect of molecular biology since it not only identifies the regulation mechanism but also provides reference for the study of disease of liver, cardiovascular and diabetes for humane abnormal fat metabolize.
     Landes goose was researched as object by means of biology technology of FQ-PCR and force-feeding experiment. Properties of liver, biochemical index of serum, nutrients in liver tissue under the same nutritional conditions was systematically studied, including expression regulations of FAS gene under different week-old of force-feeding. Fat deposition law and some molecular mechanism of formation of fatty liver" was revealed. And it can provide some consultancy and reference for further study of molecular nutrition and Landes goose scientifical force-feeding. Storage characteristics of storage temperature and biological preservative on goose fatty liver were preliminarily conducted in the paper. Amount of force-feeding of each goose in different week-old was accurately measured by electronic sensor installed. Then expression amount of FAS and deposition in and out of the livers at different ages were measured. From the perspective of the trinity, effects of force-feeding on the expression and role of weight gaining of fatty liver were investigated, which provided valuable technical parameters for future research of fatty liver fore-feeding. Results obtained were shown as follows:
     1. Regulation of the number of feedings weight and deposition of fat in Landes goose liver with different feeding weeks
     There were significant discrepants in the daily and weekly weight of feed in average (P<0.05) and the ratio of the liver to slaughtering weight (P>0.05) during feeding weeks. Simultaneously, the ratio of material to liver showed extreme significant (P<0.01).The weight of liver increased obviously by 130.48%.92.98%、72.38%、23.60%respectively from one to four feeding weeks. In addition, the livers which were 805g in average came to A standard in the third week and the index of liver weight increased 0.7 by 666.67%. The livers with 995g in average in the fourth week were increased by 847.62%. The weight of livers which had a positive correlation with the number of feeding increased obviously and the ratio of material to liver came to the least.Force-feeding three weeks was appropriate.
     The weight of slaughter, intestinal fat, abdominal fat and leather fat increased significantly after each feeding week. What's more, the deposition of extra-hepatic adipose tissue also increased significantly with time extended. The weight of goose with different feeding weeks raised by 15.63%、34.51%、46.26%、47.46%respectively(P<0.05). In addition, the weight of intestinal fat was increased obviously by 39.85%、55.91%、31.72%、23.30% respectively(P<0.05), the weight of abdominal fat also raised significantly by 27.88%、36.84%、38.73%、6.53%respectively (P<0.05),and the weight of leather fat also increased significantly by 341.91%、32.28%、21.07%、11.01%,respectively (P<0.05).
     2 The law of blood lipid metabolism and the fat deposition with different feeding weeks in Landes goose
     Although the content of TC was not significant between pre-overfeeding and first feeding week, the third feeding week and the forth (P>0.05), it was significant between first feeding week and second feeding week, the second week and the third (P<0.05). The differences of TG level were significant in different feeding weeks except the difference between the third week and the forth (P<0.05). The level of HDL was only significantly different between the first week and the second (P<0.05). The levels of LDL and VLDL were obviously different among the first, second and the third feeding week (P<0.05). The contents of total protein were significant between the first and the second feeding week, the third and the forth week (P<0.05). The urea and glucose in blood were insignificant among different weeks (P>0.05). The level of UA was significant between the pre-overfeeding and the first week (P<0.05). The activity of ALT in blood serum was significantly different among the different feeding weeks from the first to the forth (P<0.05). In addition, the activity of AST in blood serum was not significant among different feeding weeks from the first to the forth week (P>0.05). What's more, the activity of ALK in blood serum was obviously different among the first, the second and the third feeding week (P<0.05). What's more, the contents of water and protein gradually decreased. The contents of total fat、TC、USFA increased significantly(P<0.05), but SFA not obviously(P>0.05). The content of lecithin in fatty livers were 1.75%、2.40%、4.85%、6.85%、7.90%with the pre-overfeeding and the different feeding weeks (P<0.05). The content increased four times from pre-overfeeding to the forth week.
     3Correlation research between expression of FAS gene and fat deposition in and out of liver under different feeding weeks
     The expression of FAS increased regularly among the different feeding weeks. There was a positive correlation between the expression of FAS gene and the weight of fatty liver、weight、intestinal fat、abdominal fat and leather fat(P<0.05). What's more, there also was a positive genetic correlation between FAS mRNA expression in fatty liver tissue and total fat, SFA and USFA, TC (P<0.05). In addition, there was no significant correlation between FAS mRNA expression in fatty liver and ALT, AST activity in serum (P>0.05). In one word, the expression of FAS gene directly influenced the rate of deposition.The higher activity expression of FAS genes, the more perfect the fatty liver was. The result showed that FAS gene had a important regulation function in the forming of fatty liver in goose and the deposition of fat, thus it is the regulatory gene to promote the fat deposits inside goose liver.
