用户名: 密码: 验证码:
碳基材料掺杂聚合物复合材料制备及PTC行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子复合材料一般分为结构型导电高分子材料和复合型导电高分子材料两大类。相比结构型导电高分子材料的难熔、难溶、不易成型、环境稳定性差等缺点,复合型导电高分子材料可以通过改变基体和填料的种类以及填料用量可以在较大范围内调节材料的电性能,因此,复合型导电高分子材料在填料、基体的选择、制备等方面更具有优势,且来源广泛,受到众多学者的广泛关注。聚合物基正温度系数(PTC)材料作为导电高分子复合材料中的一种智能高分子材料,由于其具有特殊的温度响应能力而在加热材料、过热或过流保护器等领域得以应用。但随着社会的进步及人们需求的不断提高,人们对材料的性能提出了更高的要求。渴望发现新的高效填料与制备工艺,从而进一步改善材料的综合性能。
     本文从提高复合材料电导率,改善其PTC性能的角度出发,以碳系填料,石墨烯(G)、石墨(GP)、炭黑(CB)、碳纤维(CF)为主要填料采用共溶剂法制备工艺、热压还原工艺、旋涂蒸发工艺、高速机械混磨工艺制备了碳基聚合物电导复合材料。系统的研究了不同的制备工艺对填料的分散性能及对复合材料电学性能的影响。同时,研究了填料的分布形态、不同的填料体系、CF的氧化处理与基体性质对复合材料的电导率和PTC性能影响,实现了不同填料及基体间的优势互补,为PTC材料的加工和改性提供了新的思路。本文主要研究内容和创新性成果如下:
     1.提出将共溶剂法制备工艺与热压还原工艺相结合,制备了还原氧化石墨烯(RGO)/聚偏氟乙烯(PVDF)导电复合材料。研究表明,在1:9的水(H2O)/二甲基甲酰胺(DMF)的混合溶剂中氧化石墨烯(GO)的浓度提高了2.98倍,且能够形成均一稳定的溶液。在RGO/PVDF复合材料的制备过程中,通过热压还原工艺消除了材料内部孔结构对复合材料后期电学性能的影响。研究发现,RGO/PVDF导电复合材料呈现NTC效应,且循环测试过程中室温电阻呈现下降趋势。对RGO/PVDF复合材料的结晶性能研究发现,RGO的加入促使PVDF发生了α相到β相的晶型转变。
     2.研究了CF、CB与RGO粒子的相互作用对RGO/PVDF导电复合材料的PTC性能影响。对复合材料的导电性能、PTC性能的研究表明,具有一定长径比的CF优于CB。通过对CF进行氧化处理,能够有效的消除材料的NTC效应,改善材料的循环稳定性。并通过X射线衍射(XRD)、透射电子显微镜(TEM)全面分析了RGO/PVDF、CF/RGO/PVDF、CB/RGO/PVDF不同复合体系的结晶性能及不同形态填料间的相互作用机理。
     3.提出采用旋涂蒸发工艺制备了具有分离结构的纳米石墨烯(GNS)/超高分子量聚乙烯(UHMWPE)导电复合材料,系统的研究了制备工艺对GNS/UHMWPE导电复合材料电学性能的影响。研究表明旋涂蒸发工艺制备的GNS/UHMWPE导电复合材料具有较低的逾渗阀值仅为0.028vol%。同时研究发现,采用溶液共混法制备的GNS/PVDF复合材料呈现NTC效应,采用旋涂蒸发工艺制备的分离结构GNS/PVDF复合材料呈现PTC效应。在分离结构GNS/PVDF导电复合材料中,通过控制GNS填料含量的变化,能够实现GNS/PVDF复合材料PTC转变温度的可控性。GNS/PVDF复合材料的XRD、DSC测试表明,分离结构复合材料中GNS的加入并未改变PVDF的结晶性能。
     4.本文使用高速机械混磨工艺制备了CB/UHMWPE分离结构导电复合材料,复合体系的逾渗阀值仅为0.4vol%,与传统熔融共混工艺和部分溶液共混工艺制备的同一体系导电复合材料相比,复合材料的逾渗阀值显著降低。同时,通过高速机械混磨工艺制备了CB/GP/UHMWPE、 CB/CF/UHMWPE、CB/UHMWPE/HDPE导电复合材料,并对其PTC性能进行了系统的研究。通过改变界面处填料形态及基体性质改善了复合材料的PTC性能,与CB/UHMWPE复合体系相比PTC强度分别提升了1.66倍、1.85倍,且当UHMWPE/HDPE为1:3时消除了NTC效应。随着热循环测试的进行,CB/UHMWPE复合材料的PTC强度提高了2.07倍,呈现上升趋势。通过控制复合材料热压工艺改变了CB/UHMWPE复合材料界面处的填料分布形态,实现了CB/UHMWPE导电复合材料的PTC强度的可调性。
Conductive polymer composites are included structural conductive polymermaterials and composite conductive polymer material. Composite conductive polymermaterials can change the type of matrix and filler and filler content can be adjusted ina wide range of electrical properties of materials.So the composite conductivepolymer materials was concerned by scholar.Positive temperature coefficient (PTC)effect of polymer-based conductive composites is the non-linear response totemperature change of its resistivity,when temperature rising to the vicinity of themelting point of polymer matrix.This smart switch behaviour give it importantapplications in the field of heating materials,overheating or overcurrent protectiondevices and temperature sensors etc.But with social progress people put forwardhigher requirements for material.People want to find efficient packing and preparationprocess improving the performance of materials.
