新型磁性纳米功能材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们从多学科交叉的角度出发,开发出很多新型的磁性纳米功能材料。其中,磁性靶向药物载体、磁流体、磁性复合纳米材料是较为突出的门类并成为研究中的热点。虽然这几种磁性纳米功能材料的研究正在不断深化,其应用领域也在不断扩展,但仍然存在一些问题值得深入探索。在磁性靶向药物载体方面,如何选取合适的支撑材料以及探索恰当的方法、途径制备性能优异,用途广泛的新型磁性靶向药物载体仍是当前研究中面临的主要问题。在磁流体和磁性纳米复合材料方面,如何实现磁性纳米颗粒在载液和聚合物基质的均匀分散以制备性质稳定、性能优异的磁性纳米功能材料仍是研究中的首要问题和难点。基于以上几点,本文着重设计和开发出了几种新型表面β-环糊精功能化的Fe_3O_4磁性纳米颗粒,并研究了它们作为磁性靶向药物载体应用方面的相关性能;以可聚合表面活性剂马来酸单十八酯对Fe_3O_4磁性纳米颗粒进行表面修饰,将颗粒均匀分散于苯乙烯单体中制备了可聚合磁流体,经本体聚合制备了聚苯乙烯/ Fe_3O_4磁性复合纳米材料,研究了可聚合磁流体和磁性复合纳米材料的相关性能。这些研究不仅为新型磁性纳米功能材料的制备和研究提供了新思路、新方法和新途径,而且还拓宽了其相关应用领域。本文所做的主要研究工作和结果如下:
     合成了羧基取代度分别为1.2和7.3的羧甲基-β-环糊精,并分别在水介质和DMF介质中制备了羧甲基-β-环糊精修饰Fe_3O_4磁性纳米颗粒。利用TEM、FTIR、XRD、DLS、TG等手段对制备颗粒的结构、形态和成分进行了表征并对其相关性能进行了研究。结果表明,以取代度为1.2的羧甲基-β-环糊精在水介质中对Fe_3O_4磁性纳米颗粒修饰效果较为理想,在此条件下制备的羧甲基-β-环糊精修饰Fe_3O_4磁性纳米颗粒为近球形,粒径在10~15nm之间,修饰上的羧甲基-β-环糊精约占颗粒总重的8.2%,颗粒为超顺磁性,质量比饱和磁化强度为68.7emu/g,在水中的分散稳定性良好,优化条件下对药物姜黄素的载药量和包封率分别为21.7μg /mg和43.4%。在体外释药实验中,载药颗粒在4小时内具有较强的药物突释效应,随后呈现长达26小时以上的药物缓释状态。
     将羧甲基-β-环糊精修饰Fe_3O_4磁性纳米颗粒分散于β-环糊精的碱性水溶液中,以环氧氯丙烷为交联剂,通过在羧甲基-β-环糊精修饰Fe_3O_4磁性纳米颗粒表面进行的交联反应制备得到了交联β-环糊精聚合物/Fe_3O_4复合纳米颗粒。利用TEM、SEM、FTIR、XRD、DLS、TG等手段并对制备的颗粒进行了表征并对其相关性能进行了研究。结果表明,制备的交联β-环糊精聚合物/Fe_3O_4复合纳米颗粒为典型的核壳结构,近球形,粒径在20~40nm之间,颗粒中形成壳结构的交联β-环糊精聚合物约占颗粒总重的28.0%,颗粒为超顺磁性,质量比饱和磁化强度为52.0emu/g,在水中具有良好的分散稳定性。与羧甲基-β-环糊精修饰Fe_3O_4磁性纳米颗粒相比,交联β-环糊精聚合物/Fe_3O_4复合纳米颗粒对于药物姜黄素的载药量和包封率均明显提高,优化条件下的载药量和包封率分别达到了86.9μg/mg和72.4%,载药后的颗粒具有较好的药物释放性能。
     采用末端带有可反应性环氧基的硅烷偶联剂γ-缩水甘油丙氧基三甲氧基硅烷(GTMS)对Fe_3O_4磁性纳米颗粒进行表面修饰,然后通过一定条件下β-环糊精羟基与修饰到Fe_3O_4磁性纳米颗粒表面环氧基的化学反应将β-环糊精接枝到GTMS修饰Fe_3O_4磁性纳米颗粒的表面,制备得到了β-环糊精接枝GTMS修饰Fe_3O_4磁性纳米颗粒。利用TEM、FTIR、XRD、DLS、TG等手段对制备的颗粒进行了表征并对其相关性能进行了研究。结果表明,制备的超顺磁性β-环糊精接枝GTMS修饰Fe_3O_4磁性纳米颗粒为近球形,粒径在10~15nm之间,接枝上的β-环糊精约占颗粒总重的2.2%,质量比饱和磁化强度为67.5 emu/g,在水中具有良好的分散稳定性,优化条件下对药物阿霉素的载药量和包封率分别为5.7μg/mg和47.5%。在体外释药实验中,载药后的颗粒在释药初期具有较强的突释效应,随后呈现长时间的药物缓释状态。
     合成了丁烯二酸单酯化β-环糊精(MAH-β-CD),采用带有可聚合双键基团的硅烷偶联剂γ-缩水甘油丙氧基三甲氧基硅烷(MPS)对Fe_3O_4磁性纳米颗粒进行表面修饰,通过在MPS修饰Fe_3O_4磁性纳米颗粒表面进行的丁烯二酸单酯化β-环糊精与丙烯酸(AA)之间的自由基共聚反应,制备了P(MAH-β-CD-co-AA)/Fe_3O_4复合纳米颗粒。利用TEM、FTIR、XRD、DLS、TG等手段并对制备的颗粒进行了表征并对其相关性能进行了研究。结果表明,制备的P(MAH-β-CD-co-AA)/Fe_3O_4复合纳米颗粒为近球形,粒径约在10~15nm之间。接枝上的P(MAH-β-CD-co-AA)共聚物约占颗粒总重的21.2%,在水中的分散稳定性良好,颗粒为超顺磁性,质量比饱和磁化强度为60.0emu/g。与β-环糊精接枝GTMS修饰Fe_3O_4磁性纳米颗粒相比,优化条件下P(MAH-β-CD-co-AA)/Fe_3O_4复合纳米颗粒对药物阿霉素的载药量和包封率有较明显的提高,分别达到了93.8μg/mg和78.2%。在体外释药实验中,载药后的颗粒在4小时内具有较强的突释效应,随后呈现长时间的药物缓释状态。
     合成了可聚合表面活性剂马来酸单十八酯,并用其对Fe_3O_4磁性纳米颗粒进行表面修饰。将马来酸单十八酯修饰Fe_3O_4磁性纳米颗粒采用直接转移法由水相分散到苯乙烯单体中,制备了苯乙烯基可聚合磁流体,分别研究了可聚合磁流体的形态、结构、稳定性、流变性和磁性能。通过可聚合磁流体的本体聚合制备了聚苯乙烯/Fe_3O_4磁性纳米复合材料,分别研究了复合材料的形态、结构、热稳定性和磁性能。结果表明,粒径为7nm左右的马来酸单十八酯修饰Fe_3O_4磁性纳米颗粒在磁流体和磁性纳米复合材料中分散均匀,没有产生明显的团聚现象。制备的苯乙烯基磁流体稳定性良好,磁流变效应明显,是符合弱Bingham模型的非牛顿流体,具有典型的超顺磁性。在聚苯乙烯/Fe_3O_4磁性纳米复合材料制备过程中,修饰于Fe_3O_4磁性纳米颗粒表面的马来酸单十八酯和苯乙烯之间发生了共聚反应。与相似条件下聚合得到的纯聚苯乙烯相比,聚苯乙烯/Fe_3O_4磁性纳米复合材料的热稳定性有所提高,是典型的超顺磁性材料。
