中低品位胶磷矿柱式浮选过程强化与短流程工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着富矿资源的匮乏,我国将进入大规模开发利用中低品位胶磷矿时代。胶磷矿中有用矿物颗粒细、矿物嵌布紧密、有害杂质较多,导致浮选入料微细粒含量高、泥化程度高,恶化了分选环境,使浮选过程受到干扰。传统浮选设备在处理该类矿石时,暴露出流程结构冗长、浮选成本高的问题。浮选柱技术通过矿化方式的革新,提高了微细颗粒的矿化效果,为微细粒矿物的高效分选创造了条件。利用浮选柱技术实现我国胶磷矿高效分选有良好的前景。研究契合我国胶磷矿特点的高效柱式分选设备、工艺是促进胶磷矿选矿技术进步的重要课题。
     论文以研究胶磷矿的工艺矿物学特性为起点,分析了有用矿物的矿物学特征、矿石解离过程特征和粒度分布范围,指出胶磷矿高含泥量和近似“W”型粒度分布的基本特征,进一步揭示了“微细粒主导、高含泥”对胶磷矿分选过程的显著影响。
     胶磷矿可浮性特征研究以浮选速度试验为主要研究手段,通过进行胶磷矿浮选动力学特性研究,揭示出胶磷矿浮选过程可浮性“非线性”分布的重要特征。以此为依据,以矿化方式与可浮性相适配为思想,设计出以多流态梯级强化为特色的胶磷矿柱式高效分选过程。
     以品位分布为研究手段,分析了胶磷矿柱式浮选过程各分选区域作业特征,在研究前人柱式浮选动力学理论模型的基础上,借鉴串槽模型推导出了胶磷矿柱式轴向品位分布模型。根据试验数据确定了模型中的参数,通过计算表明,该模型模拟结果和实际值较吻合。
     论文在研究浮选过程可浮性特征的指导下,进一步研究了胶磷矿浮选过程粒级浮选特征。通过研究各粒级浮选速度变化规律,揭示了胶磷矿粒级浮选前“细”后“粗”的过程特征。基于此,在分析粗、细粒级矿化过程特点的基础上提出了胶磷矿的粒级“分步”浮选过程:根据浮选过程粒级浮选的时间分布特征,以强化和调整为手段,通过改变紊流强度、气泡特性、泡沫层高度等针对性作业参数实现胶磷矿粒级的分步强化和浮选,在高效柱式分选过程的框架下,建立粗、细粒级有针对性强化的高效子过程,实现了胶磷矿全粒级的高效浮选。至此形成了胶磷矿高效浮选设备系统、工艺模式雏形:基于可浮性过程特征的整体柱式高效过程和基于粒级浮选特征的分过程。
     开展了中低品位胶磷矿柱式分选试验研究。研究了不同类型胶磷矿的柱式分选工艺:
     浮选柱分选高镁胶磷矿,通过单段反浮选获得了精矿品位为P_2O_5 31.09%、MgO 0.79%,精矿回收率93.27%的良好指标。与同期浮选机生产相比,在给矿品位和精矿品位基本相同的情况下,P_2O_5回收率提高了4个百分点以上;
     浮选柱在处理多矿区混合钙(硅)质胶磷矿时,单段浮选工艺精矿指标为:P_2O_5 29.61%,MgO 0.92%,回收率85.58%,单段工艺在处理难选胶磷矿时指标不甚理想,但粒级分步浮选结果较好。粒级分步浮选借助一粗一精流程在难选中低品位胶磷矿中分选出了高质量的精矿,精矿品位达到P_2O_5 30.01%、MgO 0.61%,回收率达到了89.10%。与槽式系统相比,柱式系统分选指标优势明显,精矿P_2O_5含量提高了0.86个百分点,回收率提高了1.44个百分点,同时浮选药剂成本降低了20%以上;
     利用浮选柱分选硅钙质胶磷矿,在给矿品位相近情况下,浮选柱正-反两段流程可获得品位29.78%、回收率82.16%的磷精矿,精矿回收率比浮选机系统提高了2.69个百分点;精矿品位提高了1.62个百分点。
     柱式系统不仅实现了流程结构的精简还有效地降低了浮选成本,为我国胶磷矿高效分选提供了一种新的技术途径。
     该论文有图90幅,表71个,参考文献159篇。
With the rich ore is decreasing dramatically, China will take advantage of low grade cellophane by wholesale. Useful minerals of fine particles, distribution of tightness, and lots detrimental impurities lead to high content of fine particles and argillization, which deteriorate the separation environment and disturb the floatation process. Traditional floatation equipments expose problems of lengthy flowage structure and high cost dealing with ores of this kind. The innovation of mineralization patterns improves the mineralization effectiveness and brings about requirement for high-efficient separation dealing with fine minerals. There is a well prospect of high-efficient cellophane separation by using column floatation technology. Studies on high-efficient column separation equipment and process are important issues for promoting cellophane preparing technology.
