浮选槽内矿浆紊流强度对浮选影响的理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包钢选厂在弱磁-强磁-浮选流程工业分流试验初期,从磁选铁精矿中反浮选萤石的精选作业曾出现泡沫大,并且基本不被矿化,反浮作业无法正常运行的现象,同样出现类似现象的还有一水硬铝石、胶磷矿等氧化矿浮选,只不过不象前者严重而已。出现这种现象是当前我国工业浮选生产中比较普遍的的现象,只是程度不同,不太引起人们重视和注意。为查明出现此现象的原因,并提出解决的方法,论文主要结合包钢选矿厂磁选铁精矿反浮选脱氟萤石泡沫精选过程和河南铝土矿正浮选过程,对浮选动力学有关问题开展了较深入的研究。
     1.萤石、赤铁矿单矿物进行单泡浮选管的矿粒粒度、充气量、气泡大小及药剂等对浮选影响的试验,试验表明,萤石浮选回收率随矿粒粒度增大而增大,随充气量、搅拌强度的增加而增加,随气泡尺寸的减小而增加,萤石在很低的搅拌作用或仅靠毛细压力产生的气泡即能上浮,属于易浮矿石。通过对萤石泡沫吸附状念的照相发现萤石是呈多颗粒吸附在气泡的底部。
     2.运用粒子动态分析仪(PDA)对XFD-12型8L(立升)浮选机槽内粒子进行速度分布测量,发现在整个槽中沿径向的切向时均速度是由正变负,零点出现在轴心与槽壁中间,此处开始出现回流(backward flow),回流的剪切作用对矿粒产生脱落作用。
     沿径向混合区的轴向时均速度逐渐上升,有利于槽壁附近的矿粒悬浮,分离区、泡沫区的轴向时均速度是先增后减,对轴心附近的矿粒悬浮能力较大,对远离轴心的矿粒悬浮能力降低。轴向脉动速度沿径向逐渐下降,对已矿化矿粒的脱附能力由大变小。
     转速增大,紊流强度增大,对轴心附近未矿化矿粒的悬浮能力和已矿化矿粒的脱附能力都相应增大。
     3.对矿粒在水中的受力状态进行分析,运用紊流条件下矿粒最大稳定粒度计算公式,对12L(立升)浮选机中强磁铁精矿反浮选脱氟精矿精选过程进行了计算,当叶轮雷诺数从0.16×10~6增加至0.7×10~6时,萤石最大浮选粒度从0.134mm下降至0.059mm。实际矿石浮选萤石泡沫精矿筛析结果表明,当叶轮雷诺数从0.32×10~6增至0.7×10~6时,+0.074mm粒级含量极少,+0.054mm粒级含量从9.25%下降至4.58%,-0.054mm+0.038mm粒度含量由13.68%降至8.3%。汁算数据与实际矿石筛析结果都表明,紊流强度增大,泡沫中粗粒级含量减小。
     4.用PDA在XFD-12型8L浮选机中测定的速度值,进行混合区、分离区、泡沫区紊流运动功率谱计算,得紊流脉动频率,混合区小于20Hz,分离区在20-30Hz之间,泡沫区在25-35Hz之间,浮选槽内紊流脉动以低频为主,且紊流脉动动能是混合区大于分离区大于泡沫区。紊流脉动动能大,矿粒运动动能大,在混合区易与
    
    中南人‘学博行学位沦文
    摘要
    气泡发生碰才童粘附,但在分离区、泡沫区会引起矿粒从气泡上脱落。
     5.研究了矿浆紊流强度(口一卜轮雷诺数),在12L浮选机中对实际矿石浮选的彩
    响。用包钢选厂一强磁铁精句“,进行反浮选脱氟精选过程的紊流强度对浮选影响!,]{J试
    验,结果表明,当紊流强度较低时,随紊流强度增加,萤石泡沫精矿的产率、「,!收
    率逐渐增加,当紊流强度达到0.32 xlo“时,浮选指标最佳,紊流强度}时帅加,萤
    石品位和回收率都下降,降低了反浮选脱氟效果。用郑州中州铝厂一铝上佃”进行正浮
    选过程紊流强度对浮选影响的试验,结果类似萤石浮选,浮选最佳值出现在中等紊
    流强度(). 29 Xl护。实际矿石浮选试验表明,紊流强度过大对浮选不利,特别对粗粒
    浮选不利。
     6.紊流对浮选有双重作用,紊流强度低时,有利于泡沫稳定,矿粒不易从气
    泡土脱落,但太低,不利于矿粒与气泡发生碰撞粘附和矿粒悬浮。紊流强度高时,
    有利一于矿粒与气泡发生碰撞粘附和矿粒悬浮,但太高,易造成矿粒从气泡f:脱附,
    所以选取最佳的紊流条件是浮选的关键。根据运动相似原理,首次使用悬浮状态判
    据(N·D·D/L=常数)作为根据小型浮选机试验操作条件推算大型浮选机
    理想操作条件的判据,此判据简一单易操作,对工业生产有指导作用。
     7.用12L浮选机中浮选萤石的最佳操作条件,采用悬浮状态判抓,计算包钢
    磁选铁精矿脱除萤石的反浮选精选3A浮选机的最佳转速应为420rpm,包钢选厂采用
    此参数在l_业件:产L取得了比395rpm(_「业分流试验)好,比洲or叩(分流试验
    调试初期)史好的浮选效果,得到萤石泡沫产率10.650/0,含从卜升」到16.1乃,氟
    脱除率上升到72.2%,铁精矿一中氟含量下降到0.7扭%,铁品位卜升到6l.l()%。
     8.包钢选厂工业分流试验初期,磁选铁精矿反浮选脱氟精选过程和郑州中州铝
    !一铝土矿正浮选工业试验初期,都出现泡沫不被矿化的问题。经论文中试验、测定
    和计算己查明:在药剂条件适’fl{的条件下,浮选槽中矿浆紊流状态是影响泡沫征化
    不良的胜要原因。使用悬浮状态判据,根据小型浮选机试验操作条件推算人型浮选
    机理想操作条件,司一提高和改洱浮选厂浮选技术指标。紊流强度对浮选影响重人,
    此影响在不处于极端不良清况,·般不受重视和注意,但其转速不1定足报佳值,
    ‘}二产技术指标也就不一定是最佳指标,!听以这个问题值得引起‘l:产{一的币视和注
    已。