In recent years, many novel magnetic nanostructured functional materials have been developed from the perspective of multi-crossed disciplines. Among which, magnetic targeting drug carrier, magnetic fluid and magnetic nano-composite have become relatively outstanding sorts and research hot spots. Although the research of these materials has been deepened and the application area has been broadened constantly, there still exits some problems worth to be further explored. As to magnetic targeting drug carrier, the main problem still lies in the selection of propping materials and the preparation method of novel sorts with perfect performances and extensive applications. In the respect of magnetic fluid and magnetic nano-composite, how to implement the homogeneous dispersion of magnetic nanoparticles in carrier liquid and polymer matrix in the preparation of stable and exceptional nanostructured functional materials remains to be the primary and difficult point. In this research, some new kinds ofβ-cyclodextrin-functionalized Fe_3O_4 magnetic nanoparticles were designed and developed as magnetic targeting drug carriers and their relative properties were studied. Monooctadecyl maleate as polymerizable surfactant was utilized to modify Fe_3O_4 magnetic nanoparticles. Polymerizable magnetic fluid was obtained by directly dispersing modified Fe_3O_4 magnetic nanoparticles into styrene monomer and PS/Fe_3O_4 magnetic nano-composite was further prepared by the free radical polymerization of the magnetic fluid. The relative properties of both the magnetic fluid and the nano-composite were investigated. The research work offered new ideas and ways on how to exploit novel magnetic nanostructured functional materials and expanded the relative application areas. The main research and results of the contribution are summarized as follows:
     Carboxymethyl-β-cyclodextrin (CM-β-CD) with carboxyl substitution of 1.2 and 7.3 was synthesized, and utilized to prepare CM-β-CD-modified Fe_3O_4 magnetic nanoparticles in water and DMF medium, respectively. The morphology, structure and component of CM-β-CD-modified Fe_3O_4 magnetic nanoparticles were characterized by TEM, FTIR, XRD, DLS, TG and their relative properties were also studied. It is more ideal for the Fe_3O_4 magnetic nanoparticles to be modified by CM-β-CD with carboxyl substitution of 1.2 in water medium. In such condition, the prepared CM-β-CD-modified Fe_3O_4 nanoparticles are roughly spherical and their diameter rang from 10~15 nm. The weight percentage of CM-β-CD in CM-β-CD-modified nanoparticles prepared is estimated to be about 8.2%. The prepared CM-β-CD-modified nanoparticle with saturation magnetization of 68.7emu/g exhibit both good superparamagnetic properties and stable dispersibility in water. In optimized condition, the curcumin loading content and entrapment ratio for the prepared nanoparticles was detected as 21.7μg/mg and 43.4% respectively. The drug loading nanoparticles exhibited rapid drug release in 4 hours and slow drug release in the followed 26 hours in vitro releasing experiment.
