钙钛矿型镓酸钕基固体氧化物电解质的结构及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Structures and Properties of NdGaO_3-based Solid Oxide Electrolyte with Perovskite Type
  • 作者:于鹤
  • 论文级别:硕士
  • 学科专业名称:凝聚态物理
  • 学位年度:2004
  • 导师:贺天民
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-05-01
摘要
燃料电池是一种高效、低污染的新型发电装置。它将燃料的化学能通过电化学作用直接转化成电能。燃料电池由阴极、阳极和夹在中间的一层电解质构成,通过向阴极提供氧化剂、向阳极提供燃料,就可以得到源源不断的电能输出。
    固体氧化物燃料电池(SOFC)属于燃料电池第三代,其所有部件都是固态的,因此具有无漏液、寿命长和可用的燃料来源广泛等优点。电解质则是SOFC中的核心部件,它的性能优劣直接影响到整个电池的输出特性。作为固体氧化物燃料电池(SOFC)的电解质材料,必须具有足够高的离子电导率、在氧化和还原气氛下的稳定性,和足够高的强度和韧性以及可制作性和低成本等优点。
    Y2O3稳定化的ZrO2(YSZ)是目前SOFC最常用的固体电解质,但由于电导率的限制,基于ZrO2的燃料电池必须在1000℃左右工作,这样高的温度会引起电极反应和其它方面的问题。因此,寻找新的优良的固体氧化物电解质仍然是新世纪推动SOFC实用化的关键任务之一。
    近年来,研究比较多的SOFC的电解质材料主要有ZrO2基、CeO2基、Bi2O3基和LaGaO3基四种典型的固体电解质材料。这几种电解质材料的构型概括起来主要分为两类:萤石型和钙钛矿型。本文对钙钛矿结构的NdGaO3基氧化物电解质进行了比较系统的研究,以便寻找具有较高离子导电性的钙钛矿结构氧化物电解质。在样品的压制成型方法上则采用了传统压片法和等静压法,通过对比研究,改进固相反应法的中间制备过程,以改善所合成样品的性能。
    纯的NdGaO3并非好的氧离子导体,800℃时的电导率仅为1.34×10-5S.cm-1,然而通过掺杂可以提高其氧空位的浓度,进而提高电解质材料的电学性能,与此同时掺杂也会使其结构发生细微的变化。
    研究结果表明,NdGaO3晶体及其A位掺杂的样品在室温下均为正交钙钛矿结构(Pbnm群),A位掺Ca和Sr的固溶限均小于10%,小于此值时样品为纯相,在掺杂量超过固溶限时,样品中析出二次相Nd4Ga2O9、NdCaGa3O7和NdSrGa3O7,这些杂相导致晶界电阻增大,并直接影响了样品的致密性和电学性能。A位掺杂使样品的电导率显著提高,Ca和Sr的掺入量为5%时的样品电导率最高,A位掺Ca的样品比同比例掺杂Sr的样品电导率要高。A位掺杂样品皆具有较高的电导活化能。
    
    烧结密度测试表明,等静压法制备的Nd0.95Ca0.05GaO2.975样品具有最高的相对密度,达到96.7%。而且用这种方法制备的样品具有更低的电导活化能。所以,相比之下,用等静压法制备的样品具有更好的致密性和电学性能。
    B位掺杂Mg的样品具有较高的致密性,其中NdGa0.95Mg0.05O2.975和 NdGa0.9Mg0.1O2.95样品的相对密度均达到95%以上,达到了实用化要求。XRD研究结果表明,所有B位掺杂样品在室温下均为正交钙钛矿结构,Mg在B位的固溶度小于10%。Raman谱研究结果表明,B位掺杂不但使氧八面体倾角发生改变,而且氧缺位的浓度也增加。NdGa0.9Mg0.1O2.95具有最高的电导率,800℃时达到5.054×10-2 S.cm-1,超过了同温度下YSZ和PrGaO3基电解质材料的电导率。NdGa0.95Mg0.05O2.975样品具有最低的电导活化能。总体来看,B位掺杂样品比其它掺杂样品具有更加优越的性能,应用潜力巨大。
    与单掺杂的情况一样,双掺杂样品在室温下均为正交钙钛矿结构,这表明,在NdGaO3中掺入替代离子仅使氧八面体的倾斜程度或Nd3+的相对位置发生改变,并没有改变本体的晶格结构。与LaGaO3掺杂的情形不同,B位掺入Mg2+并没有提高A位掺杂的固溶度,反之亦然。所有样品的XRD谱中均存在二次相。
    A、B位双掺杂使样品的电导率显著提高,电导活化能下降。其中Nd0.95Sr0.05Ga0.9Mg0.1O2.925的电导率最高,800℃时电导率为0.0118S.cm-1,但要低于NdGa0.9Mg0.1O2.95的电导率。
    由于缺陷缔合与晶界电阻的影响,双掺杂样品的电导活化能在500℃附近发生突变,高温区(500~850℃)的电导活化能要低于低温区的电导活化能,其中Nd0.95Sr0.05Ga0.9Mg0.1O2.925的电导活化能最低,在500 ~850℃的温度范围内为0.8778eV,300~500℃的温度范围内为1.0264eV,同时该结果也是整个NdGaO3基体系中最低的。
    
    总之,为了寻找性能优越的固体氧化物电解质材料,本文探索性地研究了NdGaO3基钙钛矿型氧化物电解质,取得了良好的效果。NdGa0.9Mg0.1O2.95具有较高的离子导电性和致密性,是一种很有开发潜力的固体电解质材料,这为SOFC电解质提供了一种新的可选择材料。