At the beginning stage of industrial partial flow test of low intensive magnetic separation-high intensive magnetic separation-flotation separation in the flotation plant of Baotou Iron and Steel Complex, the phenomenon of big and empty bubble was observed during the cleaning process of reverse flotation to remove fluorine from Iron concentrate of magnetic separation, similar phenomenon was observed when treating oxide ores such as bauxite and phosphate, the only difference is that the former is much more serious. It is a common phenomenon in industrial flotation, but it is caused little notice. This paper studied the reverse flotation process of fluorine removal from Iron concentrate of magnetic separation of Baotou Iron and Steel Complex and flotation process of Henan ZhongZhou bauxite ore. some relevant flotation questions have been systematically researched.
    l.The effect of the diameter of particles, aeration, the diameter of bubble and reagents on flotation have been studied with fluorine and hematite pure minerals in hallimond tube .It demonstrated that the recovery of fluorine increased with the increasing of the diameter of particles, aeration ,degree of agitation and with the decreasing of the diameter of bubble. Fluorine can float at a very low degree of agitation. Fluorine belongs to the minerals which can be easily floated. At the condition of pH equals 9,sodium silicate is used as depressant, NaOl is used as collector, Fluorine and hematite can be separated easily. According the photograph of fluorine froth, we can see that fluorine attaches on the bottom of the bubbles in the form of multiple particles.
    2.PDA(particle dynamics analyzer system) was used to measure the flow velocity of particles in the XFD-12 flotation cell, the results show that tangential mean velocity in the radial direction changes from positive to negative in the flotation cell, naught point emerge in the medium of the radial direction ,it is where backward fluid emerge ,shear stress of backward fluid induce the particle detachment from bubbles .Axial mean velocity of mixing region raised in the radial direction, that favors the suspension of particles near the cell. Axial mean velocities of flotation region increased at first and then decreased, power of suspension decrease in the radial direction. Axial relative velocities of flotation region and froth region decreased in the radial direction, the power of detachment decreased while the axial relative velocity decreased in the radial direction. The power of suspension of the non-mineralized particles and the detachment of mineralized particles increased while increasing impeller speed
    or turbulence degree.