     4 Storage characteristics of goose fatty liver
     Goose liver frozen under the condition of-20℃is best. Orthogonal test verified that compound preservative including 0.05% lysozyme,0.3%lactic acid streptocin,5%potassic sorbic acid were best compound preservative for goose fatty liver.
引文
[1]Hernier D,Rousselot-Pailley D,Peresson R,Sellier N.Influence of orotic acid and eserogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis.Biochzem Biophy Acta,1994,1211:97-106.
    [2]Pearce J.Some differences between avian and mammalian biochemistry.Int JBioch,1977,8:269-279.
    [3]Yasuhara M,Ohama T,Matsuki N.Induction offatty liver by fasting in suncus J Lipid res,1991,32:887-891. Reid I M, Roberts C J.Subclincial fatty liver in dairy cow J Irish Vet,1983,37:104-110.
    [4]Pilo B,George J C.Diurmal and seasonal variations in liver glycogen and fat in relation to metabolic status of liver and metabolic pectoralis in the migratory starling,Sturnus roseus,winter in India.Comp Biochem Physiol,Part A,1983,74:601-604.
    [5]Fournier E,Peresson Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis.Poul Sci,1997,76:599-607.
    [6]Adeli K,Mohammadi A,Macri J.Regulation of apolipoprotein B biogeneses in human hepatocytes:post transcriptional control mechanisms that determine the hepatic production of apolipoprtein B-containing lipoproteins[J].Clin .Biochem,1995,28:123-130.
    [7]Siuta-Mangano P,Janero D R,Lane D.Association and assembly of triglyceride and phospolipid with glycosylated and unglycosylated apoproteins of very low density lipoproteins in the intact liver cell[J].J Biol.Chem.1982,257:11463-11467.
    [8]Banarjee D,Redman C M.Biosynthesis of high density lipoproteibn by chicken liver:conjugation of nascent lipids with apoprotein A1[J].J Biol.Chem.,1984,99:1917-1926.
    [9]BrownMS,GoldsteinJL.Areceptor-mediatedpathwayforcholesterol homeostasis[J].Science,1986,232:34-37.
    [10]BensadownA,RothfieldA.Theformofabsorptionoflipidsinthechicken,Gallusdomesticus[J].Proc.Soc.Exp.Bi ol.Med.,1972,41:814-817.
    [11]Fraser R,Heslop V R,Murray FEM,Day WA.Ultrastructural studies on the portal transport of fat in chickens[J].Br.J Exp.Pathol.,1986,67:783-791.
    [12]YoungS G.Recent progress in understanding appolipoprotein[J].B.Circulation,1990,82:1574-1594.
    [13]Farese R J,Ruland S L,Flynn L M,Stokowski r p,Young S G.Knockout of the mouse apoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia inherozygotes[J].Proc. Nats.Acad.Sci. USA,1995,92:1774-1778.
    [14]Davis R A.Lipoprotein structure and secretion.In:Biochemistry of lipids and membranes(Vance D,Vance J eds.)[M].New comprehensive biochemistry,Vol.20.Elsevier,New Yolk,NY.1991:403-424.
    [15]Nimpf J,Stifani S,BilousPT,Schneider WJ.The somatic cell-specific low density lipoprotein receptor-related protein of the chicken.Close kinship to mammalian low density lipoprotein receptorgene family members[J].J Biol.Chem.,1994,268:212-219
    [16]Alexander C A,Hamilton R L,Havel R J.Subcellar localization of apoprotein B of plasma lipoproteins in rat liver[J]. J Cell Biol,1976,241-263.
    [17]Baker M E.Is vitellogenin an ancester of apoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase[J].Biochem.J,1988,255:1057-1060.
    [18]Tarlow D M,Watkins P A,Reed R E,Miller R Z,Zwergel E E,Lane M D.Lipogenesis and the synthesis and secretion of very low density lipoprotein by avain liver cells in nonproliferating monolayer culture.Hormonal effects[J].J Cell Biol,1977,73:332-353.