     Cross-linkedβ-cyclodextrin polymer/Fe_3O_4 composite nanoparticles were prepared via cross-linking reaction on the surface of CM-β-CD-modified Fe_3O_4 magnetic nanoparticles dispersed inβ-cyclodextrin alkaline solution by using epichlorohydrin (EP) as a crosslinking agent. The morphology, structure and component ofβ-cyclodextrin polymer/Fe_3O_4 composite nanoparticles were characterized by TEM, SEM, FTIR, XRD, DLS, TG and their relative properties were also studied. The result indicats that the prepared cross-linkedβ-cyclodextrin polymer/Fe_3O_4 composite nanoparticles with typical core-shell structures are roughly spherical, and their diameter rang from 20~40 nm. The weight percentage of cross-linkedβ-cyclodextrin polymer shell in the composite nanoparticles is about 28.0% and the prepared compsite nanoparticles with saturation magnetization of 52.0emu/g possess good superparamagnetic properties as well as stalbe dispersibility in water. Compared with CM-β-CD-modified Fe_3O_4 magnetic nanoparticles, the curcumin loading content and entrapment ratio for the prepared composite nanoparticles was promoted to 86.9μg/mg and 72.4% respectively in optimized condition. The drug loading composite nanoparticles exhibited better drug release properties in vitro releasing experiment.
     Fe_3O_4 magnetic nanoparticles were modified by 3-glycidoxypropyltrimethoxysilane (GTMS) which have reactive epoxy end groups andβ-cyclodextrin grafted GTMS-modified Fe_3O_4 magnetic nanoparticles were prepared by conjugatingβ-cyclodextrin onto GTMS-modified Fe_3O_4 magnetic nanoparticles via reaction between epoxy groups on the surface of GTMS-modified Fe_3O_4 magnetic nanoparticles and hydroxyl groups ofβ-cyclodextrin. The morphology, structure and component of the prepared Fe_3O_4 magnetic nanoparticles were characterized by TEM, FTIR, XRD, DLS, TG and their relative properties were also studied. The result shows that the prepared nanoparticles are roughly spherical and their diameter rang from 10~15 nm. The weight percentage of graftedβ-cyclodextrin in the prepared nanoparticles is about 2.2%. The prepared nanoparticles with saturation magnetization of 67.5emu/g possess superparamagnetic properties as well as stable dispersibility in water. In optimized condition, the adriamycin (ADM) loading content and entrapment ratio for the prepared nanoparticles was detected as 5.7μg/mg and 47.5%, respectively. The drug loading nanoparticles exhibited rapid drug release in the initial stage and slow drug release in the followed long time in vitro releasing experiment.
     MAH-β-CD was synthesized and Fe_3O_4 magnetic nanoparticles were modified byγ-methacryloxypropyltrimethoxy (MPS) which have reactive double carbon bonds. P(MAH-β-CD-co-AA)/Fe_3O_4 composite nanoparticles were prepared via free radical copolymerization of MAH-β-CD and acrylic acid on the surface of MPS-modified Fe_3O_4 magnetic nanoparticles. The morphology, structure and component of P(MAH-β-CD-co-AA)/Fe_3O_4 composite nanoparticles were characterized by TEM, FTIR, XRD, DLS, TG and their relative properties were also studied. The result indiates that the prepared composite nanoparticles with diameter ranged from 10-15 nm are roughly spherical. The weight percentage of grafted P(MAH-β-CD-co-AA) copolymer in the prepared nanoparticles is about 28%. The prepared composite nanoparticles with saturation magnetization of 60.0emu/g exhibited superparamagnetism as well as stable dispersibility in water. Compared withβ-cyclodextrin grafted GTMS-modified Fe_3O_4 magnetic nanoparticles, the curcumin loading content and entrapment ratio for the prepared composite nanoparticles was promoted to 93.8μg/mg and 78.2% in optimized condition. The drug loading composite nanoparticles exhibited rapid drug release in the initial stage and slow drug release in the followed long time in vitro releasing experiment.
     Monooctadecyl maleate as polymerizable surfactant was synthesized utilized to surface-modify Fe_3O_4 magnetic nanoparticles. A stable polymerizable magnetic fluid was obtained by directly transferring modified Fe_3O_4 magnetic nanoparticles from aqueous phase to styrene monomer. Polystyrene/Fe_3O_4 nano-composite was prepared via bulk polymerization of polymerizable magnetic fluid. The morphology, structure, stability, rheological and magnetic properties of prepared magnetic fluid and the morphology, structure, thermal stability as well as magnetic properties of prepared polystyrene/Fe_3O_4 nano-composite were studied, respectively. Result shows that Fe_3O_4 magnetic nanoparticles modified by monooctadecyl maleate with the diameter of about 7 nm can be homogeneously dispersed in the styrene monomer and fixed in the nano-composite without apparent aggregation during the procedure of polymerization. The prepared polymerizable magnetic fluid with good stability and magnetic rheology property is a sort of typical superparamagnetic materials according with inferior Bingham fluid pattern. Copolymerization occurred between styrene monomer and monooctadecyl maleate modified on the surface of Fe_3O_4 magnetic nanoparticles during the preparation of polystyrene/Fe_3O_4 nano-composite. Compared with polystyrene prepared under almost the same polymerization conditions, the thermal stability of polystyrene/Fe_3O_4 nano-composite is obviously improved and the composite is also a sort of superparamagnetic materials.