    3. After balance forces of particles at the fluid interface were analyzed, we calculated the maximal diameter of flotation fluorine particle in the cleaning test of high magnetite concentrate of fluorite removal by reverse flotation. When impeller Reynolds increase from 0.16 Xl06 to 0.7 X 106 , the maximal diameter of flotation fluorine particle decrease from 0.134mm to 0.059mm.The results of sieve analysis show that while impeller Reynolds increase from 0.32 X 106 to 0.7 X 106 ,+0.()74mm range sieve fraction is quite limited,+0.054mm range sieve fraction decline from 9.25% to 4.58% and
    
    
    
    Doctoral dissertation ABSTRACT
    -0.054+0.038mm range sieve fraction decline froml3.68% to 8.3%.The results of calculating and sieve analysis show that coarse range sieve fraction of the cleaner decline while degree of turbulence increasing.
    4.The measured flow velocities by means of PDA in the XFD-12 flotation cell were used to calculate turbulence energy spectrum of mixing region, flotation region and froth region. The results have shown that turbulence frequency is less than 20HZ in the mixing region, in the flotation region between 20-30HZ, in the froth region between 25-35HZ. Turbulence energy in the mixing region is bigger that in the flotation region and bigger that in the froth regi
引文
[1] 余永富,等 白云鄂博中贫氧化矿铁、稀土选矿试验研究[J].矿冶工程,1992,(1):15-20
    [2] 余永富.白云鄂博大型多金属矿共生矿选矿研究的回顾与展望[J].矿冶工程,1992,(1):69-73
    [3] 徐大铨.包头资源综合利用工作取得重大进展[J].矿冶工程,1992,(1):1-4
    [4] 扬庆成.粗析胶磷矿浮选机[J].选矿机械,1986,(2):25-28
    [5] 张学恺.XJK型浮选机应用胶磷矿石浮选时充气性能调节[J].选矿机械,1983,(3):42-49
    [6] 北京矿冶研究总院、中南工业大学等.放粗铝土矿浮选精矿粒度工艺与设备的研究及工业试验[R],1999,11
    [7] M.C.富尔斯特瑙编.浮选(纪念A.M.高登文集) 下卷[M].北京:冶金工业出版社,1982
    [8] Derjaguin B V, Dukhin S S. Theory of flotation of small and medium-size particle [J]. Trans inst min metal, 1961,(70):221-246
    [9] 萨梅金,等.浮选理论现状与远景[M].刘恩鸿译.北京:冶金工业出版社,1984
    [10] Brown D I. Particle trajectories collision and attachment in froth[M]. Richardson E G. (edit):"Aerodynamic capture of particle". London: 1960, p35
    [11] Flint L R, Howonth W L. The collision efficiency of small particle with spherical air bubbles[J]. Chem Enging sci.1971,(26):p1155
    [12] [J], 1961, P267
    [13] [M].1979, 5-27
    [14] [C]. Ⅷ IMPC, TOMⅡ, 674-684
    [15] Sutherland K L. Physical chemistry of flotation:Ⅺ, kinetics of the flotation process[J]. J phys chem, 1949,(52): 394-425
    [16] Gaudin A M. Flotation [M]. 2nd edi. Megraw.hill. NewYork: 1957
    [17] Reay D, Ratcliff G A. Removal of fine particles from water by dispersed air flotation effects of bubble size and particle size on collection efficiency [J]. Can J chem. eng. 1973,(51):185-197