     In this paper we from the viewpoint of improve the conductivity and PTCperformance.We prepared carbon-based conductive polymer composites by co-solventmethod, hot pressing reduced method,spin coating evaporation method, high-speedmechanical mixing method.Study on the filler dispersion properties and electricalproperties of composite materials of the different preparation methods.At the sametime the distribution patterns of the single filler and double filler system and carbonfiber (CF) oxidation treatment and the mechanism of interaction of different fillerswas studied. We also study the electrical properties and PTC behavior of composites.The main contents and innovations are as follows:
     1. In this paper thermally reduced graphene oxide (RGO) polyvinylidene fluoride(PVDF) conductive composites was prepared by co-solvent method and spin coatingevaporation method.It was shown that in the1:9mixed solvent of H2O/DMF canimprove GO concentration which increased2.98times and can form a homogeneous stable solution. Eliminate the pore structure effect on electrical properties of thecomposite materials by hot pressing reduced method. The RGO/PVDF compositesshow an unusual resistance temperature behavior.The resistance decreases withtemperature,indicating an NTC behavior and the room-temperature resistivitydownward trend during the thermal cycles.we also found that RGO can promote αphase to β phase transformation of RGO/PVDF composite materials
     2. We found that the carbon fiber and carbon black (CB) can improve PTC behaviorof RGO/PVDF composites. However carbon fiber better than the CB in improve thePTC performance of RGO/PVDF composites. CF oxidation treatment can effectivelyeliminate the NTC effect and improving the cycles stability of composites. RGO/PVDF, RGO/CF/PVDF, RGO/CB/PVDF crystallization properties and mechanism ofinteraction between the filler was analyzed by XRD and DSC.
     3. The GNS/UHMWPE conductive composites was prepared by spin coatingevaporation process.Study has shown that the affect of preparation process forGNS/UHMWPE conductive electrical properties of composite materials. It wasshown that the percolation threshold is about0.028vol.%of GNS/UHMWPEconductive composites. We systematic study of the different structural forms effect onPTC of GNS/PVDF composites.It was shown that the GNS/PVDF composite exhibitsNTC by solution blending. In contrast the segregated structure of GNS/PVDFcomposite exhibits positive temperature coefficient by spin coating evaporationmethod.At the same time we found that PTC transition temperature move to the lowtemperature zone due to content decreased of fillers. GNS did not change thecrystalline properties of PVDF
     4. A simple high-speed mechanical mixing function was introduced to mix the fillerand matrix raw material. The percolation threshold of CB/UHMWPE was0.4vol%,which was much lower than those prepared by traditional melt blending and somesolution methods.In this paper CB/UHMWPE, CB/GP/UHMWPE, CB/CF/UHMWPE,CB/UHMWPE/HDPE was prepared by high-speed mechanical mixing method.Wefound that the morphological changes of the filler of composites lead to the PTCintensity increased1.66times,1.85times.We also found that UHMWPE/HDPE is1:3 eliminate the NTC effect.Thermal cycle test results showed that the CB/UHMWPEPTC intensity increased2.07times. We obtain a tunable PTC of resistivity in anelectrically conducting CB/UHMWPE composite by controlling the hot-pressingprocess.
引文
[1] FENG J, CHAN C M. Double positive temperature coefficient effects of carbonblack-filled polymer blends containing two semicrystalline polymer[J].Polymer,2000,41:4559-4565.
    [2] LEVINE L E, LONG G G, LLAVSKY J, et al. Self-assemble of carbon black intonanowires that form a conductive three dimensional micronetwork[J].AppliedPhysics Letters,2007,90:014101-014103.
    [3] NARKIS M, RAM A, FlASHNER F. Polyethylene carbon black switchingmaterials[J]. Journal of Applied Polymer Science,1978,22:1163-1165.
    [4] POURABBAS B, JAMAL S. PTC Effect in HDPE filled with carbon blacksmodified by Ni and Au metallic particles[J]. Journal of Applied Polymer Science,2007,05:1031-1041.
    [5]白新德,蔡俊,尤引娟等.纳米复合材料-石墨层间化合物(GICs)的电化学合成研究[J].复合材料学报,1996,13:53-59.
