集成声光芯片技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成声光移频技术主要应用领域包括光纤陀螺、声光频谱分析、相干激光探测等领域。随着技术的发展,光学器件小型化和功能复杂化的趋势的需求,对集成声光移频芯片提出了更高技术指标的要求。文中讨论并研究了基于铌酸锂(LN)衬底集成声光移频芯片技术。研制了在Ti扩散铌酸锂衬底基片上,包含有两个声光波导Bragg调制器组成的声光频移元件和两个无象差非球面波导短程透镜的准直/聚焦集成光学器件。
     首先,分析了在非对称光波导中电磁场分布的模式,并推导了短程透镜的微分方程及其旋转母线表达式。就短程透镜母线模型建立中所遇到的过渡区和透镜区连接处的弯曲损耗及过渡区到平面波导的弯曲损耗给出了具体的数学解决形式。同时为了减小损耗所应满足的透镜旋转母线一阶导数和二阶导数的连续性,并对卷边函数幂指数的选取进行了讨论,得出了最优化的设计参数,并给出了该参数条件下的短程透镜旋转母线的显式表达。
     其次,通过对Bragg衍射条件的分析,论证了声波及光波在介质中的最佳传播方向,并给出了波导声光Bragg调制器件的设计参数。考虑压电材料的选取、声光互作用的最佳模式、衍射光和零级光间的可分离条件及如何提高衍射效率等因素,给出了叉指换能器的设计结果。
     然后,分析了高斯光束在光纤中的传输规律,讨论了对准因素对声光芯片设计的影响。建立了短程透镜基点和主面的表达式方程,给出了短程透镜的具体的物象作图方法。分别利用工程上估算波导和光纤耦合的方法及模场匹配的方法,对短程透镜和光纤的耦合效率进行了推导。
     最后,论述了集成声光芯片制作工艺和各项指标测试结果。对集成声光芯片的总体技术做了总结并对未来发展趋势做出预测。
     论文主要创新点为:
     1)完善和优化了短程透镜母线模型。通过对凹面半径归一化处理,将凹面分成过渡区和透镜区,在不同的区域选取不同的辅助函数,通过优化设计使卷边与平板波导连接处曲率半径达到无限大,显著降低辐射损耗,使透镜能真正消球差和弯曲损耗最小。
     2)通过声表面波声光衍射布拉格条件与叉指换能器的效率优化,器件在驱动功率为500mW时,调制效率达85%。
     3)首次将几何光学和矩阵光学的理论引进波导短程透镜的研究中,建立了完整的光波导短程透镜系统几何光学传输理论。运用几何光学的光线追迹和等效光路的方法,在近轴小角度入射的情况下推导了短程透镜的相位传递函数及焦斑模场表示形式;运用计算机仿真技术,绘出了该模型下短程透镜的焦斑图,通过和实际测得的短程透镜焦斑光强分布的比较论证了该理论推导的正确性。
     4)首次在国内完成了整个LN集成声光芯片的设计和制作,并对芯片的各项性能做了测试和分析。在XYZ方向尺寸分别为46,2.5,30mm的Ti扩散LiNbO_3。光波导基片上制作了光纤耦合结构的声光移频芯片。测试短程透镜传输损耗为1.2dB,衍射光斑半功率点宽度为4.5μm;与单模光纤的耦合插入损耗小于20dB;芯片驱动的中心频率为110MHz;可实现3dB调制带宽为10MHz。
Main applications of Integrated Acousto-optic(AO) frequency shifter includes Fiber Gyroscope, AO frequency spectral analysis, coherent laser testing, et al. As optic devices are more and more miniaturized and complicated, higher technology parameters are required to AO frequency shifter. In this paper, AO frequency shifter based on Ti diffused LiNbO_3 is developed. two AO waveguide Bragg modulators to complete AO frequency shifting and two non-aberration and non-spherical waveguide geodesic lens(GL) as collimating and focus integrated optic cell are developed based on Ti diffused LiNbO_3 substrate.
     The following results have been finished in this work:
     1. The mode distribution of electromagnetic field in asymmetry waveguide is analyzed. Differential coefficient equation and generatrix expression of geodesic lens is deduced. In profile design of GL, a suitable mathematic solution of lens profile in transitional zone eliminates effectively the curvature singularity of round-edge of lenses. To maintain continuity of first derivative and second derivative of lens profile, selection of power exponent of rim function is discussed. Optimized parameters are gotten. And generatrix expression of geodesic lens is expressed based on these optimized parameters.