    [18] Weber M E. Collision efficiencies for small particles with a sphere collector at intermediate Reynolds numbers [J]. Sep processes techno, 1981,(2): 29-33
    [19] Weber M E, Paddock D. Interceptional and gravitational collision efficiencies for single collector at intermediate Reynolds numbers [J]. J colloid interface sci, 1983,(94):328-335
    [20] Yoon R H, Luttrell G H. The effect of bubble size on fine particle flotation [J]. Miner process Extr Metall Rev,1989,(5):101-122
    [21] Ahmed N, Jameson G J. The effect of bubble size on the rate of flotation of fine particle [J]. Int J Mineral processing, 1985,(4): 195-215
    [22] Schubert H, Bischofberger C. On the hydrodynamics of flotation machines [J]. Int J miner Process, 1978,(5): 131-142
    [23] Schubert H, Bischofberger C and Koch P. On the influence of the hydrodynamics in the flotation processes [J]. Aubereitungs-Technik, 1982,(6):306-315
    [24] 丁立亲,等编著.浮选的理论与实践[M].北京:煤炭工业出版社,1987
    [25] Schulze H J. Hydrodynamics of bubble-mineral particle collision [J]. Mine processing and metallurgy review, 1989,(5):43-76
    
    
    [26] Schulze H J,Cottshalk G.浮选气泡同粒子群相互作用的流体动力学研究[J].国外金属矿选矿,1980,(4):28-35
    [27] Zhiwei jiang, Modeling of flotation process by quantitative analysis of the collision and adhesion between particles and bubbles [C]. ⅩⅴⅡ 国际选矿会议会议论文集,429-441
    [28] Sutherland K L. Physical chemistry of flotation XI [J]. J phys chem., 1954,(46):294
    [29] Schulze H J. Physico-chemical elementary processes in flotation [M]. Elsevier Amsterdam, 1984,348
    [30] Schubert H, Bischofberger C. On the optimization of hydrodynamics in flotation processes proceeding [C]. 13th Int miner process cong, Warszawa ,1979,(2): 1261-1257
    [31] 野中道郎,等.浮选槽内气泡与微粒的冲撞[J].选矿机械,1982,(3):32-39
    [32] 程宏志,等.浮选微观力学和数学模型[J].煤炭学报,1998,(5):546-549
    [33] Jowett A.浮选中矿粒-气泡集合体的形成与破裂[J].国外金属矿选矿,1982,(5):20-34
    [34] Loskowski J S.气泡-矿粒粘附过程的能垒及其对浮选动力学的影响[J].国外金属矿选矿,1992,(7):20-25
    [35] Yoon R H, Luttrell G H. Recent advances in fine coal flotation. Chander S(edi) Advances in coal and mineral processing using flotation. Chap.23 [M]. society of mining engineers.Littleton.co:1989,211-218
    [36] Yoon R H, Yordan J L. Induction time measurements for the quartz-amine flotation system [J]. J coll inter sci, 1991,(2):374-383
    [37] Loskowski J S, Kitcheners J A. The hydrophilic-hydrophobic transition on silica [J]. J colloid interface sci,1969,(29):670-679
    [38] Valentiner S, Met und Erz., Bd11,1914,455-461,Phys.Zeit. Bd11, 1914,425-430
    [39] [J]. 1933, 230
    [40] 1933, T4 P5 538-548
    [41] Morris J M. Measurement of equilibrium forces between on air bubble and on attached solid in water [J]. Trans. AIME,1950,(181):91-95