A fuel cell is an electric generator with high efficiency and low pollution, which converts the chemical energy of the fuel directly into electrical energy. It is composed of an electrolyte sandwiched between cathode and anode. Fuel is fed to the anode where it is oxidized and oxidant is fed to the cathode where it is reduced, and the electrical energy is continuously generated in external circuit.
    A solid oxide fuel cell (SOFC) is the third generation fuel cell, and all the components in SOFC are solid. So it has many advantages, such as no problem of corrosion and leakage,long lifetime and wide selectivity of fuels. As a central component,the performance of SOFC was strongly affected by the quality of the electrolyte. For the application in SOFC, the electrolytes are required to have a high oxygen ionic conductivity, good chemical stability and high mechanical strength in both oxidizing and reducing atmospheres, and must be easy to preparation with low cost.
    Yttrium stabilized zirconia (YSZ) is the most commonly used electrolyte in SOFCs. SOFCs must be operated at about 1000℃ using YSZ as electrolyte due to its limited oxygen ion conductivity. Such high operating temperature causes electrode reactions and other problems. So, developing new electrolyte with superior properties is one of the major tasks to make SOFC application in the new century.
    In recent years,four typical electrolyte materials, such as ZrO2-based, CeO2-based, Bi2O3-based and LaGaO3-based electrolyte have been extensively studied. These electrolytes can be summarily divided into two types in structures, that is fluorite-type and perovskite-type. In this paper, NdGaO3-based electrolyte with perovskite-type were systematically synthesized and studied, in order to develop electrolyte with high oxygen ion conductivity. A traditional pressure method and isostatic pressure method were employed to prepare the samples. A middle process was improved during solid-state reaction in order to enhance the properties of the samples synthesized.
    The pure NdGaO3 is not a good oxygen ion conductor,and the conductivity is only 1.34×10-5S.cm-1 at 800℃. However,the oxygen vacancies can be enhanced through doping low valent ions, so that the
    
    
    conductivity of the electrolyte materials increased, and the structure was slightly changed at the same time.