引文
[1]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社, 2002: 16-28
    [2]张金升,许凤秀,王英姿等.功能材料综述[J].现代陶瓷技术, 2002, (3): 40-45
    [3]贺志荣,周敬思,王芳.先进材料及其应用研究进展[J].陕西工学院学报, 2001, 17(4): 7-12
    [4] Burman A, Moster E, Abrahamsson P, et al. On the influence of functional materials on engineering design [J]. Research in Engineering Design, 2000, 12(1): 39-47
    [5] Frenkel J, Dorfman J. Spontaneous and induced magnetization in ferromagnetic bodies [J]. Nature, 1930, 126: 274-275
    [6] Kittel C. Theory of the structure of ferromagnetic domains in films and small particles [J]. Phys. Rev., 1946, 70: 965-969
    [7] Bean C P, Livingston J D. Superparamagnetism [J]. Appl. Phys., 1959, 30: 120-129
    [8] Bostanjoglo O, Rohkel K. Superferromagnetism in thin Gd and Gd-Au films [J]. Phys. Stat. Sol., 1971, 7: 387-392
    [9] Neel L J. Magnetism and local molecular field [J]. Science, 1971, 174: 985-992
    [10] Kneller E. Magnetism and Metallurgy [M]. New York: Academic Press, 1969: 365.
    [11] Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys [J]. Proc. Phys. Soc., 1948, 240: 599-605
    [12] Staduik Z M, Griebaoh P, Debe G, et al. Ni m?ssbauer study of the hyperfine magnetic field near the Ni surface [J]. Phys. Rev., 1987, 35: 6588-6592
    [13]都有为,徐明祥,吴坚等.超细微粒的磁性[J].物理学报, 1992, 41: 149-153
    [14] Verwey E J. Electronic Conduction of Magnetite (Fe_3O_4) and its Transition Point at Low Temperatures [J]. Nature, 1941, 144: 327-328
    [15] Brabers V A. Handbook of magnetic materials [M]. Amsterdam: Elsevier Science, 1995, 8: 199
    [16] Shinjo T, Kiyama M, Sugita N, et al. Surface magnetism ofα-Fe2O3 by mossbauer spectroscopy [J]. Magn. Magn. Mater., 1983, 35: 133-135
    [17] Horio I, Zhou X Z, Morrish A H, et al. Surface magnetic properties ofγ-Fe2O3 particles with and without adsorbed strontium [J]. Magn. Magn. Mater, 1993, 118(3): 279-284
    [18] Zhu Y C, Ding C X, Ma G H, et al. Electronic state characterization of ultrafine particles by luminescence spectroscopy [J]. Solid State Chem., 1998, 139: 124-127
    [19] Chang A E, Sehneider P D, Sugarbaker P H, et al. A prospective randomized trail of regional versus systemic continuous 5-fluorodeoxy uridine chemotherapy in the treatment of colorectal liver metastases [J]. Ann Surg., 1987, 206(6): 683-693
    [20] Baleh C M, Urist M M, Mcgrgor M L, et al. Continuous regional chemo therapy for metastasis colorectal carcinoma using a totally implantable infusion pump [J]. Ann Surg., 1983, 145(2): 285-290
    [21] Ensminger W D, Rosowsky A, Raso V, et al. A clinic pharmacological evaluation of hepatic arterial infusions of 5-Flouro-ideo-xyridine and 5-Flourouracil [J]. Cancer Res., 1978, 38(11): 3784-3792
    [22]朱派,陆伟根.磁性微球和磁性纳米粒的研究进展[J].中国医药工业杂志, 2005, 36(9): 581-584
    [23] Kueckelhaus S, Reis S C, Carneiro M F, et al. In vivo investigation of cobalt ferrite-based magnetic fluid and magneto liposome using morphological tests [J]. Magn Magn Mater., 2004, 272: 2402-2403
    [24] Ensminger W D, Rosowsky A, Raso V, et al. A clinic pharmacological evaluation of hepatic arterial infusions of 5-Flouro-ideo-xyridine and 5-Flourouracil [J]. Cancer Res., 1978, 38(11): 3784-3792
    [25]徐敏,姜丽丽.免疫磁性制剂的研究[J].药学进展, 1999, 23(1): 23-27
    [26]吴传斌,魏树礼.磁性药物微球研究进展[J].中国药学杂志, 1993, 28(6): 330-334
    [27]钟裕国,傅驻.主动靶向药物的研究进展[J].中国药房, 1997, 8(4): 183-184
    [28]张灵芝.脂质体制备及其在生物医学中的应用[M].北京:北京医科大学中国协和医科大学联合出版社, 1998: 81-86
    [29] Widder K, Flouret G, Sennei A, et al. Magnetic microspheres: synthesis of a novel parenteral drug carrier [J]. J Pham Sci., 1979, 68: 79