    [6] CHEN X M, SHEN J W, HUANG W Y. Novel electrically conductivepolypropylene/graphite nanocomposites[J]. Journal of Materials Science Letters,2002,21:213-214
    [7]陈耀庭,周明义,王国全.碳纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究[J].塑料科技,1997,6:4-7.
    [8]杨小平,荣浩鸣,沈曾民.碳纤维面状发热材料的性能研究[J].高科技纤维与应用,2000,3:39-42.
    [9] IIJIMA S. Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [10]孔德鹏,季铁正,刘文亮.碳纳米管在聚合物中的分散方法[J].中国塑料,2007,21:6-10.
    [11] BADAIRE S, POULIN P, MAUGEY M. In situmeasurements of nanotubedimensions in suspensions by depolarized dynamic light scattering[J].Langmuir,2004,20:10367-10370.
    [12] CHEN L, PANG X J, YU Z L. Study on polycarbonate multi-walled carbonnanotubes composite produced by melt processing[J].Materials science andengineering,2007,457:287-291.
    [13] ZHANG QH, RASTOGI S, CHEN DJ.Low percolation threshold insingle-walled carbon nanotube/high density polyethylene composites preparedby melt processing technique[J].Carbon,2006,44:778-785.
    [14] POTSCHKE P, BHATTACHARYYA AR, JANKE A, et al.Melt mixing asmethod to disperse carbon nanotubes into thermoplastic polymers[J]. FullerenesNanotubes And Carbon Nanostructures,2005,13:211-224.
    [15] POTSCHKE P, BHATTACHARYYA AR, JANKE A. Morphology and electricalresistivity of melt mixed blends of polyethylene and carbon nanotube filledpolycarbonate[J].Polymer,2003,44:8061-8069.
    [16] RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene:the newtwo-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2009,48:7752-7777.
    [17] NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect inatomically thin carbon film[J].Science,2004,306:666-669.
    [18] Li D, MULLER M B, GILJE S, et al. Processable aqueous dispersions ofgrapheme nanosheets[J].Nature Nanotechnology,2007,3:101-105.
    [19] EIZENBERG M, BLAKELY J M. Carbon monolayer phase condensation onNi(Ⅲ)[J]. Surface Science,1979,82:228-236.
    [20] PARK S, ROUFF S. Chemical methods for the production of graphemes[J].Nature Nanotechnology,2009,4:217-224.
    [21] YU M, LOURIE O, DYER M J, et al. Strength and breaking mechanism ofmultiwalled carbon nanotubes under tensile load[J].Science,2000,287:637-640.
    [22] LI Y W, Lin K,WEI J Q. Tensile properties of long aligened double-walledcarbon nanotube[J].Carbon,2005,43:31-35.
    [23] YUEN S M, MA C M, CHIANG C L. Silane-modified MWCNT/PMMAcomposites preparation electrical resistivity thermal conductivity and thermalstability[J].Composites Part A,2007,38:2527-2535.
    [24] ITKIS M E, BORONDICS F,Y U A, et al. Thermal conductivity measurementsof semitransparent single-walled cabon nanotube film by bolometrictechnique[J].Nano Letters,2007,7:900-904.
    [25] REDDY C D, RAJENDRAN S, LIEW K M. Equilibrium configuration andcontinuum elastic properties of finite sized grapheme[J]. Nanotechnology,2006,17:864-870.
    [26] AIZAWA T, SOUDA R, OTANI S, et al. Anomalous bond of monolayer graphiteon transition metal carbide surfaces[J].Physical Review Letters,1990,64:768-771.
    [27] BERGER C, SONG Z, LI X. Electronic confinement and coherence in patternedepitaxial grapheme[J].Science,2006,312:1191-1196.
    [28] ZRIBI K, FELLER J F, EllEUCH K, et al. Conductive polymer compositesobtained from recycled poly(carbonate) and rubber blends for heating andsensing applications[J]. Polymers for Advanced Technologies,2006,17:727-731.
    [29] UENO A, SUGAYA S. Development of a surface mount overcurrent protectorfabricated from improved polymeric PTC Material[J]. Electronics andCommunications in Japan, Part II,1999,82:13-22.
    [30]赵丽.VGCF填充聚合物体系的结构导电性与流变行为研究[D].浙江:浙江大学高分子材料科学与工程系,2011.
    [31] TSUBOKAWA N. Preparation and properties of polymer-grafted carbonnanotubes and nanofibers[J].Polymer Journal,2005,37:637-655.
    [32]贺丽丽,叶明泉,韩爱军.填充复合型导电高分子研究进展[J].材料导报,2008,22:294-300.
    [33] LIU Q M, TU J C, WANG X I N, et al. Electrical conductivity of carbonnanotube/poly(vinylidene fluoride) composites prepared by high-speedmechanical mixing[J].Carbon,2012,50:339-341.
