船用摄像稳定平台测控问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定平台是指能够使被稳定对象在外来干扰作用下相对惯性空间保持方位不变,或在指令力矩作用下能按给定规律相对惯性空间转动的装置。
     水面舰船在海上航行中,受风浪影响会产生摇摆现象。船载摄像机受舰艇摇摆的影响而不稳定,常使被摄像目标丢失,所以摄像机必须架设在稳定平台上,通过稳定平台的方位、俯仰和滚转等驱动系统补偿舰艇的摇摆运动,使摄像机始终保持水平状态。本课题正是基于此现状而提出的,课题来源于青岛理工大学与青岛市公安局签订的立项:奥帆赛海上安保指挥系统(编号GAYY2008001)。在此项目基础上开展研究。
     该稳定平台有许多方面需要深入研究,本文只对与测量、控制系统有关的各方面开展研究工作。
     论文的主要工作如下:
     1、分析比较了两轴和三轴稳定平台的运动学特征,选择带有滚转框架的三轴平台进行海上摄像机稳定平台的设计,根据该三轴稳定平台的结构特点,导出了平台运动学和动力学耦合方程;2、采用经典超前-滞后控制和变结构控制两种方法对稳定平台进行了校正。仿真结果表明变结构控制方法具有快速响应、对参数变化及外界干扰具有强鲁棒性。控制性能优于超前滞后控制方法;3、讨论了影响控制系统精度的各因素,并提出解决办法。特别是针对陀螺测量信号中存在的噪声,从陀螺仪实测动态输出数据样本序列入手,建立了时间序列模型。比较了Kalman滤波算法和Sage-Husa自适应滤波算法,得出Sage-Husa算法更适应于该平台,同时对Sage-Husa算法进行改进,提高了算法的效率;4、提出了以FPGA为核心的稳定平台控制系统实现方法,并得以成功应用,取得良好的效果。
     本论文主要创新点如下:
     1、分析了两轴稳定平台的原理性缺陷,指出两轴稳定系统仅能实现视轴的指向稳定,而对引起视轴旋转方向的扰动无法消除。如果要解决视轴的旋转问题,可行的办法就是建立三轴摄像稳定平台;2、从经典的Kalman滤波算法入手,依据滤波发散的判据,将Sage-Husa自适应滤波算法进行改进,减小了计算量从而提高了系统的实时性;3、提出了基于摩擦补偿的变结构控制方法对稳定平台进行校正。由于变结构控制可在动态过程中,随时根据系统的状态,有目的地不断变化,迫使系统沿预定的“滑动模态”的状态轨迹运动。而该点恰恰符合该稳定平台系统的实际应用背景;4、凭借FPGA高速优点,设计了以FPGA为主控制器的数字控制电路,可对目标的运动迅速做出响应,用尽可能短的时间来调整误差。
The stabilized platform is an equipment which can keep its orientation under the external disturbance, or can run regularly according to a given torque relative to the inertia space.
     Since wave fluctuations can cause a moving ship swaying at sea, the camera mounted on ship may be unstable due to this swaying and often miss the targets. Hence, in order to obtaing high-quality image it requires the mounted platform maintains stable. This stabilization can be achieved through the azimuth, the pitching and the roll drive systems. Based on the above situation we have an issue to study. It comes from a project:Sea Security Command System on Olympic Sailing Competition (No. GAYY2008001), which is signed with Qingdao Technological University and Qingdao Municipal Public Security Bureau. All our researches are based on this project. There are many problems associated with the platform stabilization, here only the aspects of measurement and control system are stressed.
     The main researches of this thesis are as follows:
     (1) The kinematical features of the two and three axis stabilized platforms are analyzed and compared. Meanwhile, the designing idea of three-axis camera stabilized platform contained the roll framework is also realized. According to the structure characteristics of the three-axis stabilized platform, its corresponding kinematic and dynamic coupling equations are deduced; (2) The classic lead-lag control and the variable structure control (VSC) methods are adopted to correct the platform system. The comparative simulation results show that the VSC method possesses the virtue of fast response fast, strong robustness with respect to the parameter change and external disturbance. In addition, its control performance is superior to the lead-lag control method; (3) The factors of controling precision are analyzed and several methods are proposed to improve the precision. Especially, in view of the noise existed in the gyroscopes measurement signal, a time series model is developed on the dynamic output data sample series. To say it in detail, it follows from the comparison between the Kalman filter algorithm and Sage-Husa adaptive filter algorithm that the last one is more suitable for the stabilization problem. Furthermore, some improvements are done on the Sage-Husa algorithm which result in more running efficiency; (4) A control-system-design method based on FPGA is put forward, which leads to successful applications.
