具有目的域的光电稳定跟踪系统满意控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电测量装置是现代化战争中获取信息的重要手段。各种装载于运动载体上的光电设备,必须考虑探测器视轴对基座运动的隔离,以及在此基础上对被测目标的精密跟踪、激光的高精度照准或是光电对抗中光束的精确定向等要求,具有上述功能的光电设备被称为稳定跟踪系统。本文通过引入“目的域”这一全新概念,将稳定跟踪的控制过程区分为跟踪与丢失两类事件,并以此作为研究出发点,深入分析其中涌现出的理论与实践问题,完成的主要工作包括:
     1.运用刚体机构学原理,分别从角位置补偿和角速度补偿的角度推导了实现视轴稳定的机理,分析了自动跟踪状态下系统的工作原理,并给出了两轴环架结构中存在的一般问题与解决方法;在考虑环架结构间耦合因素的基础上,建立了执行稳定跟踪任务的机电系统各环节的数学模型;概述了光电稳定跟踪系统的误差及其主要来源,通过结构框图和传递函数分析了各误差源的作用途径,并借助噪声白化理论,构建了稳定跟踪控制问题的一般理论框架。
     2.将稳定跟踪误差分析由空间域延展为时空域,以均值、均方差、自然频率为基本元素给出了误差序列对指定目的域的穿越特性,进而提炼出跟踪中断概率这一稳定跟踪系统的关键性指标,并将其转化为一组由滞留时间、超差时间以及随机穿越周期等构成的概率特征量指标集约束。
     3.直接从工程实际需求出发,提出以区域极点形式表征的快速性指标、动态误差系数或品质因数形式表征的准确度指标、稳态方差形式表征的精确度指标,扰动抑制H∞范数形式表征的鲁棒性指标以及概率特征量和统计特征量形式表征的随机穿越特征指标描述稳定跟踪系统的性能要求;分别基于状态反馈控制和PID控制,推导出特定目的域下随机穿越特征量指标的解析表达,分析了其与不同性能指标间的相容性;当预先选定的期望指标集相容时,提出了一种利用双群体机制下的差分进化算法和线性矩阵不等式方法相结合对控制器参数进行多指标满意优化求解的策略。
     4.针对某分布式火控系统中光电观瞄子系统的实际情况,探讨了利用光电设备对基座姿态信息进行视觉估计测量的方法,以地面上共面设置的四个固定合作信标和载体平台上双焦CCD摄像机组成单目视觉系统,分析了利用静态解析算法对姿态角进行解算时的可行性与不足;提出采用刚体运动学原理与二阶时间相关模型建立姿态参数的动态估计系统,并引入渐消记忆法改进后的平方根UKF滤波算法,用于抑制由于系统建模误差所导致的估计精度下降。
     5.搭建了基于嵌入式微处理器的观瞄子系统实验平台,简要介绍了伺服控制器的主要硬件模块和软件设计流程;依据不同的控制任务要求,设计了多种性能指标约束下的分段控制策略,并通过物理转台仿真和外场跟踪实验,进一步总结验证了全文的主要理论成果。
Photoelectric measuring instruments are the great tools for gaining information in modern warfare. Various kinds of photoelectric devices mounted on mobile vehicles have to take account of the isolation for line-of-sight (LOS) from vehicles'motion, so as to accomplish the precision target tracking, laser aiming, or beam orienting in particular cases. Equipments integrated the above functions are known as the stabilized tracking systems. In this dissertation, a brand-new concept of "target area" was introduced, and the stabilized tracking process was thus divided into two events:target tracking and target losing. Based on this principal, the relevant theoretical and practical issues were deeply analyzed, and the primary work was organized as follows:
     1. Using rigid body kinematics, the isolating principium of LOS against base turbulence was illuminated from the aspects of angular velocity compensation and angle position compensation respectively, and the auto tracking principle as well as the general considerations of two-axis gimbals was also given. Based on inertia coupling factors, the mathematics models of electro-mechanical system which performs the stabilization and tracking tasks were discussed in detail. The errors and their main origins in photoelectric stabilized tracking systems were outlined, and the structure chart together with transfer function manner were used to analyze the mechanism of these error sources. Following this, the theoretical framework of stabilized tracking control problems with multiple indices constraints was constructed by aid of noise whitening filter.
     2. The relevant concepts of target area, residence state, exceeding tolerance state, and random passage period frequency were clarified, and on this basis the stabilization and tracking error analysis were extended from conventional spatial domain to time-space domain. The passage characteristics on a certain target area were provided by taken mean value, mean-square deviation and natural frequency as basic elements, and then the tracking interruption probability, a key index of the system was put forward, which was further transformed to a set of probability distribution characteristic indices combined by residence time, exceeding tolerance time, and random passage period time.