     This paper starts with researches on cellophane process mineralogical characters, then analyze the mineralogical characters of useful minerals, dissociation process features and size distribution range. It points out high silt content and similarly“W”size distribution features, and moves forward to proclaim the notable effect on cellophane separation process by factors of leading fine fractions and high silt content.
     With the implement of floatation-velocity experiments, experimental study proceeds on the flotation dynamical characteristics of comprehensive size fraction, which proclaims the major characteristic "nonlinearity" distribution of cellophane process floatability. Based on this, coupling mineralization pattern and floatability, high-efficient column process for cellophane separation is proposed with the characteristics of multi-flow and stair-intensification.
     Features of each separation area have been studied in cellophane column flotation process by researching on grade distribution. Based on the researches of column floatation dynamics model done, the cellophane column axial grade distribution model is finally deduced taking example by the channeling model, of which the model parameters have been determined in accordance with experiment data. It shows that the model result is quite identical to the actual value by calculation.
     This paper takes further study on cellophane floatation features of size fractions at the guidance of researching on process floatability. Through the study of floatation speed changing rules of different size fraction, it proclaims the“first fine then coarse”process character in cellophane fraction floatation. In allusion to fraction floatation, substep floatation process is pointed out based on mineralization process features of fine and coarse fractions. According to the temporal distribution in fraction flotation process, substep floatation is intensified by regulation of turbulence intensity, bubble features, froth height and other parameters. With the framework of column separation process, floatation of all fractions is more high-efficient by the establishment of intensified sub-process. High-efficient floatation equipment and process model rudiment are constructed: the column high-efficient separation process based on features of process floatability and the sub-process based on characters of fraction floatation.
     Column separation experiments of low grade cellophane and column separation process for different kinds of cellophane are carried out as follows:
     Through one-section reverse floatation, concentrate containing P_2O_531.09%、MgO 0.79% and recovery rate of 93.27% can be achieved dealing with the high magnesium cellophane by column separation.;Comparing with corresponding floatation cell product, recovery of P_2O_5 is increased more than 4%.
     Through one-section reverse floatation, concentrate containing P_2O_529.61%、MgO 0.92% and recovery rate of 85.58% can be achieved dealing with the calcium-silicon cellophane by column separation. Based on One-section process is difficult to deal with cellophane hard to separate.;Fraction substep floatation researches on this ore have been conducted by applying one roughing one refining process. Concentrate containing P_2O_530.01%、MgO 0.61% and recovery rate of 89.10% can be obtained, which increases 0.86% P_2O_5 content and 1.44% recovery rate comparing with cell system result. And the floatation reagent cost also decreases more than 20% meanwhile.
     With run-of-mine of similarly grade using column separation, concentrate containing P_2O_5 29.78% and recovery rate of 82.16% can be achieved by applying one straight one reverse process, which increases 1.62% P_2O_5 content and 2.69% recovery rate comparing with cell system result.
     With the utilization of column system, not only the process structure is simplified but also the floatation cost is reduced effectively, which provide a new technique channel for high-efficient separation dealing with domestic cellophane.
     There are 90 pictures, 71 charts and 159 reference documents.
引文
[1]张卫峰.中国磷矿资源开发利用及其对磷肥产业竞争力的影响[D].北京:中国农业大学,2005:1-3.
    [2]孙洪丽,刘全军,林文军.我国磷矿发展现状及可持续性发展[J].云南冶金,2006(35)4:13-15.
    [3]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005:638-639.
    [4]余永富,葛英勇,潘昌林.磷矿选矿进展及存在的问题[J].矿冶工程2008(2)29-33.
    [5]高永峰.我国磷矿资源的特点及加工利用建议[J].化学工业.2007(11):1-6.