     The main innovation is showed as follows:
     (1) Principle defect of two-axis stabilized platform is analyzed, and points out that the two-axis stabilized system can only achieve the point of the shaft stability, and can't eliminate the disturbance of view axis rotation direction. In order to solve the problem, three-axis camera stabilized platform should be set up; (2) Sage-Husa adaptive filter algorithm was improved started form classic Kalman filter according to the criterion of spread of filter, this improvement may reduce calculation and enhance real-time of the system; (3) The VSC method based on friction compensation is put forward and applied to the correction of stable platform. VSC can change trajectory according to the state of the system in dynamic process and forces system to follow a prescribed "sliding mode" state. And this point just fits application background of the system platform; (4) Digital control circuits is designed based on high-speed controller FPGA, and the device could make rapid response to the movement of target, and adjust error as quick as possible.
引文
1.刘加富.基于模糊PID控制的船载稳定平台[D],大连:大连海事大学,2009
    2.任远航.陀螺稳定伺服平台设计[D],南京:南京理工大学,2008
    3.邹东明,刘栖山,陈长青,郭劲.舰载光电跟踪设备视轴稳定分析[J],武器装备自动化,2003,22(1):15-19
    4. J.M. Hilkert.Inertially stabilized platform technology, IEEE control systems magazine, February 2008:26-46
    5. J.M. Hilkert. Kinematic algorithms for line of sight pointing and scanning using INS/GPS position and velocity information, Proc.SPIE, vol.5810, Mar.2005:11-22
    6.吴树平.车载三轴稳定平台控制系统的研制[D],南京:南京理工大学,2007
    7.方子帆,孟遂民.带有摩擦力矩的随动系统的控制研究[J],机床与液压,2006(4):164-167
    8.马幸Kalman滤波在MEMS陀螺仪随机漂移误差补偿中的应用与实现[J],测试技术学报,2007,21(6):309-313
    9.陈垚.微机械陀螺的材料及器件设计研究[D],上海:中国科学院上海冶金研究所,2002
    10.关荣锋.MEMS器件设计、封装工艺及应用研究[D],武汉:华中科技大学,2005
    11.车录锋.MEMS器件的设计、模拟与测试[D],上海:中国科学院上海微系统与信息技术研究所2001
    12. Jack W Judy. Micro-electromechanical systems (MEMS):fabrication, design and applications[J], Smart Materials and Structures,2001,10 (6):138-145
    13.杨金显,袁赣南,徐良臣.基于灰色模型的微机械陀螺温度漂移建模研究[J],传感技术学报,2007,20(7):1551-1554
    14.李杰,张文栋,刘俊.基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究[J],传感技术学报2006,19(10):220-225
    15. N. Miki, C. J. Teo, L. C. Ho, X. Zhang. Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching, Sensors and Actuators A:Physical,2003,104 (3):263-267
    16. K. Krishnan Nair, Anne S. Kiremidjian, Kincho H. Law. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure, Journal of Sound and Vibration 2006,291 (2):349-368
    17. Larry A.Stockum, George R.Carroll. Precision Stabilized Platform for Shipboard Electro-Optical Systems. SPIE,1984,493-502
    18. JI Wei, LI Qi. Adaptive Fuzzy PID Control for LOS Stabilization System on Gyro Stabilized Platform, Acta Aeronautica Et Astronautica Sinica 2007:55-60
    19. Wei Ji, Qi Li, Bo Xu. Design Study of Adaptive Fuzzy PID Controller for LOS Stabilized System 1. Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06) Volume 1,2006:336-341