     2. Through analysis of Bragg diffractive condition, the optical transmitting direction of acoustic wave and photonic wave is demonstrated. Design parameters of waveguide AO Bragg modulator are achieved. Cascade surface acoustic wave (SAW) transducer is designed and fabricated considering selection of proper piezoelectric material, optimized reaction model, improvement of diffractive efficiency and clarify separated conditions of diffracted light and undiffracted guided light.
     3. The rule of Gauss beam transmitting in optical fiber is analyzed. The impact of coupling effect to AO chip design is discussed. The Formulas of waveguide GL cardinal points and principal planes are derived; the geometry graphic imaging formation principles of GL are developed to get the object-image-relation of geodesic lenses. Utilization of geometric optical characters of GL, the equivalent light trail and phase transfer function are given. Simultaneously the distributing model is obtained. The focal spot intensity distribution of theory corresponds with the experiments.
     4. Integrated AO chip process method, performance indexes, and test results are discussed. A summary of current integrated AO chip technology and trend of AO chip technology are discussed.
     The innovation points of this research including:
     1. The profile model of waveguide geodesic lens is optimized. To normalize concave radius, divided to transition area and lens area, radiated loss decreased more, eliminated spherical aberration and curve loss are gained from different auxiliary functions in different region and optimized maximum curvature radius of joint between rim and planar waveguide.
     2. Optimized SAW AO Bragg diffractive condition and efficiency of SAW transducer, modulated efficiency of 85% is achieved by 500mW input driving power on device.
     3. Geometric optics and matrix optics is introduced into the research of waveguide geodesic lens, related completed transmitting theory in geodesic lens is obtained from light beam tracing and equivalent photonic circuit method. Under condition of adaxial incident light in small angle, phase transfer function and focus distributing model is obtained. Utilized computer simulation, theoretical focus distribution of GL is described, Which corresponds with the experiments.
     4. It is the first time in mainland China to design and fabrication of LiNbO_3 integrated AO chip, which characterizations are measured and analyzed. Acousto-optic(AO) frequency shifter that consists of a pair of geodesic waveguide lenses to collimate and focus and a pair of cascaded guided-wave AO Bragg cells has been realized in a Ti diffused Y cut LiNbO_3 waveguide substrate 46 cm by 2.5cm by 30 cm in size. Optimized ideal waveguide GL profile and AO parameters are calculated and designed by analytic method. Transmission loss of 1.2dB and spot size (FWHM) of 4.5μm of GL are achieved. All chip has provided a 3dB tunable bandwidth of 10 MHz on driving baseband frequency of 110MHz, coupling insert loss of 20dB with single-mode fiber.
引文
[1]. 陈益新等.集成光学——理论和技术.上海:上海交通大学出版社,1985
    [2]. (美) 田炳耕.集成光学和光学波导中新的波现象.北京:人民邮电出版社,1981
    [3]. 王殖东.集成光学.北京:科学出版社,1980
    [4]. 陈益新.集成光学三十年.上海交通大学出版社,1999
    [5]. 中科院上海冶金研究所,上海科学技术情报研究所编译.国外集成光学.上海:上海科学技术文献出版社,1979
    [6]. 赵策洲.半导体导波光学器件理论及技术.北京:国防工业出版社,1998
    [7]. 唐天同.集成光学.北京:科学出版社,2005
    [8]. 小林功郎.光集成器件.科学出版社,2002
    [9]. H. Osterberg and L. W Smith. Transmission ofoptical energy along surfaces. J. Opt. Soc. Am. vol.54, 1964:1073-1084.