    [6] R.C.Guimara, A.C.Araujo, A.E.C.Peres.Reagents in igneous phosphate ores flotation [J].Minerales Engineering 2005 (18):199-204.
    [7]甘顺鹏.难选胶磷矿新型高效复配脱镁捕收剂研究[D].武汉:武汉理工大学,2007.
    [8] H西斯.磷酸盐矿石浮选药剂评述[J].国外金属矿选矿,2003(10):8-13.
    [9]朱建光.2002年浮选药剂的进展[J].国外金属矿选矿,2003(2):7.
    [10] El-Shall H,Sharma R,Abdel-Khalek NA. Column flotation florida phosphate:an optimization study[J].Minerals and Metallurgical Processing,2001,18(3):142-146.
    [11]戢峻,王金,宋弘,等.硅-钙(镁)质胶磷矿柱式分选工艺研究[J].化工矿物与加工,2010,12:4-7.
    [12]中国化学矿业协会.我国重要化工矿物矿产国土资源调查评价需求分析研究[R].北京:国土资源经济研究院,2010.
    [13]李耀基,欧志兵.胶磷矿开发利用技术创新的回顾与展望[J].武汉工程大学学报,2011(33)3:1-4.
    [14]翟爱峰.基于可浮性过程特征的硫化铜矿柱式分选研究[D].徐州:中国矿业大学,2008.
    [15]刘炯天,曹亦俊,王永田,等.“十一五”国家科技支撑计划课题实施方案论证报告:大型柱式高效分选设备及短流程分选工艺开发[R].徐州:中国矿业大学浮选柱研究中心,2008.
    [16] USGS.Mineral Commodity Summaries 2009,United States Government Printing Office,Washington: 2009:120-122.
    [17] USGS. Mineral Commodity Summaries 2010,United States Government Printing Office, Washington: 2010:118-120.
    [18] USGS. Mineral Commodity Summaries 2011,United States Government Printing Office,Washington: 2011,118-120.
    [19]夏学惠.中国沉积磷矿床分布特征及资源潜[J].武汉工程大学学报,2011,33(2):6-11.
    [20]刘建雄.我国磷矿资源特点及开发利用建议[J].化工矿物与加工,2009,(3):36-39.
    [21]刘代俊,蒋绍志,罗洪波,等.我国磷矿资源贫化趋势与对策探讨[J].磷肥与复肥,2005,20(1):6-9.
    [22]张文学.我国磷矿资源开发利用及趋势[J].武汉工程大学学报2011,33(2):1-5.
    [23]任清宇,姚金蕊.中国磷矿资源的特点与开发策略[J].矿业快报,2006(2):1-4.
    [24]余永富.关于磷矿资源持续开发的几点建议[J].科技导报,2008,26(7).
    [25]刘代俊,蒋绍志,罗洪波,等.中国磷矿资源贫化危机与挑战[J].无机盐工业,2005,37(5):1-4.
    [26]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊,2006,52(1):21-23.
    [27]李成秀,文书明.我国磷矿选矿现状及其进展[J].矿产综合利用,2010,(2):22-25.
    [28]黄志良,刘羽.磷灰石矿物材料[M].北京:化学工业出版社,2008.
    [29]陈延成.建议不再沿用“胶磷矿”这一矿物惯用名称[J].化工地质,1994,03.
    [30]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,20(5):1-10.
    [31] Rodrigues AJ, Brandao PRG The effect of crystal chemistry properties on the floatability of apatite[C] Batterham Proceedings of theⅩⅧIMPC Parkville: The Australasian Institute of Mining and Metallurgy Clunies Ross House, 1993:1479–1485.
    [33] R.Houo.Beneficiation of phosphatic orcs through flotation:Review of industrial applications and potential developments Int.J.of Miner.Prov.1982,9,353-384.
    [34]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1987:196-198.
    [35] K.Hanmunantha etal.Studies on the adsorption of oleate from aqueous solution onto apatite, [C].ⅩⅥInt.Miner.Proc.Congr.1988.
    [36]钟康年.不同成因磷灰石可浮性[J].武汉化工学院学报,1991,13(3):33-43.
    [37] Somasundaran P,et al.Mineral-solution equilibria in sparingly soluble mineral system[J]Colloids and Surfaces,1985,15:309-333
    [38]邵绪新,郭梦熊.溶液离子在胶磷矿和白云石表面的吸附特性及其对分选的影响[J].有色金属,1993,3:14-18.