    [34] SCICOLONE J, MUJUMD A R A, SUNDARESAN S, et al. Environmentallybenign dry mechanical mixing of nano-particles using magnetically assistedimpaction mixing process[J].Powder Technology,2011,209:138–146.
    [35]黄琨,胡文军范敬辉等.乳液聚合制备纳米银/聚苯乙烯壳核复合粒子[J].功能高分子学报,2003,16:304-305.
    [36] XIA H S, WANG Q. Ultrasonic irradiation: a novel approach to prepareconductive polyaniline/nanocrystalline titanium oxide composites[J].Chemistryof Materials,2002,14:2158-2165.
    [37] KOVTYUKHOVA N I, OLLIVIER P J, MARTIN B R, et al. Layer-by-layerassernbly of ultrathin composite films from micron-sized graphite oxide sheetsand polycations[J]. Chemistry of Materials,1999,11:771-77.
    [38]张玉泉,于跃华,丁雪佳.聚吡咯/纳米氧化钇复合材料的结构与性能研究[J].现代化工,2004,24:37-39.
    [39]章明秋,曾汉民.导电性高分子复合材料[J].工程塑料应用,1991,19:50-57.
    [40]汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12:1-7.
    [41] BEEK V, PUL V.Internal field emission in carbon black loaded natural rubbervulcanizates[J]. Journal of Applied Polymer Science,1962,24:651-655.
    [42] STAUFFER D, AHARONY A. Introduction to percolation theory[M].CRCpress,1994.
    [43] NANC W, SHEN Y, MA J. Physical properties of composites near percolation[J].Annual Review of Materials Research,2010,40(1):131-151.
    [44] ZALLEN R. The physics of amorphous solids[M].Wiley-VCH,2008.
    [45] KIRKPATRICK S. Percolation and conduction[J]. Reviews of Modern Physics,1973,45(4):574-588.
    [46] HUANG J C. Carbon black filled conducting polymers and polymer blends[J].Advances in Polymer Technology,2002,21(4):299-313.
    [47] VOET A. Temperature effect of electrical resistivity of CB filled Polymers[J].Rubber Chemistry and Technology,1981,54:42-50.
    [48] MIYAUCHI S, TOGASHI E. The conduction mechanism of polymer-filledparticles[J].Journal of Applied Polymer Science,1985,30:2743-2748.
    [49] SHERMAN R D, Middleman L M, Jacobs A M. Electrical transport processes inconductor-filled polymers[J].Polymer Engineering&Science,1983,23:36-46.
    [50]蒋红梅,王久芬,高保娇,复合型导电高分子材料研究进展[J].华北工学院学报,1998,3:231-234.
    [51] CHEN S A, FANG W G. Electrically conductive polyaniline-poly (vinyl alcohol)composites films: physical properties and morphological structures[J].Macromolecules,1991,24:1242-1248.
    [52] GEIM A K, NOVOSELOV K S. The rise of grapheme[J].Nature Materials,2007,6:183-191.
    [53] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in grapheme[J].Nature Materials,2007,6:858-861.
    [54] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspendedgraphene sheets[J].Nature,2007,466:60-63.
    [55] DEAN C R, YOUNG A F,MERIC I, et al. Boron nitride substrates forhigh-quality grapheme electronics[J].Nature Physics,2010,5:722-726.
    [56] TEAGUE M L, LAI A P, VELASCO J, et al. Evidence for strain-induced localconductance modulations in single-layer graphene on SiO2[J].Nano Letters,2009,9:2542-2546.
    [57] XU K,CAO P, HEATH J R. Scanning tunneling microscopy characterization ofthe electrical properties of wrinkles in exfoliated graphene monolayers[J].NanoLetters,2009,9:4446-4451.
    [58] DESHPANDE A, BAO W, MIAO F, et al. Spatially resolved spectroscopy ofmonolayer graphene on SiO2[J].Physical Review B,2009,79:205411-205416
    [59] MEYER J C, KISIELOWSKI C, ERNI R, et al. Direct imaging of lattice atomsand topological defects in graphene membranes[J].Nano Letters,2008,11:3582–3586.
    [60] SCHNIEPP H C,KUDIN K N,LI J, et al. Bending properties of singlefunctionalized grapheme sheets probed by atomic force microscopy[J].ACSNano,2008,2:2577-2584.
    [61] BANHART F, KOTAKOSKI J, KRASHENINNIKOV AV. Structural defects ingraphene[J].ACS Nano,2011,5:26-41.
    [62] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis,properties and applications[J].Advanced Materials,2010,22:3906-3924.
    [63] CHEN J H, JANG C, XIAO S D, et al. Intrinsic and extrinsic performance limitsof graphene deviceson SiO2[J].Nature Nanotechnology,2008,3:206-209.