     3. The desired performance indices of stabilized tracking systems were concludes as rapidity index symbolized by regional poles, accuracy index symbolized by dynamic error coefficients or quality factors, precision index symbolized by steady error covariance, robust index symbolized by disturbances rejection H-infinite norm, and the stochastic passage indices symbolized by probability distribution and statistics characteristics. Based on state feedback control and PID control strategy, the stochastic passage characteristic (SPC) indices on zonal target area were deduced respectively, and the consistency between different performance indices was analyzed. When the above indices are consistent, a modified differential evolution (DE) algorithm was utilized together with linear matrix inequality (LMI) method to find out a set of satisfactory optimal parameters for the certain control strategy.
     4. In light of the actual situation of a photoelectric observation/aiming subsystem in a distributed fire control system, a method for estimating the attitude of aerostat was proposed. A monocular vision system was established by four coplanar reference points on the ground and a double-focus CCD camera in the carrier, and the feasibility and shortage of an analytical algorithm were analyzed. Then a second-order time-correlation model was applied to obtain the state equations of the system, and the fading memory factor was introduced to reform the square-root unscented Kalman Filter (SR-UKF), which was able to restrain the estimating accuracy decline caused by system modeling error.
     5. Experimental equipments were set up for the photoelectric observation/aiming subsystem based on embedded microprocessor unit, and the hardware modules as well as the software flow chart of the controller design was briefly described. According to the different task requirements, a piecewise control strategy with multi-performance indices constraints was devised. The final physical simulation and field tracking test have validated the chief theoretical achievements of this dissertation.
引文
[1]薄煜明,郭治,杜国平,杨少宇.高炮与防空导弹在近程反导中的互补性.兵工学报,2002,23(2):164~167
    [2]薄煜明,臧文利,郭治.基于双焦CCD摄像的浮空器航向测定.火力与指挥控制,2006,31(7):17~20
    [3]卢春生.光电探测技术及应用.北京:机械工业出版社,1992
    [4]郭治.现代火控理论.北京:国防工业出版社,1996
    [5]Guo Z. Opportunity-awaiting Control-One New Study Field in Stochastic Control Theory. Proceedings of the 4th International Conference on Control and Automation, 2003:340-344
    [6]熊伟,谢剑薇等.光电跟踪控制系统导论.北京:国防工业出版社,2009
    [7]张智勇.光电稳定伺服机构的关键测控问题研究.博士学位论文,国防科学技术大学,2006
    [8]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究.博士学位论文,东南大学,2006
    [9]王连明.机载光电平台的稳定与跟踪伺服控制.博士学位论文,中国科学院长春光机所,2002
    [10]成刚.光电稳定跟踪的机械结构分析与研究.博士学位论文,西安电子科技大学,2000
    [11]陈非凡,张高飞,陈益峰.小卫星动量轮非线性特性建模与仿真方法.宇航学报,2003,24(6):651~655
    [12]李季苏,曾海波.地球观测卫星轮控系统单通道全物理仿真.系统仿真学报,2002,14(2):211~214
    [13]Patel M R. Energy-momentum-wheel for Satellite Power and Attitude Control Systems. Proceedings of the 35th Intersociety Energy Conversion Engineering Conference,2000,1:609-612
    [14]杨越,聂辉.捷联式光学稳定系统在光电桅杆上的应用.红外技术,2003,25(3):18~26
    [15]McEver M A, Clark R L. Active Jitter Suppression of Optical Structures. Proceedings of SPIE-the International Society for Optical Engineering,2001, 4327:591~599