    [30] Shinkai M, Suzuki M, Rijima S, et al. Antibody-conjugated magneto liposomes for targeting cancer cells and their application in hyperthermia [J]. Biotechnol Appl Biochem., 1994, 21: 125-137
    [31]张灵芝.脂质体制备及其在生物医学中的应用[M].北京:北京医科大学中国协和医科大学联合出版社, 1998: 77-78
    [32]李民勤,徐慧显,左集等.葡聚糖免疫磁性毫微粒的制备及作为复合靶向载体研究[J].中国科学(B辑), 1996, 26(3): 193-198
    [33]常津.具有复和靶向抗癌功能的纳米高分子材料-阿霉素免疫磁性毫微粒的制备及体外实验[J].中国生物医学工程学报, 1996, 2(3): 97-101
    [34]王平康,袁青禄,刘歧山等.磁性抗癌药物载体的研制[J].中国医院药学杂志, 1990, 10(1): 2
    [35] Widder K, Sennei A, Sears B, et al. Experimented methods in cancer therapeutics [J]. J Pham Sci., 1982, 71: 38
    [36]魏衍超,杨连生.磁性生物高分子微球的制备方法和研究进展[J].功能材料, 2000, 31(5): 464-465
    [37]朱赢,陆伟根.磁性微球和磁性纳米粒的研究进展[J].中国医药工业杂志, 2005, 36(5): 581-584
    [38]徐华,宋涛.磁性药物靶向治疗的进展[J].国外医学生物医学工程分册, 2004, 27(1): 61-64
    [39] Devineni D, Klein S A, Gallo J M, et al. Tissue distribution of methotrexate following administration as a solution and as a magnetic microsphere conjugate in rats bearing brain tumors [J]. J Neurooncol., 1995, 24(2): 143-152
    [40] Pulfer S K, Gallo J M. Enhance brain tumor selecivity of cationic magnetic polysaccharide microspheres [J]. J Drug Target, 1998, 6(3): 215-227
    [41] Lubbe A S, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase study with 4-epidoxorubicin in 14 patients with advanced solid tumors [J]. Cancer Resf., 1996, 56: 4686-4693
    [42] Aexion C H, Arnold W, Klein R J, et al. Locoregional Cancer treatment with magnetic drug targeting [J]. Cancer Resf., 2000, 60: 6641-6648
    [43] Yanase M, Shinkai M, Honda H, et al. Intracellular hyperthermia for cancer using magnetic cationic liposomes: an in vivo study [J]. Japan Cancer Resf., 1998, 89(4): 463-469
    [44] Viroonchatapan E, Ueno M, Sato H, et al. Preparation and characterization of dexan magnetite incorporated thermosensitive liposomes: an on-line flow system forquantifying magnetic responsiveness [J]. Pharm Res., 1995, 12: 1176-1183
    [45] Rudge S R, Kurtz T L, Vessely C R, et al. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy [J]. Biomaterials, 2000, 21: 1411-1420
    [46]董广星,陈旭.靶向药物阿霉素抗肿瘤研究新进展[J].天津药学, 2003, 15(2): 60-63
    [47]石可瑜,李朝兴,何炳林.磁导向阿霉素-羧甲基葡聚糖磁性毫微粒的毒性的研究[J].生物医学工程学杂志, 2003, 20(2): 219-221
    [48] Burger K N, Staffhorst R W, Velinova M J, et al. Nanocapsules: lipidcoated aggregates cisplatin with high cytotoxicity [J]. International Journal of Medical Microbiology, 2002, 8(1): 81
    [49]谢民强,陈帅君,徐雪青等.两种顺铂磁性纳米颗粒制备及其特性的比较[J].科学通报, 2005, 50(19): 2079-2084
    [50]刘新玲,李筱荣,常津等. 5-Fu纳米毫微粒的制备及体外对晶状体上皮细胞增生的抑制作用[J].眼科新进展, 2005, 25(4): 293-296
    [51]尹宗宁,陆彬.注射胰岛素缓释纳米囊的研究[J].中国医药工业杂志, 2000, 31(8): 349-352
    [52] Cosmacachita D, Bica D, Tarca A R, et al. Magneto liposomes obtained from lecithin and Fe_3O_4 nanoparticles [J]. Rom J. Physiol, 1999, 36(3): 233
    [53]李占山,中村圭介,伊贺立二等.米托蒽醌长循环脂质体的制备及特性研究[J].中国煤炭工业医学杂志, 2001, 4(11): 937-938
    [54]张良坷,侯世祥,毛声俊等.受体介导米托葱酮白蛋白纳米粒肿瘤细胞靶向性研究[J].四川大学学报(医学版), 2006, 37(1): 77-79
    [55]张胜,吴汉江,凌天墉等.平阳霉素磁性微球的制备及特性检测[J].湖南医科大学学报, 2003, 28(2): 191-193
    [56]徐华,宋涛.磁性药物靶向治疗的进展[J].国外医学生物医学工程分册, 2004, 27(1): 61-64
    [57] Kubo T, Sugita T, Shimose S, et al. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamters [J]. Int J Oncol., 2001, 18(1): 121-125
    [58]高兰萍,邱广明.纳米级磁性复合微球的制备[J].内蒙古师大学报(自然科学版), 1998, 27(4): 302-306
    [59]万惠文,张强,宋宏涛等.聚合物磁性颗粒的制备[J].武汉工业大学学报, 1999, 21(1): 22-24
    [60] Birrenbach G, Speiser P. Polymerized micelles and their use as adjuvants in immunology [J]. J Pharm Sci., 1976, 65(12): 1763-1766