    [64] WU J S, PISULA W, MULLEN K. Graphenes as potential material forelectronics[J].Chemical Reviews,2007,107:718-747.
    [65] GUSYNIN V P, SHARAPOV S G. Unconventional integer quantum hall effect ingraphene[J].Physical Review Letters,2005,95:146801-146805.
    [66] NOVOSELOV K S, JIANG Z,ZHANG Y, et al. Room-temperature quantum halleffect in graphene[J].Science,2007,315:1379-1379.
    [67] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic propertiesand intrinsic strength of monolayer graphene[J].Science,2008,321:385-388.
    [68] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity ofsingle-layer graphene[J].Nano Letters,2008,8:902-907.
    [69] SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport insupported graphene[J].Science,2010,328:213-216.
    [70] CAI W, MOORE A L, ZHU Y, et al. Thermal transport in suspended andsupported monolayer graphene grown by chemical vapor deposition[J].NanoLetters,2010,10:1645-1651.
    [71] WANG Y, HUANG Y, SONG Y, et al. Room temperature ferromagnetism ofgrapheme[J].Nano Letters,2009,9:220-224.
    [72] JANG B Z, ZHAMU A. Processing of nanographene platelets (NGPs) and NGPcomposites: a review[J].Journal of Materials Science,2008,43:5092-5101.
    [73] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant definesvisual transparency of graphene[J].Science,2008,320:1308-1308.
    [74] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of thequantum hall effect and berry’s phase in grapheme[J].Nature,2005,438:201-204.
    [75] NOVOSELV K S, JIANG D, SEHEDIN F, et al. Two-dimensional atomiccrystals[J]. Proceedings of the National Academy of Sciences,2005,102:10451-10453.
    [76] DREYER D R, PARK S J, BIELAWSKI C W, et al. The chemistry of graphemeoxide[J].Chemical Society Reviews,2010,39:228-240.
    [77] RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalizedgrapheme sheets for polymer nanocomposites[J].Nature Nanotechnology,2008,3:27-331.
    [78] STANKOVIEH S.DIKIN D A,DOMLNRETT H B, et al. Graphene-basedcomposite materials[J].Nature,2006,42:282-286.
    [79] ANSARI S, KELARAKIS A, ESTEVEZ L, et al. Oriented arrays of grapheme ina polymer matrix by in situ reduction of grapheme oxide nanosheets[J].Small,2010,6:205-209.
    [80] TKALYA E, GHISLANDI M, ALEKSEEV A, et al. Lztex-based concept for thepreparation of grapheme-based polymer nanocomposites[J].Journal ofMaterials Chemistry,2010,20:3035-3039.
    [81] BUJANS F B, CERVENY S, VERDEJO R, et al. Permanent absorption oforganic solvents in graphite oxide and its effect on the thermal exfoliation[J].Carbon,2010,48:1079-1087.
    [82] KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocompositesfor improved gas barrier and electrical conductivity[J].Chemistry ofMaterials,2010,22:3441-3450.
    [83] DAS B, PRASAD K E, RAMAMURTY U, et al. Nano-indentation studies onpolymer matrix composites reinforced by few-layer grapheme[J].Nanotechnology,2009,20:125701-125705.
    [84] FANG M, WANG K G, LU H B, et al. Layer graphene nanosheets withcontrolled grafting of polymer chains[J].Journal of Materials Chemistry,2010,20:1982-1992.
    [85] LEE S H, DREYER D R. Polymer brushes via controlled surface-initiated atomtransfer radical polymerization from graphene oxide[J].Macromolecular RapidCommunications,2010,31:281-288.
    [86] FANG M, WANG KG, LU H B, et al. Covalent polymer functionalization ofgraphene nanosheets and mechanical properties of composites[J].Journal ofMaterials Chemistry,2009,19:7098-7105.
    [87] WANG S R, TAMBRAPARNI M, QIU J J, et al. Thermal expansion of graphenecomposites[J].Macromolecules,2009,42:5251-5255.
    [88] RAFIEE M A, RAFEE J, WANG Z, et al. Enhanced mechanical properties ofnanocomposites at low graphene content[J].ACS Nao,2009,3:3881-3890.
    [89] VERDEJO R, BUJANS FB, PEREZ MAR, et al. Functionalized graphene sheetfilled silicone foam nanocomposites[J].Journal of Materials Chemistry,2008,18:2221-2226.
    [90] SALAVAGIONE H J, MARTINEZ G, GOMEZ M A. Synthesis of poly(vinylalcohol)/reduced graphite oxide nanocomposites with improved thermal andelectrical properties[J].Journal of Materials Chemistry,2009,19:5027-5032.
    [91] ZHANG H B, ZHENG W G, YAN Q, et al. Electrically conductive polyethyleneterephthalate/graphene nanocomposites prepared by melt compounding[J].Polymer,2010,51:1191-1196.