    [10]. Ashkin and M. Gershenzon. Reflection and guiding oflight at p-n junctions. J. Appi. Phys. vol.34, 1963: 2116-2119
    [11]. A. C. S. van Heel. A new method of transporting optical images without aberrations. Nature vol.173, 1954: 39
    [12]. SE. Miller. Integrated optics: an introduction. Bell Syst. Techn. J. vol.48, 1969: 2059-2069
    [13]. V.Vali and R.W.Shorthill. Fiber ring interferometer. Appl. Opt. 1976, 15: 1099-1100
    [14]. T. Nakayama, Y.Nomura, H. naito et al. Monolithic LiNbO3 integrated optical circuit. Tech.Digest IOOC’77,1977: 255-258
    [15]. P. J. Duthie and M. J. Wale. 16 × 16 single chip optical switch array in lithium niobate. Electron. Lett. vol. 27,1991:1265-1266
    [16]. V. R. Almeida, Q. Xu, C. A. Barrios. Guiding and confining light in void nanostructure. Opt. Lett., vol.29, 1209-1211
    [17]. Kaminow. I. P., H.P.Weber and E. A. Chandross. Poly Dye Lasers with Internal Diffraction Grating Resonator. Appl. Phys. Lett., 1971: 497
    [18]. Aiki. K., M. Nakamura, J.Umeda et al. GaAs-AlGaAs Distributed-Feedback Diode Lasers with Separate Optical and Carrier Confinement.. Appl. Phys. Lett. 27,1975:145
    [19]. Alferov. Zh. I., V.M. Andreev et al. Injection Heterolaser with Radiation Extracted through a Diffraction Grating. Sov. Phys.-semicond. 8, 1975:1321
    [20]. R. F. Leheny, Optoelectronic integration: a thechnology for future telecommunication systens. IEEE Circuits and Devices Magazine, 1989, 5
    [21].H.Uetsuka. AWG technologies for dense WDM applications. IEEE J. Select. Top. Quant. Electron., vol.10, 2004: 393-402.,
    [22]. K.A.McGreer, H. Xu, C. Ho, N. Kheraj, Q. Zhu, M. Stiller, and J. Lam. Planar Lightwave Circuits for PON Applications. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest(CD), 2006
    [23]. K. Okamoto. Arrayed Waveguide Grating Technology. Optics & Photonics News, Vol.13, 2002: 38-43,
    [24]. M.K. Smit and C. V. Dam. Phasar based WDM devices: principles, design and applications. IEEE J. Sel. Top, Quantum Electron, vol.2, 1996: 236-250,
    [25]. S. Sohma, T. Watanabe, T. Shobata, and H. Takahashi. Compact and Low Power Consumption 16×16 Optical Matrix Switch with Silica-Based PLC Technology. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD), 2005
    [26]. P. Dumon, W. Bogaerts. Low losss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon. Technol. Lett., vol16, 2004: 1328-1330
    [27]. Chutinan S. Noda. waveguides and waveguide bends in two-dimensional photonic crystal slabs. Phys. Rev. B, vol.62, 2000: 4488-4492
    [28]. K. Tanaka, M. Tanaka T. sugiyama. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express, vol.13, 2005: 256-266,
    [29]. Ezekiel S and Balsamo S R. Passive ring resonator laser gyroscope. Appl. Phys. Lett., 1977, 30: 478
    [30]. 宋凝芳,杨功流.光纤陀螺捷联式惯性系统的研究与设计.中国惯性技术学报,2002,2
    [31]. 杨培根,张莹.光电惯性技术的发展及对策研究.应用光学,1996,6
    [32]. Dwayne W. Heckman, Michael. Baretela Interferometric Fiber Optic Gyro Technology(IFOG) . IEEE AES Systems Magazine, 2000,10
    [33]. L. Stimac, D. Bina, J. Page et al. A Tactical Grade Depolarized Fiber Optic Gyroscope . IEEE, 1994, 0-7803-1435-2