    [19]Gil G,Goldstein J L.Slaughter C A,Brown M S.Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthasefromthehamster.I.Isolationandsequencingof a full-length Cdna[J].J Biol.Chem,1986,261:3710-3716.
    [20]Briggs M R,Yokoyama C, Wang X,Brown M S.Goldstein J L.Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter.identification of the protein and delineation of its target nucleotide sequence[J].J Biol.Chem,1993,268:14490-14496.
    [21]Wang XZ,Sato R,Brown M S,Hua X,Goldstein J L.SPEBP-l,a membrane-bound transcription factor released by a sterol-regulated proteolysis[J].Cell,1984,77:53-62.
    [22]Dolphin P J,Ansari A Q,Lazier C B,Munday K A,Akhtar M.Studies on the induction and biosyntheses of vitellogeninman oestrogen-induced glycolipophosphoprotein[J].Biochem.J,1971,124:751-758.
    [23]Griffin H D,Grant G,Perry M.Hydrolysis of plasmatriacyl glycerol-rich lipoproteins from immature and laying hens(Gallus domesticus)by lipoprotein lipase in vito[J].Biochem.J.1982,206:647-654.
    [24]Schneider WJ, Carroll R,Severson DL,Nimpf J. Apolipoprote in VLDL-inhibits lipolysis of triglyceride-richlipoproteins in the laying hen[J].J Lipid Res,1990,31:507-513.
    [25]Hermier D, Quignard-Bulange A,Dugail I, Guy G, Salichon M R, Brigand L, Ardouin B, Leclercq B. Evidence of enhanced storage capacity in adipose tissue of genetically lean and fat chickens[J].J Nutr,1989,119:1369-1375.
    [26]Hermier D,Chapman M J,Leclercq B.Plasma lipoprotein profile in fasted and refed chickens of two lines selected for high or low adiposity[J].J Nutr,1984,14:1112-1121.
    [27]Legrand P,Mallard J,Bernard-Griffiths M A,Douaire M, Lemarchal P. Hepatic lipogenesis in genetically lean and fat chickens. In vitro studies[J].Comp.B iochem.Physiol.,1987,87B:189-192.
    [28]Borron D C,Jensen L S,Mccartney M G,Britton W M.Comparison of lipoprotein lipase activities in chickens and turkeys[J].Poult.Sci,1979,58:659-662.
    [29]Hermier D,Saadoun A,Salichon M R.Sellier NMRousselot-Pailley D.Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis :changes induced by frvelopment and force-feeding.Lipids,1991,6(2):331-339.
    [30]Mourot J,Guy G,Lagarrigue S,Peiniau P,Hermier D.Role of hepatic lipogenesis in the susceptibilitu to fatty liver in the geese(Anser Anser).Comp Biochem Physiol,Part B,2000,130:227-235.
    [31]Davail S,Guy GAndre J M.Metabolism in two breeds of geese with moderate or large feeding induced liversteatosis.Comp Bioch Phys.Part B,2000,135:663-675.
    [32]GuyG,HermierD,Meat productin and force-feeding ability of different types of ducks.1st World Waterfowl Symposoum. Taichungm, Tawan:December 1-4,1999,462-468.
    [33]Hermier D,Rousselot-Pailley D,Peresson R,Sellier N.Influence of orotic acid and esterogen on hepatic lipid storage and secreion in the goose susceptible to liver steatosis.Biochem Biophy Acta,1994,1211:97-106.
    [34]Griffin HD,Butterwith SC.Contribution of lipoproten lipase to differences in fatness between Broiler and layer-strain chickens.Br Pault Sci,1987,28:197-206.
    [35]Mulder M,Lombardi P,Jansen H,Van Berkel J,Frants R R.Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglucans via lipoproin liase.J Biol Chem,1993,268:9369-9375.
    [36]Girard J,Perdereau.Regulation of lipogenic enzyme gene expression by nutrients and hormones.FASEB JM,1994,8:36-42.
    [37]MuraseT,TanakaK,Lwmoto Y,Akanuma Y,KosakaK.Recciprocal changes caused by insulin and glucagon of adipose tissue lipoprotein lipase in rats in vitro.Horm Metab Res,1981,13:212-213.
    [38]Hazelwood RL.Pancreatc hormones,insulin/glucagons molar ratio and somatostatin as deerminants of avian carbohydrate metabolism.J Exp Zool,1984,232:647-652.