    [61] Kondo A, Kamura H, Higashitani K. Development and application of thermosensitive magnetic immunomicrosphere for antibody purification [J].Appl. Microbiol. Biotechnol., 1994, 41: 99
    [62] Kriwet B, Walter E, Kissel T. Synthesis of bio-adhesive microparticles using and inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates [J]. Journal of Controlled Release, 1998, 56(13): 149-158
    [63]朱以华,王强斌,古宏晨等.表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用[J].中国医学科学院学报, 2002, 24(2): 118-123
    [64]任非,陈建海,陈志良等.丝裂霉素C-聚氰基丙烯酸正丁酷磁性纳米球的制备方法及性质[J].中国医学杂志, 2005, 40(15): 1163-1166
    [65] Gupta P K. Albumin microspheres-synthesis and characterization of microspheres containing adriamycin and magnetite [J]. Int J Pharm., 1988, 43: 167-177
    [66] Ogawa Y, Yamamoto M, Okada H, et al. [J]. A new technique of efficiently entrapped leuprolide acetate into microcapsules of poly lactic acid or copoly(lactic/glycolic) acid [J]. Chem Pharm Bull., 1988, 36: 1095-1103
    [67]琳本兰,沈晓冬,崔升等.丝磁性纳米粒阿霉素微球制备的初探[J].中国医院医学杂志, 2005, 25(5): 424-426
    [68]黄开红,朱兆华,刘建化等.聚乳酸载药纳米微粒制备及其释药效能[J].癌症, 2005, 24(8): 1023-1026
    [69]王国斌,刘敬伟,陶凯雄等.丝裂霉素c的磁性纳米微球[J].中国新药杂志, 2004, 13(12): 1120-1123
    [70]王彦卿,张朝平.诺氟沙星明胶磁性微球的研制及表征[J].无机材料学报, 2005, 20(1): 77-82
    [71]邹涛,郭灿雄,段雪等.强磁性Fe_3O_4纳米颗粒的制备及其性能表征[J].精细化工2002, 12: 708
    [72]罗正平,张秋禹,张军平等.微米级PSt,P(St/MAA)磁性高分子微球的合成中温度、引发剂、介质极性、稳定剂量的影响[J].功能高分子学报, 2002(2): 147-151
    [73]杨根元.实用仪器分析[M].北京:北京大学出版社, 1996: 104-255
    [74]程海斌,刘桂珍,李立春等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].武汉理工大学学报,2003,25(3):7-9
    [75]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业出版社, 1998: 213
    [76] Dente F L, Bacci E, Bartoli M L, et al. One week treatment with salmeterol does not prevent early and late asthmatic responses and sputum eosinophilia induced by allergen challenge in asthmatics [J]. Pulmonary Pharmacology&Therapeutics, 2004, 3: 167-177
    [77] Avivi S, Felner I, Novik I, et al. The preparation of magnetic proteinaceous microspheres using the sonochemical method [J]. Biochimica et Biophysica Acta., 2004, 1527: 123-129
    [78]陈秀丽,吴泽志,冯全义等.抗癌药物靶向制剂的研究现状[J].食品与药品,2004,27(9): 92-95
    [79] Hafeli U O. Magnetically modulated therapeutic system [J]. International Journal of Pharmaceutics, 2004, 277: 19-24
    [80] Widder K J, Senyer A E, Scarpelli D G, et al. Magnetic microspheres: a model system for site specific drug delivery in vivo [J]. Proc Soc Exp Biol Med., 1978, 58: 141-145
    [81] Widder K J, Senyer A E, Ranney D F, et al. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres [J]. Cancer Res., 1980, 40: 3512-3517
    [82] Stephane C, Catherine L, Joseph K, et al. Cisplatin-based chemotherapy in the management of germ cell tumors of the ovary: the institute Gustavo roussy experience [J]. Gynecologic Oncology, 1997, 1: 160-165
    [83] Marianne B, Gerhard S, Edmund P, et al. Cystic adventitial degeneration of the popliteal artery-the diagnostic value of duplex sonography [J]. European Journal of Radiology, 2001, 38(3): 209-212
    [84] Olsvik O. Pathogenic Escherichia coli found in food [J]. International Journal of Food Microbiology, 1991, 1: 103-113
    [85]陈秀丽,吴泽志,冯全义等.抗癌药物靶向制剂的研究现状[J].食品与药品,2004,27(9): 92-95
    [86] Rosensweig R E. Magnetic Fluids [J]. Sci. Am, 1982, 247(4): 136
    [87] Rosensweig R E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985
    [88] Papell S S. Low viscosity magnetic fluid obtained by colloidal suspensions of magnetic particles [P]. US: 3225572, 1965
    [89] Papell S S. Ferrofluid compositions and process of making same [P]. US: 3917538, 1965
    [90]王会宋.磁性材料及其应用[M].北京:国防工业出版社,1989: 315
    [91]丘广明,孙宗华.水溶性磁流体的制备和性质[J].化学试剂,1993,15(4): 233-237