    [16]Hilkert J M. A Comparison of Line-of-sight Stabilization Techniques Using Mirrors. Proceedings of SPIE-The International Society for Optical Engineering,2004, 5430:13~22
    [17]Seok H D, Lyou J. Digital Image Stabilization Using Simple Estimation of the Rotational and Translational Motion. Proceedings of SPIE-The International Society for Optical Engineering,2005,5810:170~181
    [18]Zhong P. Research on Methods of Motion Estimation and Compensation in Electronic Image Stabilization Technique. Proceedings of SPIE-The International Society for Optical Engineering,2005,5637:182~188
    [19]Wandner K, Korcher H J. The Pointing Control System of SOFIA. SPIE,2000,4014: 360~369
    [20]Ruffatto D, Brown D, Pohle R. Stabilized High-accuracy Optical Tracking System. SPIE,2001,4365:10~18
    [21]李岩,范大鹏.多环架视轴稳定跟踪结构的运动学分析.应用光学,2008,29(1):18~22
    [22]董小萌,张平.两轴稳定平台的过顶盲区问题.北京航空航天大学学报,2007,33(7):811~815
    [23]Anderson D, McGookin M. Fast Model Predictive Control of the Nadir Singularity in Electro-Optic Systems. Journal of Guidance, Control, and Dynamics,2009,32(2): 626~632
    [24]王霆.机载CCD图像消旋控制技术研究.博士学位论文,中国科学院长春光机所,2004
    [25]郭富强,于波,汪叔华.陀螺稳定装置及其应用.西安:西北工业大学出版社,1995
    [26]刘洵,王国华,毛大鹏等.军用飞机光电平台的研发趋势与技术剖析.中国光学与应用光学,2009,2(4):269~288
    [27]李洁.机(舰)载目标真值测量设备伺服系统研究.博士学位论文,中国科学院长春光机所,2003
    [28]毕永利.多框架光电平台控制系统研制.博士学位论文,中国科学院长春光机所,2003
    [29]冯永利,杨文淑.陀螺稳定控制系统设计与仿真.光电工程,2003,30(1):32~34
    [30]黄永梅,张桐,马佳光等.高精度跟踪控制系统中电流环控制技术研究.光电工程,2005,32(1):16~19
    [31]张建民,韩根甲.下视惯性平台瞄准线稳定的数理分析.光学与光电技术,2004,2(6):55~57
    [32]王楚清,杨坤涛,刘爱东.潜艇潜望镜瞄准线三轴稳定研究.舰船科学技术,2004,26(I):50~52
    [33]纪明.多频谱光电综合系统高精度稳定技术研究.应用光学,1996,17(3):55~60
    [34]纪明.高精度光电二级稳定系统的运动隔离和补偿分析.兵工学报,1996,17(4):320~324
    [35]张聘义,祁载康,崔莹莹等.一种匹配滤波方法在导引头捷联稳定平台中的应用研究.红外技术,2005,27(1):6-11
    [36]王敏.扫描摆镜控制的数字PID实现.现代电子技术,2005,4:82-83
    [37]周瑞青,吕善伟,刘新华.弹载捷联式天线平台两种稳定实现方法的比较.系统工程与电子技术,2005,27(5):1397~1400
    [38]周瑞青,吕善伟,刘新华.捷联式天线平台数字稳定技术及仿真研究.系统仿真学报,2004,16(10):2234~2236
    [39]范大鹏,张智勇,范世殉,李岩.光电稳定跟踪装置的稳定机理分析研究.光学精密工程,2006,14(4):673~680
    [40]王永富.高精度陀螺稳定随动系统研究.博士学位论文,哈尔滨工业大学,1999
    [41]辛淼.动基座稳定伺服系统的控制研究.硕士学位论文,南京理工大学,2007
    [42]朱晓峰.动基座稳定伺服系统控制器的设计与实现.硕士学位论文,南京理工大学,2006
    [43]Rudin R T. Strapdown Stabilization for Imaging Seekers. AIAA-93-2660,1993: 1~10
    [44]Kennedy P J, Kennedy R L. Direct Versus Indirect Line-of-sight(LOS) Stabilization. IEEE Transactions on Control Systems Technology,2003,11(1):3~15
    [45]Rue A K. Precision Stabilization Systems. IEEE Transactions on Aerospace and Electronic Systems,1974, AES-10(1):34~42
    [46]Casey W L, Phinney D D. Representative Pointed Optics and Associated Gimbal Characteristics. SPIE,1988,887:116~123
    [47]Richard P. A Wide-look-angle Gimbal for an Airborne Electro-Optical System. SPIE, 1993,1998:104~111
    [48]Balzarotti G, Marsiglia G. Quaternions in Line-of-sight Control. Optical Engineering,2005,44(10):103003-1~103003-10
    [49]严武升,刘宏,过润秋.基于前馈补偿的舰载雷达三轴稳定跟踪的研究.西安电子科技大学学报,1998,25(5):650~654
    [50]沈宏海,刘晶红,张葆等.航空光电成像平台角位置陀螺和角速率陀螺的稳定效果分析.光学精密工程,2007,15(8):1293~1299
    [51]董小萌,张平,付奎生.三轴直角结构光电导引平台的捷联控制.光电工程,2007,34(11):5~13
    [52]Krishna J A R, Marathe R, Sule'V R. Hoo Control Law for Line-of-sight Stabilization for Mobile land Vehicles. Optical Engineering,2002,41(11): 2935~2944