    The result shows that the structure of the pure NdGaO3 and the doped- NdGaO3 in A-site samples is orthorhombic phase (Pbnm group) at room temperature. The solid solubility of Ca(Sr)-doping in A sites is less than 0.1. When the doping content exceeded the limit,the second phase, Nd4Ga2O9,NdCaGa3O7 and NdSrGa3O7 was detected in the samples. These impurity phases decreased the density and the conductivity of the samples. The conductivity of the doped samples in A-site increased evidently. The conductivity of sample presents a peak when the content of Sr or Ca is 5%. The conductivity of the Ca-doped samples is higher than that of the Sr-doped samples at the same content. The conductivity activation energy is higher for all the doped samples in A-site.
    The sintering density shows that Nd0.95Ca0.05GaO2.975 sample prepared by isostatic pressure method has a highest density, and attains to 96.7%. And the conductivity activation energy of the samples prepared by this is lower. So, comparing to the conventional pressure method, the samples prepared by this method have higher density and electricity properties.
    The samples of Mg-doped NdGaO3 in B-site have a higher density. Among them, the relative density of NdGa0.95Mg0.05O2.975 and NdGa0.9Mg0.1O2.95 samples exceeds 95%. The XRD results show that the structure of Mg-doped NdGaO3 samples presents orthorhombic phase (Pbnm group) at room temperature. The solid solubility of Mg-doped NdGaO3 in B site is less than 0.1. The Raman spectra show that not only the oxygen octahedral in NdGaO3 becomes more tilted, but also the oxygen vacancy content increases. In the Mg-doped samples, NdGa0.9Mg0.1O2.95 presents the highest conductivity,is 5.054×10-2S.cm-1 at 800?
引文
U. Bossel,The birth of the Fuel Cell,European Fuel Cell Forum : Oberrohrdorf,2000.
    L. Carrette,K. A. Friedrich and U. Stimming,Fuel Cells-Fundamentals and Applications,Fuel Cells,1(1)(2001)5-39.
    李瑛,王林山编著,燃料电池,北京,冶金工业出版社,(2000).
    Raymond George,燃料电池及其发展前景,国际电力,2(2001)24.
    P. W. Atkins,Physical Chemistry,5th ed.,Oxford University Press: Oxford,(1994).
    J. O. M. Bockris, A. K. N.Ready,Modern Electrochemistry,Plenum Press,(1970)1350-1400.
    魏丽,陈诵英,王琴,中温固体氧化物燃料电池电解质材料的研究进展,稀有金属,27(2)(2003)286-292.
    刘旭俐,马俊峰,刘文化,固体氧化物燃料电池材料的研究进展, 硅酸盐通报,1(2001)24.
    E. C. Subbara,Solid Electrolyte and Their Applications ,Plenum Press,New York,(1980).
    Minh N Q.,Ceramic fuel cells,J. Am. Ceram. Soc. ,76(3)(1993)563-588.
    贺天民,吉林大学博士学位论文,长春,2004年.
    蒋凯,张秀英,郭崇峰,固体氧化物燃料电池中的电解质,稀有金属,25(2)(2001)121.
    T. Ishihara,H. Matssuda,Y. Takita,Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor,J. Am. Chem. Soc.,116(1994)3801-3803.
    M. Feng,B. J. Goodenough,Superior oxide-ion electrolyte,Eur. State
    
    
    Inorg. Chem.,31(1994)663-668.
    K. Q. Huang,B. J. Goodenough,A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte:the role of a rare-earch oxide buffer,J. Alloys Comp. ,303-304(2000)454-464.
    孟广耀,付清溪,彭定坤,中温固态氧化物燃料电池,太阳能学报, 23(3)(2002)378-382.
    T. Ishihara,H. Furutani,M.Honda, Improved oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 by doping Co,J . Chem Mater ,11 (1999) 2081-2088.
    T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Intermediate temperature solid oxide fuel cells,using LaGaO3 electrolyte II improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3 , J. Electrochem Soc.,147(4) (2000)1332-1337.
    T. Ishihara,T. Shibayama,M. Honda,H. Nishiguchi,Solid xide fuel cell using Co doped La(Sr)Ga(Mg)O3 perovskite oxide with notably high power density at intermediate temperature, J.Chem Commun,(1999) 1227-1228.