    [92]李学慧,吴业,刘宗明.磁流体的研制[J].化学世界, 1998, 1: 15~17
    [93]赖欣,毕剑,高道江等. Fe_3O_4磁性流体的制备[J].磁性材料及器件,2000, 6: 15-18
    [94]柳学全,滕荣厚,周寿增等.金属铁磁性液体稳定性研究[J].钢铁研究学报,1995, 7(2): 37
    [95]张平,刘奇,黄元龙等.磁流变体流变学特性研究[J].化学物理学报,2001,14(5): 523-526
    [96]池长青,王之珊,赵呸智等.铁磁流体力学[M].北京:北京航空航天大学出版社, 1993
    [97]蔡国琰,刘存芳.磁流体力学及磁流体的工程应用[J].山东工业大学学报,1994,24(4): 347-351
    [98] Yusuf N A, Ramadan A, Abu-Safia H, et al. The wavelength and concentration dependence of the magneto-dielectric anisotropy effect in magnetic fluids determined from magneto-optical measurements [J]. Magn.Magn.Mater., 1998, 184(2): 375-386
    [99] Yang E, Hong C Y, Yang HC, et al. Magnetic field dependence of Cotton–Mouton rotation for magnetic fluid films [J]. Magn.Magn.Mater., 1999, 201: 215-217
    [100] Rosensweig R E. Magnetic Fluids [J]. Sci. Am., 1982, 247(4): 136
    [101] Wang H, Zhu Y, C. Luo W, et al. A. Periodic Branched Structures in a Phase-separated Magnetic Colloid [J], Phys. Rev. Lett., 1994, 72(12): 1929-1932
    [102] Rosensweig R E. Theory for stabilization of magnetic colloid in liquid metal [J]. Magn. Magn. Mater., 201(1999): 1-6
    [103] Drikis I, Cebers A. Viscous fingering in magnetic fluids: numerical simulation of radial Hele–Shaw flow [J]. Magn.Magn.Mater., 1999, 201: 339-342
    [104]邹继斌,陆永平.磁性流体密封原理与设计[M].第1版.北京:国防工业出版社, 2000
    [105] Yamaguchi H, Kobayashi I. Numerical study of flow state for a magnetic fluid heat transport device [J]. Magn.Magn.Mater., 1999, 201: 260-263
    [106] Kim Y S, Nakatsuka K, Fujita T, et al. Application of hydrophilic magnetic fluid to oil seal [J]. Magn.Magn.Mater., 1999, 201: 361-363
    [107]孙玉武,倪秋芽,童建忠等.脉冲磁流体发电机研究的发展状况[J].高技术通讯,2000, 6: 102-106
    [108]谭美军,陈洪,汤建新等.磁性流体的制备及在防伪印刷中的应用[J].包装工程,2002, 23(4): 64-66
    [109] Seo J W, Park S J, Jang K O, et al. An experimental study of light modulator sing magnetic Fluid [J]. Appl. Phys., 1999, 85(8): 5956-5958
    [110]谢希德,方俊鑫.固体物理学[M].上海:上海科学技术出版社,1998: 84-88
    [111]都有为.磁性液体[J].磁性材料及器件, 1982(1): 18-24
    [112]任尚坤,王井银,金富林等.金属超微粉磁流体研制及其稳定性分析[J].天津大学学报, 1995, 28(4): 567-571.
    [113]康鸿业,王允军.铁磁性流体[J].自然杂志. 1990, 13(12): 828-831
    [114]杨思勇,陈德群,周文运等.磁性液体分离技术初探[J].磁性材料及器件, 1987, 18(1): 20-25
    [115]徐建平译.氮化铁磁流体的制备[J].润滑与密封, 1993, 2: 62-68
    [116]钟昭明.磁性材料家族的新成员-高分子有机磁性材料[J].磁性材料及器件, 1999, 30(6): 31-36
    [117]徐昌运.磁性塑料现状[J].塑料工业,1985,74(6): 1-5
    [118]王韶晖,张萍,赵树高等.磁性高分子材料的研究进展[J].青岛化工学院学报,2002,23(2): 23~35
    [119]吴德炎.漫话磁性塑料[J].化工新型材料, 1991, 7: 13
    [120]于文杰,董叶青.磁性塑料的开发应用[J].塑料科技, 1997, 3: 55
    [121]徐昌运.磁性塑料现状[J].塑料工业, 1985, 6: 1
    [122]钟昭明.磁性材料家族的新成员-高分子有机磁性材料[J].磁性材料及器件, 1999, 30(6): 31
    [123]马如璋,蒋民华,徐祖雄.功能材料学概论[M].北京:冶金工业出版社, 1999: 304
    [124] Li W, Lin X F, Tao X, et al. Novel magnetic polyethylene nanocomposites produced by supported nanometre magnetic Ziegler-Natta catalyst [J]. Polymer International, 2000, 49: 184
    [125] Sato T, Ijima S, Inagake N, et al. Magnetization of cadmium ferrite prepared by co-precipitation [J]. Magn Magn Mater., 1987, 65: 252-256
    [126] Bacri J C, Perzynski R, Salin D, et al. Ionic ferrofluids: a crossing of chemistry and physics [J]. Magn Magn Mater., 1990, 85: 27-30
    [127] Cao X P, Luo Y W, Feng L X, et al. Synthesis and properties of magnets/polyethylene composites [J]. Appl Polym Sci., 1999, 74(14): 3412-3415
    [128] Hiroshi S, Yuji M, Nobuo K, et al. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles [J]. Mater Chem., 2000, 10: 333-339
    [129] Kawahashi N, Matijevic E. Preparation and properties of uniform coated colloidal particles [J]. Colloid interface Sci., 1990, 138: 534-538