    [39]邵绪新,杜泽学,郭梦熊,等.胶磷矿与白云石分离的溶液化学[J].化工矿山技术,1993,22(3):33-38.
    [40]华萍,罗廉明.磷矿物的溶解与浮磷药剂的选择[J].化工矿山技术,1993,24(1):49-51.
    [41]孙洪丽,岳辉,刘全军.磷矿脱镁降硅进展及趋势[J].矿冶,2006(6):24-26.
    [42]选矿设计手册编委会.选矿设计手册[M].北京:冶金工业出版社,1990:212-224.
    [43]桑红源,张福更.胶磷矿浮选工艺[J].天津化工,2008,22(5):43-44.
    [44]肖云汉.国外钙质磷矿选矿研究概况(下) [J].化工矿山技术,1981,2:57-59.
    [45]孙华峰.重介质旋流器在分选磷矿石中的应用[J].选煤技术,2006,4:54-56.
    [46]罗惠华.湖北宜昌中低品位胶磷矿选矿工艺探讨[J].矿冶,2007,16(4):10-13.
    [47]杨敖,杨利萍.磷矿的选矿[J].矿产综合利用,1997,6:13-16. 2008.
    [49]李华大.光电分选机拣选开阳磷矿石[J].化工矿山技术,1984,5.
    [50]李惠民.浅谈滇池地区磷矿擦洗脱泥工艺[J].化工矿山技术,1986,5.
    [51]辜国杰.中低品位硅钙质胶磷矿富集技术探讨[J].化工矿物与加工,2002,5:1-4.
    [52] Prasad, M.,Maajmudar, A.K., Rao, T.C.,Reverse ?otation of sedimentary calcareous/dolomitic rock phosphate ore––an over-view.[J] Min. Metall. Process. 2000. 17 (1), 49–55.
    [53] Hanna, H.S., Somasundaran, P.,Flotation of salt-type minerals. In: Fuerstenau, M.C. (Ed.),Flotation:Gaudin Memorial 1976,1:197–272.
    [54] I.J.Anazia, J. Hanna, New ?otation approach for carbonate phosphate separation [J].Minerals and Metallurgical Processing 1987,12:196–202.
    [55] Johnston,D.J., Leja,J.,Trans. Inst.[J]Min. Metall. 1985,C315–C326.
    [56] J.Hanna.用脂肪酸从碳酸盐和含硅矿石中选择性浮选磷酸盐的新工艺[J].国外金属矿选矿,1992,7:31-38.
    [57]高惠民,许洪峰,荆正强,等.湖北某胶磷矿反浮选试验研究[J].化工矿物与加工,2008,2:4-7.
    [58]郑其.胶磷矿的反浮选[J].中国矿业,1998,7(2):59-62.
    [59]魏祥松.胶磷矿反浮选白云石研究及工业前景[J].中国矿业,1992,12(4):31-34.
    [60] Giesekke, E.W.,Florida phosphate rock. In: Weiss, N.L. (Ed.),SME Mineral ProcessingHandbook.SME, 1985,21:1–18.
    [61] Zhang,P.,Yu, Y., Bogan,M.,.Challenging the‘Crago”’double ?oat process ii. Amine-type-fatty acid ?otation of silicious phosphates[J]Minerals Eng. 1997,10 (9):983–994.
    [62]钱押林.某硅钙质磷块岩双反浮选工艺研究[J].化工矿物与加工,2006,1:2-8.
    [63]葛英勇,甘顺鹏,曾小波.胶磷矿双反浮选工艺研究[J].化工矿物与加工,2006,8:8-10
    [64]骆兆军,王文潜,钱鑫.磷矿浮选进展[J].化工矿物与加工,1997,7:1-3.
    [65] Marabini A M,Ciriachi M,Plescia P,etal.Chelating reagents for flotation [J].Minerals Engineering,2007,20:1014-1025.
    [66]李成吾,李勇,左继成,等.磷矿捕收剂研究进展[J].有色矿冶,2007,4:26-29.
    [67]骆兆军,钱鑫,王文潜.磷矿捕收剂的发展动向[J].云南冶金,1999,28(2):17-20.
    [68]罗廉明,华萍.抗硬水性捕收剂的合成及浮选性能的研究[J].湖北化工,1999,16(4):9-11.