    T. Ishihara,H. Matsuda,and Y. Takita,Oxide ion Conductivity in doped NdAlO3 perovskite-type oxides,J. Electrochem. Soc. ,141(12)(1994)3444-3449.
    T. Ishihara,H. Furutani,H. Arikawa,M. Honda,T. Akbay,and Y. Takita,Oxide ion conductivity in doubly doped PrGaO3 perovskite-type oxide,Journal of The Electrochemical Society,146(5) (1999)1643-1649.
    刘志国, 吉林大学博士学位论文,长春,2001年.
    M. Marezio,J. P. Remeika and P. D. Dernier,Inorg. Chem.,7(7)(1968)1337.
    T. Ishihara, H. Matsuda,M. A. Bustam,and Y. Takita,Oxide ion conductivity in doped Ga based perovskite type oxide,Solid State
    
    
    Ionics ,86-88 (1996) 197-201.
    A. Petric,P. Huang,Oxygen conductivity of Nd(Sr/Ca)Ga(Mg)O3-δ perovskites,Solid State Ionics,92 (1996) 113-117.
    薛屏,高玉琢,ABO3型稀土复合氧化物结构特征和导电性的研究?,稀土,5(1997)51.
    W. Marti P. Fischer,F. Altorfer,H. J. Scheel and M. Tadin,Crystal structures and phase transitions of orthorhombic and rhombohedral RGaO3(R=La,Pr,Nd) investigated by neutron powder diffraction ,J. Phys. : Condens. Matter ,6 (1994) 127-135.
    H. Brusset,M. H. Gillier-Pandraud and J. L. Berdot,Bull. Soc. Chim. France,8 (1967) 2886.
    A. Podlesnyak,S. Rosenkranz,F. Fauth,W. Marti, A. Furrer,A. Mirmelstein and H. J. Scheel ,J. Phys.: Condens. Matter ,5 (1993)8973.
    W. Marti, P. Fischer,F. Altorfer,H. J. Scheel and M. Tadin ,J. Phys.: Condens. Matter ,6 (1994)127.
    O. Kamishima,H. Koyama,R. Takahashi,Y. Abe,T. Sato and T. Hattori,Raman study on symmetry analysis in NdGaO3,J. Phys.: Condens. Matter ,14 (2002) 3905-3919 .
    S. Geller,Acta Crystallogr.,10 (1957)243.
    J. B. Goodenough and J. M. Longo,Magnetic and Other Properties and Related Compounds ed K H Hellwege and A M Hellwege (Berlin:Springer),3(1970)126.
    P. R. Slater,J. T. S. Irvine,T. Ishihara,and Y. Takita,High-temperature powder neutron diffraction study of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85,Journal of Solid State Chemistry ,139(1998)135-143.
    R. D. Shannon,Acta Crystallogr,32(1976)751.
    N. Rani,V. B. Gohel,H. C. Gupta,M. K. Singh,L. M. Tiwari,A lattice
    
    
    dynamical investigation of the zone center frequencies of the orthorhombic NdGaO3 perovskite,Journal of Physics and Chemistry of Solids ,62 (2001) 1003-1006.
    M. L. Sansuan, V. M. Orera, R. I. Merino,J. Opt. Soc. Am. B,11 (1994) 2252.
    Liping Li,Guangshe Li, Yulu Che,and Wenhui Su,Valence Characteristics and Structural Stabilities of the Electrolyte Solid Solutions Ce1-xRExO2-δ (RE=Eu,Tb) by High Temperature and High Pressure,Chem. Mater.,12 (2000)2567-2574.
    林晓敏,吉林大学博士论文,长春,2001年.
    S. B. Ubizskii,L. O. Vasylechko,D. I. Savytskii,A.O. Matkovskii and I. M. Syvorotka,Supercond. Sci. Technol.,7 (1994) 766.
    Savytskii D I,Sugak D Yu,Suchocki A,Matkovskii A O, Savytskii IV,Dzhala V I and Kaczor P,Proc.SPIE-Int. Soc. Opt. Eng. ,3178 (1997) 283.