    [39]刘祥友.日粮粗纤维水平对6-10周龄肥肝鹅生长性能的影响和朗德鹅与溆浦鹅肥肝脂肪沉积规律的比较研究[D].华中农业大学博士学位论文,2005.
    [40]PoujardieuR.,RouvierR.Crossanceetaptitudeaugavagede3genotypesd'oies.Ann Zootech,1994,43:197-211.
    [41]SalichonMR,GuyG,PeressonR,HermierD.Hepatic lipid metabolism in relation to fatty liver production in the goose.Euto Symp Waterfowl,Nantes,1997.
    [42]杨正梅.玉米、糙米和小麦型饲粮对骡鸭肥肝生产性能的影响[D].硕士学位论文:华中农业大学,2004.
    [43]李翔.糙米型饲粮对鹅鸭肥肝性能影响及朗德鹅肥肝脂肪沉积规律的研究[D].华中农业大学,2005.
    [44]Lucas C G,Ridont J H.Transmethlation and biosynthesis of the methyl group.In:Progress in chemistry of fats and other lipids.London:Pergamon Press,1967:102-112.
    [45]Vance J E,Vance D E.The role of phosphatidylcholine biosynthesis in the secretion of lipoproteins from hepatocytes.Can J Biol,1985,63:870-881.
    [46]Gabarrou J F,Salichon M R.Hybrid ducks overfed with boiled corn develop an acute heoatic seatosis withdecreasedcholineand polyunsaturated faty acid level in phospholipid.Reprod Nutr-Dev,1996,36:473-484.
    [47]张子仪主编.中国饲料学[M].北京.农村出版社,2000:262-265.
    [48]郑国华,黄会营.国内外鹅肥肝的生产与科研[J].江西农业科技,1991(6):37-38.
    [49]Weiss L,Hoffmann GE,Schreiber R,Andres H.Fatty-acid biosynthesis in man,a pathway of minor importance.Purification,optimal assay conditions,and organ distribution of fatty-acid synthase[J].Biol Chem Hoppe Seyler,1986,Sep,367(9):905-912.
    [50]Kameda K,Goodridge AG.Isolation and Partial Characterization of the Gene for Goose Fatty Acid Synthase[J].Biol Chem,1991,266:419-426.
    [51]Sul HS,Wang D.Nutritional and hormonal regulation f enzymes in fat synthesis:Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription[J].Annual Review of Nutrition.1998,18:331-351.
    [521]Moustaid N,Jones B H,Taylor J W.Insulin increases lipogenic enzyme activity in human adipocytes in primary culture[J]. JNutr,1996,126:865-870.
    [53]ClarkeSD,etal.Nutritional control of rat liver fatty acid synthase and S14mRNA abundance[J].J Nutr,1990,120:218-241.
    [54]Coup C,PerdereauDP,Ferre Y,etal.Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning[J].Am J Physiol,1990,258:126.
    [55]Guard J D,Perdereau F,Foufelle C,etal.Regulation of lipogenic enzyme gene expression by nutrients and hormones[J]. FASEB J,1994,8:36-42.
    [56]Kameda K,Goodridge AG.Isolation and Partial Characterization of the Gene for Goose Fatty Acid Synthase[J].Biol Chem,1991,266:419-426.
    [57]欧阳建华,谢亮,刘杰,等.鸡FAS基因2个位点的多样性及其与体重、脂肪沉积性状的相关性[J].畜牧兽医学报,2007,38(1):25-30.
    [58]张磊,吴伟,高光,等.脂肪酸合成酶(FAS)的SNP与鹅肥肝性能关联研究[J].吉林农业大学学报,2009,31(1):77-80.
    [59]Nathalie LF, Catherine EK, Powell RS.etal.Characterization of the chicken fatty acid synthase gene 5' part and promoter region[J].Eur J Biochem,1996,240:323-330.
    [60]Marrube G, Rozen F, Pinto GB,etal.Newpolymor-phism of FASN gene in chicken [J]Apple Genet,2004, 45:453-455.
    [61]ChiralaS,WakilSJ.Amino-terminal blocking group and sequence of the animal fatty acidsynthase[J].Arch Biochem Biophys,1994,314:45-49.
    [62]BackDW,GoldmanMJ,Fisch J E,et al.The fatty acid synthase gene in avian liver[J].J Biol Chem,1986,261:4190-4197.
    [63]HolzerKP,Liu W,Hammes GG.Molecular cloningand sequencing of chicken liver fatty acid synthase cD-NA[J].Proc Natl Acad Sci USA,1989,86(12):4387-4391.