    20. Bouaziz, S., Fan, M., Lambert, A., Maurin, T., Reynaud, R..PICAR:experimental platform for road tracking applications, Intelligent Vehicles Symposium,2003. Proceedings. IEEE,2003:495-499
    21. R. M. Parkin, C. A. Czarnecki, R. Safaric, D. W. Calkin. A PID servo control system experiment conducted remotely via Internet, Mechatronics,2002:833-843
    22. G. Chiola, G. Ciaccio. Implementing a low cost, low latency parallel platform, Parallel Computing,1997:1703-1717
    23. HongliuDu, Satish S. Nair. Modeling and compensation of low-velocity friction with bounds. IEEE Trans. on Control Systems,1999,7(1)
    24. Jayesh Amin. Implementation of a friction estimation and compensation technique. IEEE Trans. on Control Systems,1997,8
    25. Slobodan N, Vukosavic. Suppression of torsional oscillations in a high-performance speed servo Drive. IEEE Trans, on Industry Electronies,1998,45(1)
    26. Marcelo C.Algrain, DouglasE. Ehlers. Suppression of gyroscope noise effect in pointing and tracking system. SPIE, Vol.2221,1994
    27. BoLi. Nonlinear induced disturbance rejection ininertial stabilization systems. SPIE, Vol. 2739,1996
    28. BoLi. Self-tuning controller for nonlinear inertial stabilization SystemS. SPIE, Vol.2739, 1996
    29.石红生,卢广山.一种新型状态观测器在陀螺稳定平台中的应用[J],电光与控制,1999,1:49-54
    30.王合龙,朱培申,姜世发.陀螺稳定平台框架伺服系统变结构控制器的设计和仿真[J],电光与控制,1998,2:30-35
    31. willian J. Bigley, Stevenp. Tsao. Optical motion stabilization control of an electro-optical sight system.SPIE, Vol.111,1989
    32.张智永.光电稳定伺服机构的关键测控问题研究[D],湖南长沙:国防科学技术大学,2006
    33.王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D],北京:中国科学院,2002
    34.方成一,王振旺.舰载雷达天线电子稳定方程的推导方法[J],雷达与对抗,1999,2:68-74
    35.罗护,范大鹏,张智勇,吴正洪.两轴陀螺稳定系统中陀螺安装的几种方法[J],兵工学报,2005,26(3),426-428
    36.吴树平.车载三轴稳定平台控制系统的研制[D],南京:南京理工大学,2007
    37.周长义.三轴飞行仿真转台控制系统设计与控制算法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2005
    38.毕永利.多框架光电平台控制系统研究[D]北京:中国科学院,2003
    39.哈尔滨工业大学理论力学教研室.理论力学[M],哈尔滨:哈尔滨工业大学,2009:100-220
    40.高翔.舰船动力学分析与姿态稳定控制研究[D],上海:上海交通大学,2005
    41.李殿璞.船舶运动与建模(第二版)[M],北京:国防工业出版社,2008:13-15
    42.付黎明,杨德春.新颖船用稳定平台设计与实现[J],中国造船工程学会2006年船舶通讯导航学术会议,2006:361-368
    43.段晓敏,李杰,刘文怡,沙承贤.基于MEMS加速度计的数字倾角测量仪的设计[J],电子设计工程,2009,17(8):71-75
    44.陈浩.舰载武器稳定平台控制技术研究[D],哈尔滨:哈尔滨工程大学,2007
    45.胡寿松.自动控制原理[M],北京:国防工业出版社,1994:240-245
    46.王连明.机载光电平台的稳定与跟踪伺服控制[D],长春:中国科学院长春光学精密机械与物理研究所,2002
    47.陈伯时.电力拖动自动控制系统[M],北京:机械工业出版社,1994:24-26
    48.鄢景华.自动控制原理[M],哈尔滨:哈尔滨工业大学出版社,1996:168-197
    49.姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D],南京:东南大学,2006
    50. F.J. Gonzalez-castano, F.Gil-castinera, J.M. Pousada-carballo, P.S. Rodriguez-hernandez, J.C. Burguillo-rial, and I. Dosil-outes. Low-cost stabilized platform for airborne sensor positioning, Gabrys, R.J. Howlett, and L.C. Jain(Eds.):KES2006, Part Ⅲ, LNAI 4253: 263-268,2006.