    纪媛,吉林大学博士学位论文,长春,2001年.
    J. R. Mc Bride,K. C. Hass,B. D. Poindexter and W. H. Weber, J. Appl. Phys.,76(1994)2435.
    V. G. Keramidas,W. B. White,J. Chem. Phys,59(1973)751.
    哈根穆勒等,固体电解质的一般原理、特征、材料和应用,陈立泉等译,北京:科学出版社,(1984).
    S. P. S. Badwal,Impedance Spectroscopy and Mierostructural Studies on Materials for Solid State Electrochemical Devices In: Chowdari B V R,Radhakrishna S ed. Proceedings of the International Seminar Solid State Ionics Devices,Singapore: World Scientific Publishing Co.,1988.
    林祖骧,郭祝昆,孙成文,李世椿,陈昆刚,田顺宝,严东生等编著,快离子导体,上海:上海科学技术出版社,1983.
    F. A. Kr?ger and H. S. Vink,Solid State Physics,eds. F. Seitz and D. Turnbull ,(Acandemic,New York) ,3(1956) 307.
    
    C. Wagner,Naturwiss,31(1943)265.
    尧巍华,唐子龙,张中太,谭强强,罗绍华,LaGaO3基固体电解质在SOFC中的应用,硅酸盐学报,3(30)(2002) 347-351.
    B. C. H. Steele,Solid State Ionics,129 (2000) 95.
    L.Larry et al.,Chem. Rev.,90 (1990) 33.
    M. Cherry,M. S. Islam,C. R. A. Cathlow,Oxygen ion migration in perovskite-type oxides,J. Solid State Chem,118(1)(1995)125.
    于洁,王华,马文会,复合掺杂钙钛矿氧化物催化剂的研究进展,昆明理工大学学报(理工版),28(1)(2003)19-27.
    祝洪桂,陶瓷工艺实验,北京,中国建筑工业出版社,(1987)49-51.
    贺天民等,真空注浆法制备YSZ电解质膜管及其在固体氧化物燃料电池中应用,高等学校化学学报,5(2002) )932-936.
    J. W. Stevenson ,T. R. Armstrong,L. R. Pederson,J. Li,C. A. Lewinsohn,S. Baskaran,Effect of A-site cation nonstoichiometry on the properties of doped lanthanum gallate, Solid State Ionics. 113-115 (1998)571-583.
    尧巍华,唐子龙,张中太,郁鉴源,任斌,田中群,LaGaO3基固体电解质相变的Raman光谱研究,硅酸盐学报,30(5)(2002) 541-544.
    M. L. Sanjuan,V. M. Orera and R. I. Merino,Raman and X-ray study of La1-xNdxGaO3 (0≤x≤1) perovskite solid solutions,J. Phys:Condens Matter,10(11)(1998)687-702.
    丛立功,吉林大学硕士论文,长春,2002年.
    刘志国,黄喜强,刘巍,吕喆,纪媛,裴力,贺天民,苏文辉,PrGa1-xMgxO3 作为燃料电池固体电解质的研究,高等化学学报,22(2001)1283-1285.
    T. Ishihara,H. Matsuda,Y. Takita,Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide,Solid State Ionics,79 (1995) 147-151.
    P. N. Huang and A. Petric,J. Electrochem. Soc.,143 (1996) 1644.
    
    K. Huang,R. S. Tichy,J. B. Goodenough,,J. Am. Ceram. Soc.,81(1998)2565.
    J. Drennan et al.,J. Mater. Chem.,7(1997)79.
    J. W. Stevenson et al.,J. Electrochem. Soc.,144(1997)3613.
    J. E. Baurele,J. Hrizo,J. Phys. Chem. Rev.,70(1970)339.
    Shin Kin,Myoung Chuel Chun,Iin Tae Lee,Hong Lim Lee,Oxygen-ion conductivity of BaO- and MgO-doped LaGaO3 electrolytes,Journal of Power Sources,93(2001)279-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700