    [34]. 孙丽,王德钊.国内外光纤陀螺的最新进展.控制工程,2002,1
    [35]. S.M.Bervrett 等.光纤陀螺陆地导航系统.惯导与仪表,1998,4
    [36]. 毛献辉,田芊等.几种光学陀螺的研究进展.压电与声光,2003,2
    [37]. 赵玉新,李绪友,刘承香等.光纤陀螺信号处理方法的比较研究.中国惯性技术学报,2003,4
    [38]. 沈映欣.光纤陀螺用单Y1.3 μ m LiNbO_3 集成光学器件.半导体光电,2000,4
    [39]. Herv(?)C.Lef(?)vre.光纤陀螺仪.北京:国防工业出版社,2002
    [40]. Adamas G. W., Gokhale M.. Fiber iptic gyro based precision navigation for submarin[C]. AIAA Guidance, Navigatio, and Control Conference, 2000
    [41]. E. Lallier,D. Papillon, J. P. Pocholle et al. Short pulse, high power Q-switched Nd:MgO:LiNbO3 waveguide laser. Electron. Lett. vol. 29,1993:175-176
    [42]. P. Becker, R. Brinkmann, M.Dinand et al. Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 emission wavelengths. Appl. Phys. Lett. vol. 61, 1992:1257
    [43]. 张桂才.集成光学在光纤陀螺仪中的应用.导航,1999,12
    [44]. 张桂才,杨清生.采用双 Y 型 LiNbO_3 集成光路的闭环光纤陀螺研究.红外与激光工程,2000,2
    [45]. Jos(?) Miguel L(?)pez-Higuera. Handbook of Fiber Optic Sensing Technology. John Wiley & Sons Ltd., 2000
    [46]. Zhihua Liu, Bangren Shi, Jijing Wu et al. The Technology of Integrated Acoustooptic Modulation. Proc. of ISTM,2003
    [47]. Zhihua Liu, Bangren Shi, Jijing Wu et al. The Development and Tendency of FOG. Proc. ISTM,2003
    [48]. Cahill and Udd E. Phase-nulling fiber optic laser gyro. Optics Lett., 1979, 4(3): 93-95
    [49]. Davis J L and Ezekiel S. Closed-loop, low-noise fiber-optic rotation sensor. Optics Lett., 1981,6(10): 505-507
    [50]. Ohgi N, Kondon M and Shimizu M. Optical fiber gyroscope with integrated optical frequency modulator. OFS' 84, Stuttgart, 1984: 297-300
    [51]. Schaffer C and Stock G.. Integrated optical circuit ofr fiber gyroscope applications. Electron Lett., 1988, 24(22):441-442
    [52]. S. Sottini and E.Giorgetti. J. Opt. Soc. Am. A. 1987: 87
    [53]. S. Sottini, V. Russo,E.Gioregetti. A new family of geodesic lenses for waveguide optical devices. IEEE. J. Lightwave Technology. 1987, LT-5(8): 1082-1088
    [54]. S. Sottini and E. Giorgetti. Theortical analysis of a new family of geodeic lenses. J. Opt. Soc. Am. A. 1987.4(2): 346-351
    [55]. 张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2002
    [56]. S. Sottini, V. Russo, G. C. Righini. General solution of the perfect geodesic lenses for in -tegrated optics. J. Opt. Soc. Am. 1979, 69: 1248-1254
    [57]. 刘德森,高应俊.变折射率介质的物理基础.北京:国防工业出版社,1991
    [58]. Toraldo di Francia. Optica.Acta. 1958, 1: 157
    [59]. E. Spiller and J.S. Harper. Appl. Opt. 1974, 13: 2015
    [60]. V.E.Wood and D.W.Vahey. J. Opt.Soc.Am. 1976, 66: 1115
    [61]. D.W.Vahey and V.E.Wood. IEEE. J.Quantum Electron. 1977, Qe-13: 164
    [62]. G.E.Betts and J.Bradley. Appl.Opt. 1978, 17: 3969
    [63]. J.C.Bradley,G.E.Betts, H.Trenchard, G.E.Marx. Appl.Opt. 1978, 17: 2346
    [64]. GlancarloC. Righini, Vera Russo, Stefano Sottini. A Family of Perfect Aspherical Geodesic Lenses for Integrated Optical Circuits. IEEE J. of Quan. Elec. Lett., Vol.QE-15, No. 1,1979
    [65]. V.E.Wood. Appl. Opt. 1976, 15: 2817
    [66]. J. Sochachi. Perfect Geodesic Lens Designing. Appl. Opt. 1986, 25(2): 235-243