    [64]Huang WY,Chirala S,Wakil SJ.Amino-terminal blocking group and sequence of the animal fatty acidsynthase[J].Arch Biochem Biophys,1994,314:45-49.
    [65]Yuan Z Y,Liu W,Hammes G G.Molecular cloning and sequencing of DNA complementary to chicken liver fatty acid synthase Mrna.Proc Natl Acad Sci USA.1988,85(17):6328-6331.
    [66]田维熙,董妍,权晖,等.不同生长期蛋鸡的体脂水平和肝脏脂肪合成酶活性的关系[J].生物化学杂志,1996,2:324~326.
    [67]Jennen DG, Vereijken A L, Bovenhuis H, etal. Detection and localization of quantitative trait loci affecting fatness in broilers[J]. Poult Sci,2004,83(3):295
    [68]Sourdioux M, Douaire M, Delabrosse Y. DNA poly-morphism of lipogenesis genes and analysis of link age with fatness in turkey [J]. Poultry,1996,75:1018-1026.
    [69]单体中,汪以真,刘建新.不同日龄猪腹脂中脂肪酸合成酶(FAS)基因表达规律的研究[J].畜牧兽医学报,2006,37(7):662-666.
    [70]彭祥伟,范守城,等.鹅肥肝的生产及其FAS活性测定[J].中国家禽学报,2005,9:48-51.
    [71]周长海,田中桂一.肉鸭肝脏脂肪酸合成酶活性及脂肪酸合成途径的研究[J].东北师大学报(自然科学版),2004,36(3):79-84.
    [72]王宇祥,牟彦双,王启贵,等.鸡脂肪酸合成酶基因单核苷酸多态性与体脂性状的相关研究[J].中国动物遗传育种研究进展,中国哈尔滨:中国农业科学技术出版社,2005,424-42.
    [73]Baarends WM, Uilenbroek J T, Kramer P, etal. Anti-Mullerian hormone and anti-Mullerian hormone type Ⅱ receptor messenger ribonucleic acid expression in rat ovaries during postnatal development,the estrous cycle and gonadotropin-induced follicle growth. Endocrinology,1995,136:4951-4962.
    [74]熊文中,杨凤,周安国.猪重生长激素对不同杂交肥育猪脂肪代谢调控的研究[J].畜牧兽医学报,2001,32(1):1-4.
    [75]Tian WX,Dong Y,Quan H,etal.The dependence of fat level of hen on activity of fatty acid synthase in lever on different ages[J].Chinese Biochemical Journal.1996,12(2):234-236.
    [76]Donkin SS,Chiu PY,Yin D,etal.Porcine somatotropin differentially down-regulates expression of the GLUT4 and fatty acid synthase genes in pig adipose tissue[J].JnNutr.1996,126:2568-2577.
    [77]Mildner AM,Clarke SD.1991.Porcine faty acid synthase:Cloning of a complementary DNA,tissue distributionofitsmRNAandsuppressionofexpressionbysomatotropinand dietary protein[J].JNutr,]21:900-907.
    [78]WangD,Sul HS.Upstream stimulatory factor binding to the E-box at-65 is required for insulin regulation of the fatty acid synthase promoter[J].JBiol.Chem,1997,272(42):26367-26374.
    [79]Chen BJ,etal.Efficiency of tryptophan-niacin conversion in chickens and ducks[J].Poul.Sci.1989,68-77.
    [80]Yin D,Clarke SD,Peters JL,etal.Somatotrop independent decrease in fatty acid synthase abundance in 3T3-F422AadipocytesistheresultofadecreaseinbothgeneranscriptionandmRNAstability[J].Biochem.J,1998,33 1(3):815-820.
    [81]Stapleton CF,Coleman T,Goforth R.Physiologic concentrations of glucose regulate fatty acid synthase activityinHepG2cellsbymediatingfattyacidsynthasemRNA stability[J].J Biol.Chem.,1993,268(10):6961-6970.
    [82]宁章勇,赵德明,杨建民,等.实时荧光定量PCR检测PrP基因表达标准品质粒和标准曲线的 构建[J].中国兽医学报,2005,25(6):611-613.
    [83]严菊英,卢亦愚,冯燕,等.Taq-man荧光定量快速检测甲型流感病毒[J].中国人兽共患病杂志2005,21(2):169-172.
    [84]Makino S and Cheun H. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores [J] Microbio Methods,2003,53(2):141-147.