    [69]罗廉明.一种新型磷矿浮选捕收剂[J].武汉化工学院学报,1996,18(1):35-38.
    [70]周贤,张泽强,池汝安.脂肪酸甲酯磺酸钠的合成及其磷矿浮选性能评价[J].化工矿物与加工,2010.39(1):1-3.
    [71]周贤,王华,彭光菊,等.MES的合成及其磷矿浮选性能评价[J].武汉工程大学学报,2009,31(1):1-3.
    [72]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南大学出版社,1996
    [73]黄齐茂,邓成斌,向平,等.α-氯代脂肪酸柠檬酸单酯捕收剂合成及应用研究[J].矿冶工程,2010,30(2):31-34.
    [74]黄齐茂,马雄伟,肖碧鹏,等.α-氨基酸型磷矿低温浮选捕收剂的合成与应用[J].化工矿物与加工,2009,38(7):1-4.
    [75] USPat.No.4186038[S].1980.
    [76]袁耀瑜,彭荣善.捕收剂Y901的选磷实践[J].化工矿山技术,1993,22(5):27.
    [77]李冬莲,张央.宜昌中低品位磷矿工艺流程试验研究[J].武汉工程大学学报,2010,32(11):54-57.
    [78]罗廉明,刘鑫,刘洋,等.磷矿反浮选碳酸盐脉石矿物捕收剂研究[J].化工矿物与加工,2006,35(12):6-7.
    [79]寇钰,孙体昌,Tao.D.胺类捕收剂在磷矿脉石石英反浮选中的应用及机理[J].化工矿物与加工,2010,39(2):12-16.
    [80]张红茹.反浮选脱硅捕收剂研究[J].化工矿物与加工,1998,27(4):10-11.
    [81]周叔亮译.美国西部磷矿应用碳酸盐—二氧化硅浮选技术[J].化工矿山译丛,1985(1):29-34.
    [82] Sis H. Chander S.Reagents used in the flotation of phosphate ores: a critical review[J].Minerals Engineering,2003(16):577-585.
    [83] Houot R,Jousemet R,Trace J,et al.Selective flotation of phosphatic ores having a siliceous and/or carbonated gangue[J].International Journal of Mineral Processing,1985(14):245-264.
    [84] Hsieh,Shuang shii.Beneficiatioin of a Dolomitic Phosphate Pebble from Florida[J].Ind.Eng.Chem.Res.,1988,27(4):594.
    [85] Smani M S,et al.Beneficiation of sedimentary Moroccan phosphate ores[J].Transactions of Society of Mining Engineers,AIME,1975,(6):256.
    [86]邵绪新.胶磷矿浮选化学—胶磷矿和白云石的捕收与抑制[D].北京:中国矿业大学北京研究生部,1990.
    [87]王向荣.低品位胶磷矿浮选工艺研究[D].武汉:武汉理工大学,2005.
    [88]季松林.胶磷矿浮选机选型试验[J].化工矿山技术,1990:12.
    [89]郑居然.几种浮选机对胶磷矿直接浮选工艺的适应性[J].化工矿物与加工,2005(5):17-20.
    [90]沈政昌,宋晓明,刘振春.选磷浮选机系统研究与设计[J].有色金属(选矿部分)1997,3:22-27.
    [91]沈政昌,卢世杰,杨丽君.KYF系列大型浮选机的研制开发与应用[J].有色金属(选矿部分) 2008,60(4):115-119.
    [92]沈政昌.XCFⅡ浮选机及XCFⅡ/ KYFⅡ浮选机联合机组的发展与实践[J].有色设备2007,2:4-6.
    [93] Spalding,James S.Phosphate Mining Operations in Morocco[C].The Tenth Annual Phosphate Conference at Lakeland,Florida,1995
    [94] Rogerio Contato Guimaraes, Lauro Akira Takata, Antonio Eduardo Clark Peres, et al. Column flotation applied to the production of phosphate rock in Araxamg, Brazil [C] 31st Annual Canadian Mineral Processors Operators Conference.Ottawa,1999:19-21
    [95]卿黎,张宗华,曾波,等.云南中低品位磷矿选矿采用浮选柱的可行性探析[J].化工矿物与加工,2005,(6):34-35.
    [96]夏敬源,杨稳权,柏中能.浮选柱在云南胶磷矿选矿中的应用研究[J].矿冶.2009(1):11-14.