    [42] Schulze H J. Dimensionless number and approximate calculation of the upper particle size of floatability in flotation [J]. Int J miner process, 1982,(9):321-328
    [43] Schulze H J. Physico-chemical Elementary Processes in Flotation, Developments in Mineral Processing 4 [M],Elsevier science publishing company ,1984
    [44] Woodburn Z J. [J] Metall Trans, 1971,(2)3163-3174
    [45] 胡熙庚,等编.浮选理论与工艺[M].长沙:中南工业大学出版社 1991
    [46] 孙时元,等编.国外选矿设备手册(下)[M].冶金部马鞍山矿山研究院技术情报研究主,1990
    [47] Arbiter N. Flotation machines Froth Flotation [M], Fuerstenau D W.edi.AIME,newYork:1962,347
    [48] Harris C C. Impeller speed air and power requirements in flotation machine scale-up [J]. Int J mineral processing, 1974,(1):51
    [49] Harris C C. Flotation machine design and scale-up [J]. mining magazine, 1976,(9):207-213
    [50] Harris C C.Multiphase model of flotation machine bchariour [J]. Int J mineral processing, 1978,(5): 107-129
    [51] Harris C C, Khandrika S M. Impeller/stator interactions a laboratory flotation machine:the effect of wear[J]. Int J mineral processing, 1984,(12):263-271
    [52] Harris C C, Khandrika S M. Flotation machine design: important hydrodynamics effects slight
    
    geometric causes [J]. Powder technology, 1985,43(3):243-248
    [53] Harris C C, Khandrika S M. Flotation machine design: Impeller/stator interactions [J]. Powder technology, 1985a,43(3):273-278
    [54] Harris C C, Mensahbineg R K. Aeration characteristic of laboratory flotation machine impellers [J]. Int J mineral processing, 1977,(4)51-67
    [55] Harris C C, Rafa A. Flotation machine impeller speed and air rate as scale-up criteria [J]. Tran inst mining and metallurgy ,1970,(79):295
    [56] Degner V K. Hydrodynamic influences in flotation machine design[C]. SME AIME annual meeting, NewYork :1985,24-28
    [57] Degner V R, Treveek H B. Large flotation cell design and development [J]. Flotation AIME NewYork 1976,(2):816
    [58] 翟宏新译.浮选与浓缩[M].北京:机械工业出版社,1982
    [59] 野中道郎,等.浮选槽中的紊流变动速度及速度相关函数[J].选矿机械,1980,(4):28-37
    [60] 野中道郎,等.浮选槽中的紊流能及能量的传递[J].选矿机械,1982,(1):22-29
    [61] 野中道郎,等浮选槽内气泡于微粒的冲撞.选矿机械[J],1982,(3):32-39
    [62] 郭梦熊.论浮选机[R],1981
    [63] 郭梦熊.XFD-12型实验室多槽浮选机性能考察[R],1980
    [64] 任守政.利用激光测速仪研究浮选槽内流体动力学状态[D].中国矿业大学资源环境系,1982
    [65] 曹佳宏.白云鄂博铁矿主东矿体中贫氧化矿选矿工艺矿物学研究[J].矿冶工程,1992,(1):40-44
    [66] 李养正、余永富.中贫氧化矿磁选铁精矿的反浮降杂研究[J].矿冶工程,1992,(1):50-54
    [67] 张志雄,等编.矿石学[M].北京:冶金工业出版社,1981
    [68] 张培元主编.中国工业矿物和岩石[M].北京:地质出版社,1978
    [69] 陈正山.萤石选矿概述[J].甘肃冶金,1983,(1):48
    [70] 田学达.萤石浮选研究现状与发展方向[J].矿产保护与利用,1994,(4):18-21
    [71] 赵瑞琴,等.脂肪酸在低温下浮选萤石的研究[J].金属矿山,1989,(11):56
    [72] Baldauf H, et al. N-acylamine carboxylic acids collectors for the flotation separation of fluorite and calcite[C]. World congr non-metallic minerals. Belgrade, 1985,(1):509-521