    [53]Krishna J A R, Marathe R, Babu H. Fuzzy Controller for Line-of-sight Stabilization Systems. Optical Engineering,2004,43(6):1394~1400
    [54]Lee T H, Tan K K, Lee M W. Variable Structure-augmented Adaptive Controller for a Gyro-mirror Line-of-sight Stabilization Platform. Mechatronics,1998,8(1):47~64
    [55]Lee T H, Ge S S, Hang C C, Zhao Q, Au A S. Real-time Neural Network Based Control of a Gyro-mirror Line-of-sight Stabilization Platform. International Journal of Systems Science,1998,29(7):745~758
    [56]Chun-Liang L, Yi-Hsing H. Adaptive Feedforward Control for Disturbance Torque Rejection in Seeker Stabilizing Loop. IEEE Transactions on Control Systems Technology,2001,9(1):108~121
    [57]Lee H P, Yoo I E. Robust Control Design for a Two-axis Gimbaled Stabilization System. IEEE Aerospace Conference Proceedings,2008
    [58]Hilkert J M, Hullender D A. Adaptive Control System Techniques Applied Toinertial Stabilization Systems. SPIE,1990,1306:190~206
    [59]刘珊中,孙隆和,车宏.机载光电跟瞄平台建模及其H∞稳定控制.系统仿真学报,2008,20(6):1518~1522
    [60]秦继荣,武利强.车载稳瞄系统的自抗扰控制器设计.系统仿真学报,2008,20(7):1791~1794
    [61]王辉华,刘文化,张世英,刘淼森.舰载视轴稳定系统的变结构控制研究.光电工程,2007,34(3):26~29
    [62]杨蒲,李奇.陀螺稳定平台自适应分层滑模速度控制.兵工学报,2008,29(7):864~869
    [63]杨蒲,李奇.陀螺稳定平台非线性摩擦的灰色滑模控制.系统工程与电子技术,2008,30(7):1328-1332
    [64]郭治.泛论控制工程对控制理论的需求.控制工程,2005,12(3):196~202
    [65]Guo Z. A Survey of Satisfying Control and Estimation. Proceedings of the 14th IFAC Congress,1999:443~447
    [66]Mesarovic M D, Takahara Y. On a Qualitative Theory of Satisfactory Control. Information Science,1972,4(4):291-313
    [67]Simon H A管理决策新科学.李柱流译.北京:中国社会科学出版社,1998
    [68]席裕庚.复杂工业过程的满意控制.信息与控制,1995,24(1):14~20
    [69]邹涛,李少远.复杂系统CMMO问题的软约束调整与目标协调.控制与决策,2005,20(4):388~397
    [70]席裕庚,韩兵.满意控制中人机系统的分层建模与协调优化.控制与决策,1998,13:492~495
    [71]席裕庚,谷寒雨.有约束多目标多自由度优化的可行性分析及软约束调整.自动化学报,1998,24(6):727~732
    [72]冯惕,李少远.一种新的模糊约束满意优化控制算法.控制与决策,2004,19(2):187~190
    [73]Hotz A F, Skelton R E. Covariance Control Theory. International Journal of Control, 1987,46(1):13~32
    [74]Chen H, Skelton R E. All Covariance Controllers for Linear Discrete Systems. IEEE Transactions on Automatic Control,1990,35(8),908~915
    [75]Skelton R E, Xu J H. Output Feedback Controller Suboptimality degree β.IEEE Transactions on Automatic Control,1990,35(12):1369~1370
    [76]Iwasaki T, Skelton R E. All Controllers for General Hoo Control Problem:LMI Existence Conditions and State Space Formulas. Automatica,1994,30(8): 1307-1317
    [77]Xu G, Chen X M, Guo Z, Feng Z G. q-Markov Output Covariance Assignment of Continuous Systems. Prep. IFAC Symposium on Design methods for Control Systems,1991, I:137~140
    [78]Wang Z D, Chen X M, Guo Z. Controller Design with Variance and Circular Pole Constraints for Continuous Time Systems. International Journal of Systems Science, 1995,26(5):1249~1256
    [79]Wang Z D, Guo Z, Ulbehauen M. Robust H2/H∞ State Estimation for Systems with Error Variance Constraints:Continuous-time. IEEE Transactions on Automatic Control,1999,44(5):1061~1065
    [80]Wang Z D, Tang G Q, Chen X M. Robust Controller Design for Uncertain Linear Systems with Circular Pole Constraints. International Journal of Control,1996, 65(6):1045~1054
    [81]Wang Z D, Guo Z. Circular Pole and Variance~constrained Design for Linear Discrete Systems. Control Theory and Applications,1997,14(1):105~111