    [97] F. Hernáinz and M. Calero, Flotation rate of celestite and calcite[J].Chem.Engng Sci.1996,51:119–125.
    [98] W.J.Trahar, A rational interpretation of the role of particle size in ?otation[J].Int.J. Miner. Process.1981.26(8):289–327.
    [99] D.Y. Ready and G. A. Ratcliff, Removal of ?nes particles from water by dispersed air ?otation:Effects to bubble size and particle size on ?otation ef?ciency[J]. Can. J.Chem. Engng 1973(51), 178–185
    [100]刘炯天,王永田,曹亦俊,等.浮选柱技术的研究现状及发展趋势[J].选煤技术,2006(5):25-29.
    [101]DeerWA, Howie RA and Zssman J.The Rock-Forming Minerals.Vol5:Non-silicates,Apatite(2ndED)[M].New York:Londman, 1996:297-334.
    [102]唐德身.胶磷矿与白云石浮选分离的研究[J].化工矿山技术,1984(1).
    [103]郑汝帽.阶段磨矿阶段浮选在钙一硅质磷块岩选矿中的应用[J].化工矿物与加工,1981,3:30-35.
    [104] H·西斯.表面活性剂的单一和二元混合物在磷灰石上的吸附作用和接触角[J].国外金属矿选矿.2005,(1):23-30.
    [105] A.M. Gaudin,R Schuhmann,and A.W.Schlechten:J.of Phys.Chem[J].Minero.Soc.Nacl.Minerria.(Chile),1942,47:83-86.
    [107] Imaizumi T and Tinoue,Kinetic Consideratioin of Forth Flotation [C].《6th Int.Miner. Process.Congr》,Cannes,1963:581-589.
    [108] A·A·阿布拉莫夫.发展和完善有用矿物选矿理论及过程的途径[J].国外金属矿选矿.2008,9:2-5.
    [109]陈子鸣,吴多才.浮选动力学研究之一矿物浮选速度模型[J].有色金属(冶炼部分),1978(10):28-33.
    [110] Ball B, Fuerstenau D W. A Two-Phase Distributed Parameter Model of the FlotationProcess [C].9th Int. Min.Process. Congr.1970:199-207.
    [111] Hernainz F,Calero M, Blazquez G. Kinetics consideration in the flotation of phosphate ore [J].Advanced Powder Technol,2005(4): 347-361.
    [112] C.C.Harris and A.Chakravati,Semi-batch Froth Flotation Kinetics:Species Distribution Analysis,[C]Soc.Min.Eng.AIME, Vol.247, 1970.
    [113]郭德.离心力场中浮选的先进性和缺陷[J].辽宁工程技术大学学报,2002,21(5):702-704.
    [114]吕发奎.辉钼矿与难选钼矿的柱式高效分选工艺研究[D].徐州:中国矿业大学,2010.
    [115]许时.矿石可选性[M].长沙:中南工业大学出版社1989:40-45.
    [116] R.K.图特贾,D.J.斯波蒂斯伍德,V.N.米斯拉.半工业实验规模柱式浮选机的品位分布[J].国外金属矿山.1996,5:48-49.
    [117] M J Monkosa et al.A study of axial mixing in column flotation[J].International Journal of Mineral Processing,1992:51-64.
    [118]张敏,刘炯天.筛板充填浮选柱的选矿应用及效果评价[J].中国矿业.2005,14(14):60-62.
    [119] M.I.G.Bllor and D.B.Inghatn,In Progreas in filtration and separation,ed.b.R.J.Wakeman, PP.57-147, 1983.
    [120]陈泉源.实验室规模高气泡表面积通量浮选柱的原理、研制及应用[D].长沙:中南大学,2002.
    [121] Hu Weibai , Liu Guoming. Design and operating experiences with flotation column in China [J], Soc of Mining Engineers of AIME, 1988:35-42.
    [122] Mauros P, Lazarids NK,Matis KP. A study of modeling of liquid phrase mixing in a flotation column[J]. International Journal of Mineral Processing 1989 (26):1-16.
    [123] J.A.Finch and G.S.Dobby,Column flotation pregamon press, 1989,66:103-109.
    [124]周龙延.选矿厂设计[M].长沙:中南工业大学出版社,1999:40-45.
    [125]冯守本.选矿厂设计[M].北京:冶金工业出版社,1996:43-45.