    51. UTKIN U. Sliding Modes in Control and Optimizafion[M]. London:Springer-Verlng, 1992
    52. EMELYANOV S, KOROVIN S, MAMEDOV I. Variable Structure Control Systems: Discrete and Digital[M], FL:CRC Press.1995
    53. EDWARDS C, SPURGEONS. Sliding Modes in Control:Theory and Applications[M], London:Taylor and francis,1998
    54. YOUNG K, OZGUNER U. Sliding—mode design for robust, linear optimal control[J], Automatica,1997,33(7):1313-1323
    55.胡跃明.变结构控制理论与应用[M],北京:科学出版社,2003:1-18
    56.高为炳.变结构控制理论基础[M],北京:中国科学技术出版社,1990:1-96
    57. Balasubramanyam P V, Murthy A S R, et al. Design of variable structure controller for static compensator. Electric Machines and power systems,1998,26:431-450
    58. Slotine JJ, Sastry S S. Tracking control of non-linear systems using sliding surface with application to robot manipulations. Int. J. Contr.,1982,36(5):833-843
    59. Yung JY. GaoW, Hung J C. Variable structure control:Asurvey. IEEE Trans. on Ind. Electron.,1993,40(1):2-22
    60. Liang L., Tan Z. F.,Zhang Q.,sliding mode variable structure control of gyro stabilized sighting system of airborne optoelectronic pod:8926-8931
    61.王和龙,朱培申.陀螺稳定平台框架伺服系统变结构控制器设计和仿真[J],电光与控制,1998(70):24-29
    62. Kawamura A, Itoh H, Sakamoto K. Chattering reduction of disturbance observer based sliding mode control. IEEE Transactions on Industry Applications,1994,30 (2):456-461
    63.王辉华,刘文化,张世英,刘淼森.舰载视轴稳定系统的变结构控制研究[J],光电工程, 2007,34(3):26-29
    64.张昌凡.滑模变结构的智能控制理论与应用研究[D],长沙:湖南大学,2001
    65.张克勤.滑模变结构控制理论及其在倒立摆系统中的应用研究[D],杭州:浙江大学,2003
    66. V. S. C. Raviraj, P. C. Sen. Comparative study of proportional-integral,slidingmode, and fuzzy logic controllers for Power Converters. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.33, NO.2, MARCH/APRIL 1997:518-524
    67. Rong-Fong Fung, and Rong-Tai Yang. Application of VSC in position control of a nonlinear electrohydraulic servo system. Computers & Structures. Volume 66, Issue 4,15 February 1998, Pages 365-372
    68.欧阳黎明MATLAB控制系统设计[M],北京:国防工业出版社,2001,49-167
    69.刘坤.MATLAB自动控制原理习题精解[M],北京:国防工业出版社,2004,272-290
    70.卢锷.改善光电跟踪测量系统机械谐振频率方法探讨[J],光学精密工程,19942(2):47-52
    71.方子帆,孟遂民.带有摩擦力矩的随动系统的控制研究[J],机床与液压,2006(4):164-167
    72.叶军,杨立芳,吉智军,郭朝阳.框架轴承摩擦力矩测量与分析计算[J],轴承,2001(4):7-9
    73. ZHOU Qingkun, FAN Dapeng, ZHANG Zhiyong. Study on Effects of Friction Moment on the Lowspeed Performance of Stabilization and Tracking Platform. Machinery & Electronics.2005(12):56-61
    74.蒋志凯.数字滤波与卡尔曼滤波[M],北京:中国科学技术出版社,1993
    75.W.D.斯坦利.数字信号处理[M],北京:科学出版社,1979.
    76.杨叔子,吴雅,轩建平等.时间序列分析的工程应用(上册)[M],北京:华中科技大学出版社,2007,175-254
    77.杨叔子,吴雅,轩建平等.时间序列分析的工程应用(下册)[M],北京:华中科技大学出版社,2007,158-189
    78. Zhang Y S, Fang J C. Research of the random error modeling and compensation method for MEMS gyro[J], sixth international symp. on instrumentation and control technology: sensors, automatic measurement, control, and computer simulation, jiancheng fang,zhongyu wang, eds., proc. of SPIE vol.6358 63580G, (2006)
    79. Lu liu, Yi C S, Xu Z C. A novel demodulation scheme in the digital readout system for a micro-machined gyroscope [J], proceedings of MNC2007 Micronanochina07 january 10-13, 2007
    80.王振龙.基于ARIMA模型的陀螺随机误差分析[J],装备制造技术,2008,45(11):23-26
    81.何书元.应用时间序列分析[M],北京:北京大学出版社,2003:185-222
    82. Broeraen, P. M. T. deWadeS., Costs of order selection in time seranalysis. Instrumentation and Measurement Technology Conference, Proceedings of the 19th IEEE, Delft University of Technology, Netherlands,2010:1990-1997
    83.付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M],北京:科学出版社,2003:1-100
    84.张贤达.现在信号处理(第二版)[M],北京:清华大学出版社,2002:177-188
    85.龚耀寰.自适应滤波[M],北京:电子工业出版社,2003年:110-111