    [92] KIM H, MACOSKO C W. Processing-property relation ships ofpolycarbonate/graphene composites[J].Polymer,2009,50:3797-3809.
    [93] BAUHOFER W, KOVACS J Z. Areview and analysis of electrieal pereolation incarbon nanotube polymer composites[J].Composites Science and Technology,2009,69:1486-1498.
    [94] MARTIN C A, SANDLER J K W, SANDLER M S P, et al. Formation ofpercolating Networks in multi-wall carbon-nanotube-epoxy composites[J].Composites Science and Technology,2004,64:2309-2316.
    [95] FANG M, ZHANG Z, LI J, et al. Constructing hierarchically structuredinterphases for strong and tough epoxy nanocomposites by amine-rich graphenesurfaces[J]. Journal of Materials Chemistry,2010,20:9635-9643.
    [96] PANG H, CHEN T, ZHANG G, et al. An eleetrieally conductingpolymer/grapheme composite with a very low pereolation threshold[J]. MaterialsLetters,2010,64:2226-2229.
    [97] MITRA Y, JAMES G R.Highly conductive multifunctional graphenepolycarbonate nanocomposites[J].ACS Nano,2010,4:7211-7220.
    [98] HAGGENMUELLER R, GOMMANS H H, RINZLER A G, et al. Alignedsingle-wall carbon nanotubes in composites by melt processing methods[J].Chemical Physics Letters,2000,330:219-225.
    [99] YI Y B, TAWERGHI E. Geometric pereolation thresholds of interpenetratingplates in three-dimensional space[J].Physical Review E,2009,79:041134.
    [100] HE F, LAU S, CHAN H L, et al. High dieleetric permittivity and lowpereolation threshold in nanocomposites based on poly(vinylidenefluoride) andexfoliated graphite nanoplates[J].Advanced Materials,2009,21:710-715.
    [101] ANSARI S, GIANNELIS E P. J. Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites[J]. Journal of PolymerScience Part B:Polymer Physics,2009,47(9):888-897.
    [102] YU A, RAMESH P, SUN X, et al.Enhanced thermal conduetivity in a hybridgraphite nanoplatelet-carbon nanotube filler for epoxy composites[J].Advanced Materials,2008,20:4740-4744.
    [103] VECA L M, MEZIANI M J, WANG W, et al. Carbon nanosheets for polymericnanocomposites with high thermal conductivity[J]. Advanced Materials,2009,21:2088-2092.
    [104] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic propertiesand intrinsic strength of monolayer grapheme[J].Science,2008,321:385-388.
    [105] GOMEZNAVARRO C, BURGHARD M, KERN K. Elastic properties ofchemically derived single graphene sheets[J].Nano Letters,2008,8:2045-2049.
    [106] SUK J W, PINER R D, AN J, et al. Mechanical properties of monolayergraphene oxide[J].ACS Nano,2011,4:6557-6564.
    [107] XU Z, GAO C.In situ polymerization approach to graphene-reinforced nylon-6composites[J].Macromolecules,2010,43,6716-6723.
    [108] FRANKLAND S J V, CAGLAR A,BRENNER D W, et al. Molecularsimulation of the influence of chemical cross-links on the shear strength ofcarbon nanotube-polymer interfaces[J].The Journal of Physical ChemistryB,2002,106:3046-3048.
    [109] MILLER S G, BAUER J L, MALYANSKI M J, et al. Characterization ofepoxyfunctionalized graphite nanoparticles and the physical properties of epoxymatrix Nanocomposites[J].Composites Science and Technology,2010,70:1120-1125.
    [110] F. K. Resistance Element[P].1966.
    [111] OHE K, NAITO Y A new resistor having an anomalously large positivetemperature coefficient[J].Japanese Journal of Applied Physics,1971,10:99-107.
    [112] MEYER J. Stability of polymer composites as positive-temperature-coefficientresistors[J].Polymer Engineering&Science,1974,14:706-716.
    [113] MEYER J. Glass transition temperature as a guide to selection of polymerssuitable for PTC materials[J].Polymer Engineering&Science,1973,13:462-468.
    [114] KLASON C, KUBAT J. Anomalous behavior of electrical conductivity andthermal noise in carbon black-containing polymers at Tg and Tm[J].Journal ofApplied Polymer Science,1975,19:831-845.
    [115] ALLAK H M, BRINKMAN A, WOODS J I V. Characteristics of carbonblack-loaded crystalline polyethylene[J].Journal of Materials Science,1993,28:117-120.
    [116]李荣群,李威,苗金玲等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程,2003,5:42-45.
    [117] XI Y, ISHIKAWA H, BIN Y Z. Positive temperature coefficient effect ofLMWPE-UHMWPE blends filled with short carbon fibers[J].Carbon,2004,42:1699-1706.