    [82]Wang Z D, Tang G Q. Robust Hoo Control for Uncertain Linear Discrete-time Systems with Variance Constrains. Control Theory and Applications,1997,14(2): 276~282
    [83]Wang Z D, Guo Z, Ulbehauen M. Robust H2/Hoo State Estimation for Discrete-time Systems with Error Variance Constrains. IEEE Transactions on Automatic Control, 1997,42(10):1431~1435
    [84]Wang Z D, Guo Z, Ulbehauen M. Model Reduction Based on Regional Pole and Covariance Equivalent Realization. IEEE Transactions on Automatic Control,1999, 44(10):1889~1893
    [85]孙翔.融合多性能指标的随机系统建模、滤波与控制.博士学位论文,南京理工大学,1996
    [86]陈学敏.区域目标函数下随机控制理论及其在近程反导火控系统中的应用.博士学位论文,南京理工大学,1991
    [87]朱纪洪,郭治.连续时变不确定系统约束方差/H∞鲁棒状态滤波.控制理论与应用,1997,14(3):389~392
    [88]Liu S Q, Wang Y G, Guo Z. Satisfactory Filter of Linear Periodic Systems with Parameter Uncertainty. Acta Automatica Sinica,2004,30(3):345~350
    [89]Wang Y G, Sheng A D, Lv T Q. Satisfactory Output-feedback for Discrete Systems with Pole and Output Variance Constraints. Proceedings of the 3rd World Congress on Intelligent Control and Automation,2000, I:105~108
    [90]王远钢,郭治.反馈控制系统多性能约束指标的相容性.控制理论与应用,2003,20(3):423~426
    [91]钱龙军,盛安冬,郭治.不确定随机系统的满意估计问题研究.自动化学报,2002,28(5):789~792
    [92]程相权,郭治,王远钢,于海.连续不确定系统满意估计研究.自动化学报,2003,29(5):786~790
    [93]王远钢,郭治.状态反馈中圆形极点与状态方差约束的相容性.自动化学报,2001,27(2):207~213
    [94]Sheng A D, Wang Y G, Qi G Q. Admissible Measurement Noise of Variance-constrained Satisfactory Filter. Proceedings of the 3rd World Congress on Intelligent Control and Automation,2000, I:106~108
    [95]Qian L J, Guo Z. Satisfactory Control, Estimation, and Model Reduction. Proceedings of the 3rd World Congress on Intelligent Control and Automation,2000, I:91~94
    [96]马建伟.多指标满意PID控制设计研究.博士学位论文,南京理工大学,2005
    [97]李银伢.满意PID控制器设计理论.博士学位论文,南京理工大学,2006
    [98]钱龙军.满意控制与估计理论概述.博士后出站报告,南京理工大学,2004
    [99]IanF B, William C L. Level-Crossing Problems of Random Processes. IEEE Transactions on Information Theory,1973, IT-19(3)
    [100]Liugi M R, Shunsuke S. A Note on First Passage Time Problems of Gaussian Processes and Varying Boundaries. IEEE Transactions on Information Theory,1983, IT-29(3)
    [101]Rainal A J. Passage Times of Gaussian Noise Crossing a Time-varying Boundary. IEEE Transactions on Information Theory,1990,36(5):1179-1183
    [102]Bradley J T, Dingle N J, Knottenbelt W J, Wilson H J. Hypergraph-based Parallel Computation of Passage Time Densities in Large Semi-Markov Models. Linear Algebra and its Applications,2004,386:311~334
    [103]Li X P, Wei D M, Ying Z G. Mean First-passage Time of General Bistable Systems Driven by White Noise Excitations. Mechanics Research Communications,2009,36: 531~536
    [104]Kovaleva A. Solution of the Exit Time Problem for Mechanical Systems with Fast Noise. Probabilistic Engineering Mechanics,2006,21:300-304
    [105]Drury K L S. Shot Noise Perturbations and Mean First Passage Times Between Stable States. Theoretical Population Biology,2007,72:153~166
    [106]Li W, Xu W, Zhao J F, Jin Y F. First-passage Problem for Strong Nonlinear Stochastic Dynamical Systems. Chaos, Solitons and Fractals,2006,28:414~421
    [107]Kim M A. Jang B G, Lee H S. A First-passage-time Model Under Regime-switching Market Environment. Journal of Banking & Finance,2008,32:2617-2627