    [73] Baldauf H, et al. New regime of reagents in flotation separation of fluorite and calcitc [C]. X V IMPC.canes,1985
    [74] Schubert H, et al. Further development of fluorite flotation from ores containing higher calcite contents oleoylsarcosine as collector [J]. Int J miner processes, 1990,(30): 185
    [75] 王淀佐.新型两性捕收剂浮选萤石、重晶石、白钨矿的研究[J].有色金届,1989,(4):88
    [76] 周强.萤石等盐类矿浮选调整剂及脂肪酸增效剂研究[D].中南工业大学矿物工程系,1993
    [77] 田学达.含钙矿物浮选分离新工艺与理论[D].中南工业大学矿物工程系,1995
    [78] 赵振才,等 萤石的常规及静态浮选的试验研究[J].河北理工学院学报,1997,(1):23-25
    [79] 奇安尼M.浮选柱在重晶石及萤石选矿中应用[J].国外金属矿选矿,1997,(5):51-54
    [80] 张国祥,等.一水硬铝石、高岭石粘土岩和褐铁矿粉碎性质的实验研究[J].中南矿冶学院学报.1982,(3):75-82
    [81] 东北工学院.铝土矿浮选[R].1973,4
    [82] 李耀吾,等.一水硬铝石-高岭石型铝土矿选矿[J].金属学报,1979,(3):319-322
    [83] 李隆峰.一水硬铝石型堆积铝土矿选矿脱砖除铁研究[J].中南矿冶半院学报,1980,(4):
    
    82-84
    [84] 沈刚铝镁设计研究院、东北工学院.山西孝义克俄矿区铝土连续浮选试验报告[R].1972,4
    [85] 沈阳铝镁设计研究院、东北工学院.山西孝义克俄矿区铝石浮选试验[R].1971,7
    [86] 东北工学院、沈阳铝镁设计研究院.低品位铝土矿可选性试验[R],1971
    [87] 刘逸超,等.水云母.一水硬铝石型铝土矿浮选试验[J].有色金属,1984,(1):11-13
    [88] 中国长城铝业公司、北京矿冶研究总院、中南工业大学、沈刚铝镁设计研究院、郑州轻金属研究院、中国有色金属工业技术开发交流中心.铝土矿选矿脱硅工业试验报告[R].1999,10
    [89] Fallenius K. Outokumpu flotation machines[M]. Outokumpu oy.Tapiola.Finland,1975
    [90] Damon A D. Development and theory of the D-R Denver flotation machine[M]. Denver Bulletin F10-B121.E2
    [91] N.阿尔比特尔.大型浮选机的研制与按比例放大[J].国外金属矿选矿,2001,(5):20-23
    [92] 黄仲明.我国浮选机研究与应用现状[J].国外金属矿选矿,1988,(5):8-10
    [93] 刘振春,等.JJF型浮选机性能分析[J].北京矿冶研究总院院报,1984,(2):28-33
    [94] 肖伯录.Hcc-4m~3外冲气环射式强浮选机试验成功[J].金属矿山1997,(6):49
    [95] 邱广泰.国外浮选机的发展趋势[J].国外金属矿选矿,1985,(7):35-43
    [96] 张鸿甲,刘桂芝.精选作业的适宜机型-SF浮选机[J].有色金属,1989,(4):19-24
    [97] 刘桂芝,等.SF-4型浮选机的研制[J].有色金属,1988,(4):39-43
    [98] 李忠堂,等.SF-4型高效率浮选机应用实践[J].金属矿山,1991,(7):53-54
    [99] 韩寿林,等.XJK型机械搅拌式浮选机[J].有色金属,1989,(3):24-27
    [100] 刘振养,等.选磷浮选系统[J].国外金属矿选矿,1985,(5):11-13
    [101] 沈振吕,等.选磷浮选机系统研究与设计[J].有色金属,1997,(3):22-27
    [102] 宋晓明,等.WP-16型选磷浮选机系统[C].矿冶工程,1997,supp13:109-112
    [103] 曹芬耀.精选作业的浮选机机型选择[J].有色设备,1997,(5):1-5
    [104] 曹芬耀.BS-K型系列浮选机的研究与应用[J].选矿机械,1991,(4):20-25
    [105] 陈荣生,等.一种改进型微型浮选装置[J].中南矿冶学院学报,1980,(2):118-122
    [106] 黄开国.新改进的无泡沫浮选管及其装置[J].中南矿冶半院学报,1980,(4):107-111
    [107] 方启学.微细粒弱磁性铁矿分散与复合聚团理论及分选工艺研究[D].中南工业大学矿物工程系,1996
    [108] 罗廉明.接触角、润湿与浮选[J].金属矿山,1991,(8):32-36
    [109] 罗廉明.粉矿接触角的测定[J].化工矿山技术,1989,(4):25-26
    [110] 扬小生,陈荩著.选矿流变学及其应用[M].长沙:中南工业大学出版社,1995
    [111] 卢寿慈.粗粒浮选理论、工艺及设备[J].国外金属矿选矿,1982,(10):47-53
    [112] 丁绪淮,周理,等编著.流体搅扦[M].北京:化学工业出版社,1983
    [113] 戴干策,陈敏恒编.化工流体力学[M].北京:化学工出版社,1988
    [114] Kai Fallenius.浮选槽放大的新方程组[J].国外金属矿选矿,1980,(6):31-38
    [115] 程宏志,等.论机械搅拌式浮选机的相似准数[J].选煤技术,1998,(5):10-13
    [116] 孙仲元主编.选矿没备工艺设计原理[M].长沙:中南大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700