    [118]窦强,赵石林,张玲等.PVDF/CB导电复合材料的PTC性能的特性研究[J]工程塑料应,2000,28:3-5.
    [119] ZHAO Z D, YU W X, HE X J.The conduction mechanism of carbonblack-filled poly(vinylidenefluoride) composite [J].Materials Letters,2003,57:3082-3088.
    [120]汪济奎,王庚超,张炳玉等.热处理对PVDF/CB导电复合体系结晶行为及PTC特性的影响[J].高分子材料科学与工程,1998,5:93-95.
    [121] SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillersandthe electricalconductivity of polymer blends filled with carbon Black[J].PolymerBulletin,1991,25:265-271.
    [122] GUBBELS F, BLACHER S, VANLATHEM E, et al. Design of electricalconductive composites:key role of the morphology on the electrical propertiesof carbon black filled polymer blends[J].Macromolecules,1995,28:1559-1566.
    [123] FENG J Y, CHAN C M. Double positive temperature coefficient effects ofcarbon black-filled polymer blends containing two semicrystalline polymers[J].Polymer,2000,41:4559-4565.
    [124] CHOI M H, JEON B H, CHUNG I J. The effect of coupling agent on electricaland mechanical properties of carbon fiber/phenolic resin composites[J].Polymer,2000,41:3243-3252.
    [125]罗延龄,炭黑粒子偶联处理的HDPE复合材料PTC性能研究[J].炭素,2001,3:16-22.
    [126]储九荣,席保锋,徐传骧.偶联剂对正温度系数高分子材料性能的影响[J].西安交通大学学报,2000,34:11-14.
    [127] YU G, ZHANG M Q, ZENG H M. Effect of filler treatment on temperaturdependence of resistivity of carbon-black-filled polymer blends[J].Journal ofApplied Polymer Sicience,1999,7:489-494.
    [128] MATHER P J, THOMAS K M. Carbon black/high density polyethyleneconducting composite materials[J].Journal of MaterialsScience,1997,32:1711-1715.
    [129] FIGUEIREDO J L, SERP P H, NYSTEN B, et al. Surface treatments ofvapor-grown carbon fibers produced on a substrate Part Ⅱ: atomic forcemicroscopy[J].Carbon,1999,37:1809-1816.
    [130] TOKUNAGA K, YOSHIDA N, NODA N, et al. Behavior of plasmasprayedtungsten coating on CFC and graphite under high heat load[J].Journalof Nuclear Materials,1999,266-269:1224-1229.
    [131] TETSUROU Y, KIYOSHI M, MASATO S, et al. Study on structure of carbonfiber modified by photooxygenation[J].Journal of Photopolymer Science andTechnology,1999,12:19-20.
    [132]田军,薛群基,周兆福.提高中强碳纤维表面活性的γ射线处理方法[P].中国:1206760,1999-02-03.
    [133] WU G Z, ZHANG C, MIURA T S, etal. Electrical characteristics of fluorinatedcarbon black–filled poly(vinylidenefluoride) composites[J].Journal of AppliedPolymer Science,2001,80:1063-1070.
    [134] ANDO N, TAKEUCHI M. Electrical resistivity of the polymer layers withpolymer grafted carbon blacks[J].Thin Solid Film,1998,334:182-186.
    [135] YI X S, ZHANG J F, ZHENG Q. Influence of Irradiation conditions on theelectrical behavior of polyethtylene/carbon black conductivecomposites[J].Journal of Applied Polymer Science,2000,77:494-499.
    [136]蔡绪福,王贵恒,添加炭黑和交联剂的EVA半导电复合物性能研究[J].四川联合大学学报(工程科学版),1998,2:6-12.
    [137] HOU Y H, ZHANG M Q, RONG M Z. Improvement of conductive networkqualitin carbon black-filled polymer blends[J].Journal of Applied PolymerScience,2002,84:2768-2777.
    [138]谢鸿峰,董丽松,孙家珍.辐射交联对LDPE/CB复合物PTC效应稳定性的影响[J].辐射研究与辐射工艺学报,2003,21:23-26.
    [139] STANKOVICH S, DIKIN DA, DOMMETT GHB, et al. Graphene-basedcomposite materials[J].Nature,2006,442(7100):282-286.
    [140] STEURER P, WISSERT R, THOMANN R, et al. Functionalized graphenes andthermoplastic nanocomposites based upon expanded graphite oxide[J].Macromolecular Rapid Communications,2009,30:316-327.
    [141] KUILA T, BOSE S, HONG C E, et al. Preparation of functionalized gra-phene/linear low density polyethylene composites by a solution mixing method[J].Carbon,2011,49(3):1033-1037.
    [142] SPITALSKY Z, TASIS D, PAPAGELIS K, GALIOTIS C. Carbonnanotube–polymer composites: chemistry, processing, mechanical and electricalproperties[J]. Progress in Polymer Science,2010,35(3):357-401.