    [108]Barkail E. Residence Time Statistics for Normal and Fractional Diffusion in a Force Field. Journal of Statistical Physics,2006,123(4):883~907
    [109]Meerkov S M, Runolfsson T. Residence Time Control. IEEE Transactions on Automatic Control,1988,34(4):323~332
    [110]Meerkov S M, Runolfsson T. Output Residence Time Control. IEEE Transactions on Automatic Control,1989,34(11):1171~1176
    [111]Runolfsson T. Residence Time Control of Systems Subject to Measurement Noise. Journal of Mathematical Analysis and Applications,1990,145(2):289~308
    [112]Kim S, Meerkov S M, Runolfsson T. Residence Probability Control. Computers& Mathematics with Applications,1990,19(11):121~125
    [113]Meerkov S M, Runolfsson T. Theory of Residence-time Control by Output Feedback. Dynamics and Control,1991,1(1):63~81
    [114]Kim S, Meerkov S M, Runolfsson T. Aiming Control:Residence Probability and (D, T)-stability. Automatica,1992,28(3):549~555
    [115]Kim S, Meerkov S M, Runolfsson T. Aiming Control:Design of Residence Probability Controllers. Automatica,1992,28(3):557~564
    [116]Dunyak J P, Freidlin M I. Optimal Residence Time Control of Hamiltonian Systems Perturbed by White Noise. SIAM Journal on Control and Optimization,1998,36(1): 233~252
    [117]Hu J H, Sastry S. Optimal Sojourn Time Control within an Interval. Proceedings of the American Control Conference,2003:3478~3483
    [118]Hu J H. Symmetry of Solutions to the Optimal Sojourn Time Control Problem. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference,2005:7320~7325
    [119]Raffard R L, Hu J H, Tomlin C J. Adjoint-Based Optimal Control of the Expected Exit Time for Stochastic Hybrid Systems. In Hybrid Systems:Computation and Control (HSCC'05),2005:557~572
    [120]Shi G, Yang C. Robust Residence Time Control via State Feedback. First IEEE Conference on Control Applications,1992,1:129~134
    [121]Condamin S. First-passage Times in Complex Scale-invariant Media. Nature,2007, 450:77-80
    [122]Li Y, Lence B J. Mean Points of Failure and Safety Domains:Estimation and Application. Probabilistic Engineering Mechanics,2007,22:257~266
    [123]Nielsen U D. Calculation of Mean Outcrossing Rates of Non-Gaussian Processes with Stochastic Input Parameters-Reliability of Containers Stowed on Ships in Severe Sea. Probabilistic Engineering Mechanics,2010,25:206~217
    [124]郭治,徐刚.坦克火控系统射击反应时间的研究.火力与指挥控制,1988
    [125]Chen X M, Xu G, Guo Z. Residence Time Control of Specified Domain. Proceedings of Asia-Pacific Conference on Measurement and Control,1991
    [126]胡金春,郭治.未来空域窗的数学描述.兵工学报,1998,19(4):293~297
    [127]胡金春,郭治.未来空域窗的参数论证.兵工学报,1999,20(1):13~18
    [128]王子栋,郭治.Hoo指标约束下一类工程系统的滞留概率控制.南京理工大学学报,]997,21(2):165~168
    [129]卢志刚.稳像式坦克火控系统智能射击门研究.硕士学位论文,南京理工大学,1998
    [130]Wu Q, Guo Z. Opportunity-awaiting Control Strategy on Rectangular Target Area. The 8th International conference on control, automation, robotics and vision,2004: 1859~1862
    [131]Guo Z, Wu Q, Bo Y M. Opportunity-awaiting Control Strategy on Elliptic Objective Area. Proceedings of the 6th International Conference on Intelligent Systems and Control,2004:180~185
    [132]李银伢,郭治,王远钢.随机系统待机控制特征量指标约束下的满意PID控制.系统工程理论与实践,2008,28(3):76~84