    [130]王延梅,封麟先,潘才元等.高分子金属微球的磁性能研究[J].功能高分子学报, 2000, 13(2): 129-132
    [131]都有为,徐明祥,吴坚等.镍超细微颗粒的磁性[J].物理学报, 1992, 41(1): 149-151
    [132] Ugelstad J, Berge A, Mork K, et al. Swelling of oligomer-polymer particles-new methods of preparation [J]. Macromol Chem., 1998, 17: 177-180
    [133] Shinke M, Hondon H, Kobayashi T, et al. Preparation of fine magnetic particles and application for enzyme immobilization [J]. Biocat Biotransform, 1991, 5(1): 61-69
    [134] Horak D, Bohacek J, Subrt M, et al. Magnetic poly (2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization [J]. Journal of Polymer Science Part A, 2000, 17: 129-134
    [135] Danielle R, Wei L, Christoph M, et al. Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging [J]. J. Appl. Phys., 2000, 87: 6208
    [136]都有为.磁性材料进展[J].物理, 2000, 29(6): 323
    [137] Halit S, Gokturk, Thomas J, et al. Effects of particle shape and size distributions on theelectric and magnetic properties of nickel/polyethylene composites [J]. Appl Polym Sci, 1993, 50: 1891
    [138] Petra S, Miroslav S. Magnetic silicone rubber [J]. Rubber Chemistry and Technology, 1983, 56(2): 322
    [139]林冬,陈勐,李佑明等.磁性橡胶[J].特种橡胶制品, 1987, 2: 1-3
    [140]赖武铨,梁献镖,庞尚武等.各向异性磁性橡胶制造新工艺[J].特种橡胶制品, 1991, 1: 44-47
    [141] Giri A K. Magnetic properties of iso-polyethylene nano-composites prepared by high energy ball milling [J]. Appl Phys., 1997, 81(2): 1348-1350
    [142]生瑜,朱德钦,陈建定.聚合物无机纳米复合材料的制备方法[J].高分子通报, 2001, 4: 9-14
    [143] Ziolo R F, Giannelis E P, Weinstein B A, et al. Matrix-mediumted synthesis of nanocrystalline-Fe2O3: a new optically transparent magnetic material [J]. Science, 1992, 257(10): 219-223
    [144] Nakao Y, Oda S, Yada T. Noble metal solid sols in poly (methyl methacrylate) [J]. Colloid Interface Sci., 1995, 171: 386-391
    [145] Naohisa Y, Mitsushino F, Mikitaka I, et al. Reduction and agglomeration of silver in the course of formation of silver nano cluster in poly (methyl methacrylate) [J]. Chem Lett., 1998, 316(4): 305-309
    [146]都有为.磁性材料进展.物理[J], 2000, 29(6): 323-324
    [147]刘颖,涂铭旌.磁性高分子粘结钕铁硼的性能.复合材料学报[J], 1999, 16(2): 1-3
    [148]钟昭明.磁性材料家族的新成员-高分子有机磁性材料[J].磁性材料及器件, 1999, 30(6): 31-36
    [149] Wang Y, Wong J F, Yang H, et al. Pulling nanoparticles in water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions ofα-cyclodextrin [J]. Nano Lett., 2003, 3: 1555-1559
    [150]刘峥,吕慧丹.具有磁导向性的交联β-环糊精聚合物微球的合成与性能[J].化工新型材料, 2006, 34: 20-23
    [151] Xia H B, Yi J B, Foo P S, et al. Facile fabrication of water-soluble magnetic nanoparticles and their spherical aggregates [J]. Chem. Mater., 2007, 19: 4087-4091
    [152] Banerjee S S, Chen D H. Magnetic nanopraticles grafted with cyclodextrin for hydrophobic drug delivery [J]. Chem. Mater., 2007, 19: 6345-6349
    [153] Zhi J Z, Tian X T, Zhao W, et al. Self-assembled film based on carboxymethyl-β-cyclodextrin and diazoresin and its binding properties for methylene blue [J]. Journal of Colloid and Interface Scinece, 2008, 319: 270-276
    [154]周叶红,安文汀,张国梅等.羧甲基-β-环糊精的制备和分析表征[J].山西大学学报(自然科学版), 2005, 28(3): 276-279
    [155]吴淼鑫,郑用熙.β-环糊精对分子型体和离子型体α-萘酚及喹啉包结作用的研究[J].分析科学学报, 1994, 10(1): 10-14
    [156]周玉燕,陈盛,项生昌等.水溶性β-环糊精交联聚合物的合成及其络合性能研究[J].合成化学, 2002, 6: 561-564
    [157] Harada A, Furue M, Nozakura S, et al. Cyclodextrin containing polymers: 2. Cooperatative effects in catalysis and binding [J]. Macromolecules, 1976, 9(5): 705-719
    [158] Liu Y Y, Fan X D. Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer [J]. Polymer, 2008, 43: 4997-5003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700