    [126] Garcia-Zun?iga,H.,.La E?ciencia de la Flotation esuna Funcion Exponencial del tiempo. Bolet?′n Minero Sociedad Nacional deMiner?a 1935,47:83–86.
    [127] Ek, C., Flotation Kinetics in Innovations in Flotation Technology. In: Mavros, P.,Matis, K.A. (Eds.) [J].NATO ASI Series,1992,208:183–210.
    [128] Tuteja, R.K., Spottiswood, D.J., Misra, V.N.. Mathematical models of the column ?otation process a review.[J].Minerals Engineering,1994,16(10), 1459–1472.
    [129] Polat,M,Chander,S.First-order ?otation kinetics models andmethods for estimation of the true distribution of ?otation rate constants[J].International Journal of Mineral Processing,2000,58,145–166.
    [130] Yianatos, J.B., D?′az,F., Rodr?guez,J.Mixing and elective pulp volume in ?otation equipments. In: Go′mez, C.O., Barahona, C.A.(Eds.)[J].International Conference Copper 2003, IIMCH-MetSoc,Santiago,3:179–194.
    [131] Dobby G.S. Finch J.A., Flotation column scale-up and Modeling, CIM Bulletin,79:89-96.
    [132] Yianatos,J.B.,Finch,J.A.Laplante,A.R.,Selectivity in column flotation froths[J].Int.Journal of Mineral Processing,1988,23:279-292.
    [133]胡为柏.浮选[M].长沙:中南矿冶学院,1980.
    [134] Sculze H J.Physico-chemical Elementary of Flotation[J].Amsterdam: Elsevier,1984
    [135] Tatu Miettinen, John Ralston, Daniel Fornasiero.The limits of ?ne particle ?otation[J].Minerals Engineering,2010,23:420–437.
    [136] Zongfu Dai,Daniel Fornasiero,John Ralston.Particle bubble collision models-a review [J].Advances in Colloid and Interface Science.2000,85:231-256.
    [137]丁立亲.浮选的理论与实践[M].北京:煤炭工业出版社,1987.
    [138]朱友益.湍流态下浮选矿化速率数学模型[J].武汉冶金科技大学学报.1998,21(4):381-386.
    [139] Shubert,Biseh ergerC.On the Optimization of hydrodynamics in flotation Proeess.Proeeedings of IMPC,rsZawa,1979,(2):1261一1287
    [140] Derjaguinn,B.Vetal.Trans.Inst.Min.Metall,70(1961),221
    [141] Schulze HJ,Physicochemical Elementary of Flotation,Amsterdam: Elsevier,1984
    [142]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988:166-172.
    [143] Rodriguez D. A general correlation for the rise velocity of single gas bubbles [J]. Can J Chem. Eng, 2004, 82(2): 382-386
    [144]郭容,蔡子琦,高正明.黏性流体中单气泡的运动特性[J].高校化学工程学报.2009,23(6): 916-923.
    [145]刘炯天,王永田.自吸式微泡发生器充气性能研究[J].中国矿业大学学报.1998,(1): 27-31.
    [146]李琳.贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究[D].徐州:中国矿业大学,2010.
    [147]张兴昌.CPT浮选柱工作原理及应用[J].有色金属(选矿部分),2003,(2): 21-24.
    [148] S.M.Feteris.模拟泡沫层厚度在浮选中的作用[J].有色矿山,1990,3,33-39.
    [149] S·J·内特林.脉石矿物夹带进入浮选泡沫过程的研究[J].国外金属矿选矿,2002,(9):22-26.
    [150]卢寿慈.粗粒浮选理论、工艺及设备[J].国外金属矿选矿,1982,(10: 47-53
    [151]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社, 2002.
    [152]辽宁省地质局中心实验室.低品位磷矿选矿[M].北京:石油化学工业出版社,1978:66-67.
    [153]卓越.矿物岩石学[M].北京:煤炭工业出版社,1994.
    [154]王大鹏,刘炯天,曹亦俊,等.浮选柱在胶磷矿反浮选中的应用[J].化工矿物与加工,2010,39(6):1-4.
    [155] ItyokumbulMT,SalamaAIA,AltaweelAM.Estimation of bubble size in flotation columns[J].Aeral Ellgineerillg,1995,8(12):77-89.
    [156]邓丽君.云南某胶磷矿工艺矿物学及柱式分选试验研究[D].徐州:中国矿业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700