    [85]Hiroshi S,Kazue O,Yonemura K,et al.Quantitative PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells:implication of equimolar target and competitor end products[J].Clinica Chimaica Acta,2003,328(1-2):147-153.
    [86]Alexandra G,Gilles F,Christiane C,etal.Tracking T cell clonotypes in complex T lymphocyte populations byreal-timequantitativePCRusingfluorogeniccomplementaritydeterminingregion-3-specific probes[J] Journal of Immunological Methods,2002,270(2):269-280.
    [87]张宏福,张子仪编著.动物营养参数与饲养标准.北京:中国农业出版社,1998:22-30.
    [88]朱丽慧,武艳军,关佳佳,等.填饲对朗德鹅血液指标、组织营养成分以及肝脏组织学的影响[J].中国家禽,2010,32(3):28-31.
    [89]周淑世,牛淑玲,邢沈阳,等.不同脂肪源填饲对鹅肥肝卵磷脂含量影响及其经济效益分析[J].吉林农业科学,2008,33(3):41-43.
    [90]刘荣建,李敏,刘跃民,等.鹅肥肝中卵磷脂提取工艺研究[J].河北工业科技,2004,21(2):10.
    [91]鲍明道,王亚琴,陈景葳,等.鹅肥肝性状与血清蛋白的变化规律研究[J].浙江畜牧兽医,2009,5: 1-2.
    [92]蒋立.填饲诱导鹅鸭肥肝形成差异及调控肝极低密度脂蛋白-甘油三酯组装与分泌相关基因的表达研究[D].四川农业大学,2005.
    [93]方文,胡鸿.血清胆碱酯酶活性在肝病时的变化及其相关性[J].贵阳医学学报,1999,24(12):362-364.
    [94]苏胜彦,李齐发,陈睿,等.填饲对朗德鹅产肝性能、肝脏组织学和脂生成基因表达水平的影响[J].中国农业科学,2009,42(7):2523-2530.
    [95]Favarger P.Adipose tissue[A].In:RenoldAE,Cahill C F.Handbook of physiology,section 5[C].Washington D C:Am Physiol Soc,1965,19-25.
    [96]RomsosDR,AlleeGL,LeveilleGA.Alloxandiabetesinthepig(Susdomesticus).Responsetoglucose,tolbutami de and insulin administration[J].Proc Soc Exp Biol Med,1971,40(3):557-568.
    [97]郑建,林松毅,徐彩娜,等.鹅肥肝中重要物质测定及卵磷脂提取[J].食品科学,2007,28(11):267-270.
    [98]Nogalska A,Swierczynski J.The age-related differences in obese and fatty acid synthase gene expression in white adipose tissue of rat[J].Biochemical et Biophysica Acta,2001,1553:73-80.
    [99]ClayFSemenkovich.Regulationoffattyacidsynthase(FAS)[J].Progressin Lipid Research.1997,36(1):43-53.
    [100]刘涛.不同能量水平日粮对绵阳脂肪酸基和肥胖基因表达的影响[D].甘肃农业大学,2007.
    [101]Sara S Reiter,Charles HC Halsey,Stronach B M. Lipid metabolism related gene expression profiling in liver,skeletal muscle and adipose tissue in crossbred Duroc and Piet rain Pigs.Comparative Biochemistry and Physiology,2007(Part D2):2002-2006.
    [102]陈舜胜,彭云生,严伯奋.溶菌酶复合保鲜剂对水产品的保鲜作用[J].水产学报,2001,25(4):254-257.
    [103]马美湖等.冷却肉生产中保鲜技术的研究——溶菌酶、NISIN复合性保鲜试验[J]:.食品科学,2003,24(4):74-82.
    [104]陈文,黄艳群,周丽红,等.鹅肥肝的生产关键技术[J].中国家禽,2006,28(4):51-53.
    [105]刘建平.新鲜鹅肥肝的超高压保鲜方法[J].CN1659982.
    [106]刘骁,潘迎捷,谢静.生物保鲜剂在肉制品保险中的应用[J].湖南农业科,2010,19(88):91-94.
    [107]刘冰冰,杨文鸽,徐大伦,等.电子束冷杀菌对美国红鱼冰藏品质的影响[J].食品与发酵工业,2010,36(8):161-164.
    [108]王永刚,施洋.气调保鲜对猪肉保鲜效果研究[J].畜牧与饲料科学,2010,31(10):81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700