    [67]. Jacek Sochacki. New Simplified Method for Designing the Smooth-transition Gradient-Index and Geodesic Waveguide Lenses of Radial Symmetry. J. of Lightwave Tech., Vol.8
    [68]. 刘骥,石邦任,朱京平.短程透镜的理论考虑.CCIO'91 第六届全国集成光学学术讨论会论文集.烟台:中国光学学会纤维光学与集成光学专业委员会.1991:2839
    [69]. 范俊清,李公羽,许承杰等.短程透镜问题的最优解.光学学报.1993,13(3):254-257
    [70]. 刘骥,胡燮荣,石邦任.无曲率奇点的光波导短程透镜的设计.光学学报.1994,14(4):398-402
    [71]. 汪贤秀,范俊清,许承杰等.一种优化短程透镜的制备研究.光电子·激光,1996,4
    [72]. 汪贤秀,范俊清,许承杰等.新面型短程透镜的制备研究.发光学报,1996,3
    [73]. 石邦任,刘骥,孔梅等.理想波导短程透镜的研究.光学学报.1997,17(3):357-362
    [74]. 石邦任,孔梅,宋哲,刘支华.Research on optimal geodesic waveguide lenses.光学学报,2003,11,P1320-1324
    [75]. Zhe Y. Cheng, Chen S. Tasi.A novel integrated acoustooptic frequency shifter. J. Lightwave Techno., 1989, 7(10):1575-1579
    [76]. Ken-ya Hashimoto.声表面波器件模拟与仿真.北京:国防工业出版社,2002
    [77]. W. R. Klein, B. D. Cook, IEEE Trans. Sonics and Ultrasonics, 1967, SU-14:123
    [78]. 李晖,潘峰.声表面波器件的研究进展.真空科学和技术,2001,21(5):376-380
    [79]. Chen S. Tsai, Zhe Y. Cheng. Baseband Integrated Acousto-optic Frequency Shifter/Modulator Module for Fiber Optic at 1.3μm. IEEE, Trans. On Ultrasonics, Ferroelecrtrics and Frequency control,Vol.40, No. 4, 1993, p407
    [80]. Chen S. Tsai. Integrated Acoustooptic and Magnetooptic Devices for Optical Information Processing. Proceedings of IEEE, Vol.84, No. 6, 1996
    [81]. C. T. Lee. Optical-gyroscope application of efficient crossed-channel acoustooptic devices. Appl. Phy. B., 1984, 35:113-116
    [82]. 徐介平.声光器件的原理、设计和应用.北京:科学出版社,1982
    [83]. Liu Ji, Shi Bangren, Hu Xierong. Particular solution for geodesic lenses. Applied Optics, 33(27): 6412-6414
    [84]. 朱京平,程敏,唐天同等.光波导短程透镜基点与主面研究.西安交通大学学报,1998,32(11):24-26
    [85]. 刘支华,石邦任,武继江等.光波导短程透镜焦点特性的分析.光子学报,2005,12
    [86]. D·马库塞.传输光学.北京:人民邮电出版社,1987
    [87]. 朱京平,吴洪才,张元馨等.光波导短程透镜物像关系求取的作图方法.西安交通大学学报,2000,34(2):41-43
    [88]. 马慧莲等.光波导-单模光纤的直接耦合.光通信研究.2000,3
    [89]. 竺庆春,陈时胜译.矩阵光学导论.上海:上海科学技术文献出版社,1991
    [90]. 吕百达.激光光学·激光束的传输变换和光束质量控制.四川大学出版社,1992
    [91]. Osamu Mitomi, et. al. Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling. IEEE J. Quantum electronics, VOL. 30, NO. 8, 1994,8
    [92]. 石邦任等.集成声光芯片技术研究.光子学报,VOL.30,NO.27,2001,97-100
    [93]. W K Burns, and G B Hocker. End fire coupling between optical fibers and diffused channel waveguides. Appl. Opt. 1977, 16(8): 2048-2050
    [94]. SHIN'ICHI IWANO, ETSUJI SUGITA et al. Design and Performance of Single-Mode Plug-in Type Optical-Fiber Connectors. J. of Lightwave Tech. Vol.8, No. 11, p1750
    [95]. 武继江,石邦任,孔梅,刘支华.级联布喇格声光互作用的频移与光束偏转分析.激光技术,Vol.28,No.1,2004
    [96]. 冯莹等.光纤波导相对位置对耦合效率的影响.光子学报,VOL.25,NO.21,1996,3
    [97]. D.Mergeriam, E.C.Malarkey, R.P.Pantienus and J.C.Bradley. Diamond-machined geodesic lenses in LiNbO3. SPIE Guided Wave Optical System & Devices Ⅱ 1979, Vol. 176:85-94
    [98]. Chen and O. G. Ramer. Geodesic lenses for integrated optic circuits. ADA069711. 1979
    [99]. Mitsuru Kihara, Shinji Nagasawa et al. Return Loss Characteristics of Optical Fiber Connectors. J. of Lightwave Tech. Vol. 14, No. 9, p1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700