    [133]戚国庆,陈黎,王远钢,盛安冬.含随机穿越特征指标的离散系统满意估计问题.控制理论与应用,2009,26(8):867~872
    [134]尹纯,王执铨.控制增益和平均滞留时间约束下的待机控制优化问题研究.兵工学报,2010,31(2):139~143
    [135]Wang J, Liu C, Zhang C X, Guo Z. The Estimation for the Distribution of Residence Time under Interval Objective Domain,2008 China Control and Decision Conference,2008:5154~5158
    [136]Wang J, Yao Z J, Guo Z, Qian L J. The Distribution Function of Opportunity-awaiting Time for Random System with Objective Domain,2008 IEEE International Conference on Networking, Sensing, and Control,2008:1014~1018
    [137]王军,李玉山,张贤椿,郭治.火炮身管对射击域的随机穿越特性分析.兵工学报,2009,30(7):857~861
    [138]王军,李玉山,张贤椿,郭治.具有射击域的武器系统的击发特性与精度.兵工学报,2010,31(2):144~148
    [139]Liu C, Guo Z, Wang Y G. Residence Property and Probability Estimation for Random Signal in Sight Windows. International Symposium on Test Automation and Instrumentation (ISTAT'2006),2006:510~514
    [140]王军.随机穿越特性预测理论及其在射击学中的应用.博士学位论文,南京理工大学,2009
    [141]刘超,郭治.滞留时间序列的毁伤概率及其统计特性.中北大学学报,2008,29(1):32~37
    [142]刘超,王军,郭治.滞留时间毁伤概率及其统计特性.火力与指挥控制,2008,33(6):34~38
    [143]刘超,王远钢,郭治.机动目标穿越射击域时的周期命中概率.兵工学报,2008,29(5):581~584
    [144]刘超.火力控制中的随机穿越模型与射击效能分析.博士学位论文,南京理工 大学,2009
    [145]Engelbrecht A P. Fundamentals of computational swarm intelligence. Wiley Publishing Inc,2009
    [146]Masten M K. Inertially Stabilized Platforms for Optical Imaging Systems:Tracking Dynamic Targets with Mobile Sensors. IEEE Control Systems Magazine,2008, 28(1):47-64
    [147]Hilkert J M. Inertially Stabilized Platform Technology:Concepts and Principles. IEEE Control Systems Magazine,2008,28(1):26~46
    [148]徐玉.微小型无人直升机飞控平台与姿态融合算法研究.博士学位论文,浙江大学,2008
    [149]韩龙.编队飞行航天器相对状态的立体视觉测量研究.博士学位论文,中国科学技术大学,2007
    [150]任沁源.基于视觉信息的微小型无人直升机地标识别与位姿估计研究.博士学位论文,浙江大学,2008
    [151]刘晓杰.基于视觉的微小型四旋翼飞行器位姿估计研究与实现.博士学位论文,吉林大学,2009
    [152]付奎生.两轴捷联稳定跟踪平台关键技术分析.电光与控制,2009,16(7):53~55
    [153]陈伯时.电力拖动自动控制系统—运动控制系统.北京:机械工业出版社,2003
    [154]阮毅,陈维钧.运动控制系统.北京:清华大学出版社,2006
    [155]李岩.光电稳定跟踪装置误差建模与评价问题研究.博士学位论文,国防科学技术大学,2008
    [156]Olsson H, Astrom K J, Canudas de Wit C, et al. Friction Models and Friction Compensation. European Journal of Control,1998,4:176~195
    [157]Dahl P. A Solid Friction Model. Technical Report TOR-0158(3107-18)-1, The Aerospace Corporation, El Segundo, CA,1968
    [158]Haessig D A, Friedland B. On the Modeling and Simulation of Friction. Proceedings of the 1990 American Control Conference,1990,2:1256~1261
    [159]Armstrong B. Stick-slip and Control in Low-speed Motion. IEEE Transactions on Automatic Control,1993,38(10):1483-1496
    [160]Dupont P E, Dunlap E P. Friction Modeling and PD Compensation at very Low Velocities. Journal of Dynamic System, Measurement and Control,1998,117(1): 8-14
    [161]Canudas de Wit C, Olsson H, Astrom K J, et al. A New Model for Control of System with Friction. IEEE Transactions on Automatic Control,1995,40(3):419~425
    [162]Armstrong Helouvry B, Dupont P, Canudas de Wit C. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica,1994,30(7):1083~1138.
    [163]张大兴.三轴ATP运动平台若干关键问题研究.博士学位论文,西安电子科技大学,2008
    [164]李庆祥,王东生,李玉和.现代精密仪器设计.北京:清华大学出版社,2004
    [165]胡祐德,马东升,张莉松.伺服系统原理与设计.北京:北京理工大学出版社,1999
    [166]郭尚来.随机控制.北京:清华大学出版社,1999
    [167]Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part I:Dynamic Models. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.