    86. Seong-hoon peter won, Wael William melek, Farid golnaraghi. A kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system, IEEE transactions on industrial electronics, VOL.57, NO.5,MAY 2010:1787-1798
    87. Mehdi ghezal, Bernard polle, Christophe rabejac, Johan montel. Gyro stellar attitude determination, Proceedings of the 6th international ESA conference on guidance, navigation and control systems, Loutraki, Greece,17-20 October 2005 (ESA SP-606, January 2006)
    88.张常云.自适应滤波方法研究[J],航空学报,1998,19(7):96-99
    89. Abdelhameed sharaf, Sherif sedky. MEMS based gyroscope:design, analysis and simulation, Proceedings of MN2008:2nd international conference and exhibition on multifunctional nanocomposites and nanomaterials, January 11-13,2008, Sharm El sheikh, Egypt. MN2008-47013
    90. Yu J.T., Li Y, Liang T. W., The application of self-adaptive kalman filter in NGIMU/GPS intergrated navigation system, Second international symposium on intelligent information technology application.239-243
    91.沈云峰,朱海,莫军,宋裕农.简化的Sage-Husa自适应滤波算法在组合导航应用中 的应用及仿真[J],青岛大学学报,2001,16(1):44-47
    92.宋迎春.GPS动态导航定位的当前统计模型与自适应滤波[J],湖南人文科技学院学报,2005,10(5):7-9
    93.H T库索夫可夫.控制系统的最优滤波和辨识方法[M],北京:国防工业出版社,1984:103-157
    94.王一程,汪海兵,赵长德,杨华.基于FPGA的光电跟踪控制系统设计[J],电光与控制,2009,16(3):54-57
    95. Timothy P.Ricks, Megan M. Burton, William E.Cruger, Robert K.Reynolds. Stabilized electro-optical airborne instrumentstion platform, Chemical and Biological Standoff Detection, Proceedings of SPIE Vol.5268:202-209
    96.潘松,黄继业.EDA技术实用教程[M],北京:科学出版社,2006:1-10
    97.王晓勇.FPGA的基本原理及运用[J],舰船电子工程,2005,146(2):82-85
    98.侯伯亨,顾新.VHDL硬件描述语言与数字逻辑电路设计[M],西安:电子科技大学出版社,1999.1
    99.段晓敏,李杰,刘文怡,沙承贤.基于MEMS加速度计的数字倾角测量仪的设计[J],电子设计工程,2009(8):71-72
    100. Martin Drahansky, Filip Orsag, and Petr Hanacek. Accelerometer based digital video stabilization for general security surveillance systems, International Journal of Security and Its Applications, Vol.4, No.1, anuary,2010:1-9
    101.曾庆华,张为华.iMEMS速率陀螺芯片在MAV飞行控制系统中应用研究[J],测控技术,2004,23(2):68-70
    102. A.Kulygin, U.Schmid, H.Seidel. Characterization of a novel micromachined gyroscope under varying ambient pressure conditions, Sensors and Actuators 145-146(2008):52-58
    103.曾唯,林麒,梁斌MEMS角速率陀螺仪标定实验与数据处理[J],仪器仪表装置,2007(6):20-22
    104.徐大诏.基于FPGA实现的AD1674高精度快速数据采集系统[J],兰州工业高等专科学校学报,2009,16(5):23-27
    105.陈兵飞,杨碧石.基于EPM7128SLC84实现的AD574A采样控制器[J],仪表技术,2005(2):60-62
    106. Mark.zwolinski. Digital System Design with VHDL[M].北京:电子工业出版 社.2002.10
    107. Yang hui-xian, Wang zi-han, Yang sui, The appliance of UART MAX3100 in the Single Chip System, Journal of Electron Devices,2004(1):45-51
    108.贾子申,李淑清,王冠雅.基于FPGA的UART控制器设计[J],电子测量技术,2008,31(3):82-84
    109. Zaini Abdul Halim. Low Cost Data Acquisition System, Proceedings of the International Conference on Robotics, Vision, Information and Signal Processing ROVISP2007, May 2008
    110. Eftichios Koutroulis, Apostolos Dollas, Kostas Kalaitzakis. High-frequency pulse width modulation implementation using FPGA and CPLD ICs, Journal of Systems Architecture, Volume 52, Issue 6, June 2006:332-344
    111. A.Fratta, G.Griffero, S.Nieddu. Comparative analysis among DSP-based control capabilities in PWM power converters, the 30th annual conference of the IEEE industrial electronics society,2006:257-262
    112. R.Arulmozhiyal, K.Basakaran. A novel approach to induction motor speed control using FPGA, international journal of applied engineering research volume 4, number 1(2009):1-14
    113.米月琴,黄军荣.基于FPGA的Kalman滤波器的设计,电子科技[J],2010,2(2):52-56
    114.江和平,李飚,沈振康.基于FPGA实现的自适应卡尔曼滤波器的设计,红外与激光工程[J],2005(2):89-92
    115.高清运,李学初.自适应滤波器的FPGA实现,电子测量与仪器学报[J],2005(2)25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700