    [143] YU J H, JIANG P K, WU C, et al. Graphene nanocomposites based onpoly(vinylidene fluoride):structure and properties[J].Polymer Composites,2011,32(10):1483-1491.
    [144] PHAM V H, CUONG T V, HUR S H, et al. Chemical functionalization ofgraphene sheets by solvothermal reduction of a graphene oxide suspension inN-methyl-2-pyrrolidone [J].Journal of Materials Chemistry,2011,21(10):3371-3377.
    [145] TANG H X, EHLERT G J, LIN Y, et al. Highly efficient synthesis of graphenenanocomposites[J].Nano Letters,2012,12(1):84-90.
    [146] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J].Journal ofthe American Chemical Society,1958,80(6):1339.
    [147] ZHA D A, MEI SL, WANG ZY, et al. Superhydrophobic polyvinylidenefluoride/graphene porous materials[J].Carbon,2011,49(15):5166-5172.
    [148] LERF A, HE HY, M. FORSTER, et al. Structure of graphite oxide revisited[J].Journal of Physical Chemistry B,1998,102(23):4477-4482.
    [149] BECKETT RJ, CROFT RC. The structure of graphite oxide[J].The journal ofphysical chemistry,1952,56(8):929-935.
    [150] BOUKHVALOV D W, KATSENELSON M I.Modeling of graphiteoxide[J].Journal of American chemistry society,2008,130:10697-10701.
    [151] DI W H, ZHANG G, XU J N, et al. Positive temperature coefficient/negativetemperature coefficient effect of low density polyethylene filled with a mixtureof carbon black and carbon fiber[J].Journal of Polymer Science Part B: PolymerPhysics,2003,41(23):3094-3101.
    [152]王可.复合型导电高分子材料PTC/NTC效应的研究[D].吉林:吉林大学材料科学与工程学院,2006.
    [153] ZHANG C, MA C A,WANG P, et al. Temperature dependence of electricalresistivity for carbon black filled ultra-high molecular weight polyethylenecomposites prepared by hot compaction[J].Carbon,2005,43:2544-2553.
    [154] CARMONA F, VALOT E,SERVANT L,et al. Random-media with temperaturecontrolled connectivity[J].Journal de Physique,I (France)1992,2:503-510.
    [155] YUE Z R, JIANG W, WANG L. Surface characterization of electrochemicallyoxidized carbon fibers[J].Carbon,1999,37:1785-1796.
    [156] PANG H, CHEN T, ZHANG G M, et al. An electrically conductingpolymer/graphene composite with a very low percolation threshold[J].MaterialsLetters,2010,64:2226-2229.
    [157] DU J H, ZHAO L, ZENG Y, et al. Comparison of electrical properties betweenmulti-walled carbon nanotube and graphene nanosheet/highdensitypolyethylene composites with a segregated network structure[J].Carbon2011,49:1094-1100.
    [158] PANG H, ZHANG Y C, CHEN T, et al. Tunable positive temperaturecoefficient of resistivity in an electrically conducting polymer/graphenecomposite[J].Applied Physics Letters,2010,96:19071-19073.
    [159] GRUNLAN J C, MEHRABI A R, BANNON M V, et al. Water based singlewalled nanotube filled polymer composite with an exceptionally lowpercolation threshold[J].Advanced Materials,2004,16:150-153.
    [160] GAO J F, LI Z M, MENG Q J, et al. CNTs/UHMWPE composites with atwo-dime nsional conductive network[J].Materials Letters,2008,62:3530-3532.
    [161] ZHANG Q H, LIPPITS D R, RASTOGI S. Dispersion and rheological aspectsof SWNTs in ultrahigh molecular weight polyethylene[J].Macromolecules,2006,39:658-666.
    [162]许向彬.通过微观形态控制降低导电高分子复合材料逾渗值的研究进展[J].高分子通报,2009,7:36-44.
    [163] TCHOUDAKOV R, NARKIS M, SIEGMANN A. Electrical conductivity ofpolymer blends containing liquid crystalline polymer and carbonblack[J].Polymer Engineering&Science,2004,44:528-540.
    [164] GUBBELS F, BLACHER S, VANLATHEM E, et al. Design of electricalconductive composites: key role of the morphology on the electrical propertiesof carbon black filled polymer blends[J].Macromolecules,1995,28:1559-1566.
    [165] MIERCZYNSKA A, FRIEDRICH J, MANECK H E, et al. Segregated networkpolymer/carbon nanotubes composites[J].Central European Journalof Chemistry,2004,2:363-370.
    [166] LI Q, BASAVARAJAIAH S, KIM N H. Synergy effect of hybrid fillers on thepositive temperature coefficient behavior of polypropylene/ultra-high molecular
    weight polyethylene composites[J].Journal of Applied Polymer Science,
    2010,116:116-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700