    [168]Katsuhiko O现代控制工程.第三版.北京:电子工业出版社,2000
    [169]Song S M, Song Z Y, Zhang B T, et al. Adaptive Wavelet Network Friction Compensation of Inter-Satellite Optical Communication Coarse Pointing Subsystem. The 6th World Congress on Intelligent Control and Automation,2006,1:2768~2772
    [170]Guelman M, Kogan A, Kazarian,A, et al. Acquisition and Pointing Control for Inter-satellite Laser Communications. IEEE Transactions on Aerospace and Electronic Systems,2004,40:1239~1248
    [171]Borrello M. A Multi Stage Pointing Acquisition and Tracking (PAT) Control System Approach for Air to Air Laser Communications. Proceedings of the 2005 American Control Conference,2005,6:3975~3980
    [172]吴钦.满意待机控制理论.博士学位论文,南京理工大学,2005
    [173]朱位秋.随机振动.北京:科学出版社,1998
    [174]Teare S, Restaino S. Introduction to Image Stabilization. Bellingham, WA:SPIE, 2006
    [175]DeBruin J. Control Systems for Mobile Satcom Antennas. IEEE Control Systems Magazine,2008,28(1):87~101
    [176]Gendreau K, Leitner J, Markley L, Cash W, Shipley A. Requirements and Options for a Stable Inertial Reference Frame for a 100 μarcsecond Imaging Telescope. Proceedings of the SPIE—The International Society for Optical Engineering,2003, 4852:685~694
    [177]胡寿松.自动控制原理.北京:科学出版社,2001
    [178]Zames G. Feedback and Optimal Sensitivity:Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses. IEEE Transactions on Automatic Control,1981,26(2):301-320
    [179]陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1996
    [180]Storn R, Price K. Differential Evolution—a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Berkeley:University of California, 2006
    [181]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks,1995:1942~1948
    [182]Dorigo M, Maniezzo V, Colorni A. Ant System:Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,1996,26(1):29~41
    [183]张晓伟.全局优化的若干随机性算法.博士学位论文,西安电子科技大学,2008
    [184]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002
    [185]Kim H, Chong J, Park K, et al. Differential Evolution Strategy for Constrained Global Optimization and Application to Practical Engineering Problems. IEEE Transactions on Magnetics,2007,43(4):1565~1568
    [186]Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation,1999,3(4):257~271
    [187]Ho Y P, Shimizu K. Evolutionary Constrained Optimization Using an Addition of Ranking Method and a Percentage-based Tolerance Value Adjustment Scheme. Information Sciences,2007,177(14):2985~3004
    [188]孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法.计算机学报,2008,31(2):228~235
    [189]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究.博士学位论文,国防科学技术大学,2005
    [190]臧文利,王远钢,郭治等.基于LMI的随动系统满意PID调节器设计.控制理论与应用,2006,23(6):967~975
    [191]张爱军.水下潜器组合导航定位及数据融合技术研究.博士学位论文,南京理工大学,2009
    [192]陈帅.精确制导炸弹低成本惯导/卫星组合导航方法研究.博士学位论文,南京理工大学,2008
    [193]徐惠钢,薄煜明,郭治.浮空器姿态的单目视觉测量解析算法.兵工学报,2008,29(1):116~120
    [194]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大 学出版社,1998
    [195]Phillips W F, Hailey C E. Review of Attitude Representations Used for Aircraft Kinematics. Journal of Aircraft,2001,38(4):718~223
    [196]Sharp C. A Vision System for Landing an Unmanned Aerial Vehicle. Proceedings of the IEEE International Conference on Robotics and Automation,2001:1720-1727
    [197]张世杰,曹喜滨,陈学芹.航天器相对位姿参数光学测量解析算法.航空学报,2005,26(2):214~218
    [198]熊有伦等.机器人技术基础.武汉:华中理工大学出版社,1997
    [199]Chou K. Quaternion Kinematic and Dynamic Differential Equations. IEEE Transactions on Robotics and Automation (1042-296X),1992,8(1):53-64
    [200]王睿,阎鹏,刘红英等.基于扩展卡尔曼滤波的舰队相对位姿估测.北京航空航天大学学报,2006,32(11):1349-1353
    [201]周宏仁,敬忠良,王培德.机动目标跟踪.北京:国防工业出版社,1991
    [202]Kim J, Woods J W.3-D Kalman Filter for Image Motion Estimation. IEEE Transactions on Image Processing,1998,7(1):42~52
    [203]伍雪冬,王耀南.基于视觉和扩展卡尔曼滤波的位姿和运动估计新方法.仪器仪表学报,2004,25(5):676~687
    [204]Wan E A, Van der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation. Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, communications, and Control,2000:153~158
    [205]Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE Aerospace and Electronic Systems,2004,92(3):401~422
    [206]Van der Merwe R, Wan E A. The Square-root Unscented Kalman Filter for State and Parameter-estimation. IEEE International conference on Acoustics, Speech, and Signal,2001,6(7-11):3461~3464
    [207]姜雪原,马广富.基于平方根Unscented卡尔曼滤波的无陀螺卫星的姿态估计.南京理工大学学报,2005,29(4):399~410
    [208]徐宁寿.随机信号估计与系统控制.北京:北京工业大学出版社,2000
    [209]苏奎峰,吕强,耿庆锋等TMS320F2812原理与开发.北京:电子工业出版社,2005
    [210]周立功.ARM嵌入式系统基础教程.北京:北京航空航天大学出版社,2005
    [211]陈德明,熊列彬.双口RAM在自动化系统中的应用.国外电子元器件,2005,4:20~21
    [212]胡柯.切换系统稳定性及时滞相关问题研究.博士学位论文,上海交通大学, 2008
    [213]林元烈,梁宗霞.随机数学引论.北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700