大豆吸收利用氮素规律及相关酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2006-2007年进行,采用框栽、砂培以及组培相结合的方法进行。框栽试验,应用~(15)N示踪技术,选用高蛋白型、高油型、丰产型、饲料型大豆和不结瘤大豆,以其中一个品种为材料,设置高氮、中氮和低氮三个施氨水平,研究大豆氮素积累与来源规律,同时测定谷氨酰胺合成酶和硝酸还原酶活性:砂培试验,以~(15)N标记的氮肥为氮源,测定大豆氮素来源与构成及谷氨酰胺合成酶、硝酸还原酶活性,并测定硝态氮诱导下的硝酸还原酶mRNA含量;组培试验,以~(15)N标记硫酸铵或硝酸钾以及两者混合为氮源培养大豆,测定铵态氮和硝态氮吸收比例。运用以上方法,对大豆吸收利用氮素规律及相关酶活性进行了研究,结果表明:
     大豆氮素吸收表现为明显的时期性,而栽培品种与秣食豆(饲料大豆)有明显差异。(1)无机氮营养期,大豆主要依靠土壤氮和肥料氮。栽培品种的无机氮营养期为出苗—R_1期,在R_1期土壤氮所占比例为83.8%~85.2%,肥料氮所占比例为12.7%~15.0%,根瘤固氮所占比例在3.0%以下;而秣食豆无机氮营养期为出苗—V_4期,在V_4期土壤氮所占比例为75.4%,肥料氮所占比例为15.7%,根瘤固氮所占比例为8.9%。(2)根瘤固氮快速增长期,大豆主要依靠土壤氮和根瘤固氮,而根瘤固氮快速增加。栽培品种表现在R_1—R_5期,根瘤固氮量和所占比例大幅度提高,土壤氮和肥料氮的积累量都有所增加,但其所占比例均下降;栽培品种在R_5期土壤氮所占比例为60.0%~67.9%,根瘤固氮所占比例达到28.3%~36.3%,肥料氮所占比例低于4.0%;而秣食豆表现在V_4—R_5期,在R_5期时根瘤固氮所占的比例达到69.1%,土壤氮所占比例为29.7%,而肥料氮所占比例仅为1.2%。(3)土壤氮和根瘤固氮同步吸收期,既依靠土壤氮,又依靠根瘤固氮。栽培大豆表现在R_5—R_8期,土壤氮和根瘤固氮仍有大量积累,肥料氮积累不明显,而土壤氮和根瘤固氮积累接近;栽培品种R_8期土壤氮所占比例在39.3%~60.5%,根瘤固氮所占比例为37.5%~59.2%,肥料氮所占比例均低于2.0%;秣食豆在这一时期主要依靠根瘤固氮,土壤氮和肥料氮的积累量较少,R_8期根瘤固氮所占的比例高达71.4%。
     施氮水平对大豆氮的吸收积累有明显影响。(1)在框栽条件下,东农47的氮素积累量大小顺序为:低氮处理>中氮处理>高氮处理,差异达到显著水平;根瘤固氮积累量的大小顺序为:低氮处理>中氮处理>高氮处理,低氮处理显著高于中氮处理和高氮处理,中氮和高氮处理差异不显著。(2)在砂培条件下,东农47随氮素水平增加,大豆植株中肥料氮所占比例增大,根瘤固氮所占比例减小;在出苗—V_3期、出苗—R_1、出苗—R_2期给予高氮处理,而V_3—R_8期、R_1—R_8期、R_2—R_8期变为低氮处理时,随高氮处理的时间延长氮素积累量减少,其中根瘤固氮积累量随高氮处理的时间延长明显减少,而肥料氮积累量差异不大;从出苗—R_4期、出苗—R_5期给予低氮处理,R_4—R_8期、R_5—R_8期给予高氮处理时,与全生育期给予低氮的处理相比氮素积累量明显增加,其中R_5—R_8期给予高氮的处理肥料氮积累量显著大于R_4—R_8期给予高氮的处理,两个处理根瘤氮积累量差异不显著。
     施氮水平对大豆产量影响很大。(1)在框栽条件下,东农47的产量大小顺序为:低氮处理>中氮处理>高氮处理,低氮处理和中氮处理的产量显著大于高氮处理,而低氮和中氮处理的产量差异不显著。(2)在砂培条件下,低氮处理不能满足大豆对氮的需求,产量较低,而高氮处理因抑制根瘤的生长,也不能获得较高的子粒产量。从出苗—V_3期、出苗—R_1期、出苗—R_2期给予高氮处理,而V3—R_8期、R_1—R_8期、R_2—R_8期变为低氮处理时,随高氮处理的时间延长产量降低;从出苗—R_4期、出苗—R_5期给予低氮处理,R_4—R_8期、R_5—R_8期给予高氮处理时,与全生育期给予低氮的处理相比产量显著增加,但两个处理间差异不显著。由此可见,当外源氮水平较低时,于R_4期或R_5期提高外源氮水平可以增加大豆产量。
     对大豆产量与子粒中肥料氮所占比例、大豆产量与根瘤固氮所占比例分别作回归分析,回归方程分别为y=-0.017x~2+1.329x+25.294、y=-0.017x~2+2.091x-12.828,经测验两个回归方程拟合效果很好,经求导分析得出大豆子粒中肥料氮所占比例为39.1%、根瘤固氮所占比例为61.5%时大豆产量最高。由此推断,当外源氮对子粒的贡献率为40%左右、根瘤固氮贡献率为60%左右时,能够同时满足大豆对根瘤固氮和外源氮的需求,有利于大豆产量的形成。
     铵态氮和硝态氮对大豆的营养作用不同,大豆吸收铵态氮比例大于硝态氮。在无菌条件利用组培方法下培养大豆,当培养基中NH_4~+-N与NO_3~--N比例为1:1时,大豆吸收NH_4~+-N与NO_3~--N的比例接近1.5:1,其中叶片、茎、根吸收NH_4~+-N与NO_3~--N的比例分别为1.6:1、1.4:1和1.6:1。
     大豆上部幼嫩叶片硝酸还原酶活性较高,中部成熟叶片和下部老化叶片活性较低,品种间表现一致,而大豆叶片硝酸还原酶活性动态品种间存在一定差异。NO_3~-能够诱导iNR的基因表达,经NO_3~-诱导iNR1和iNR2两种同工酶mRNA含量明显增加。
     大豆上部幼嫩叶片和中部成熟叶片谷氨酰胺合成酶(GS)活性较高,下部老化叶片活性较低,品种间表现一致。各部位谷氨酰胺合成酶(GS)活性随生育进程总的变化趋势一致,但年份间差别较大。
The experiment was conducted with frame tests(pot without bottom),sand culture and tissue culture during the period from 2006 to 2007 year.Labeled ~(15)N was used in the frame test and the experiment design was as following:genotype and nitrogen were chosen as the main factors,and five genotypes were chosen(high protein,high oil,high yield,forage and root noduleless soybean), and three nitrogen levels,low,mid and high,were chosen.One genotype was used to study the nitrogen source and accumulation in soybean,determine the activity of nitrate reductase and glutamine synthetase;Labeled ~(15)N fertilizer was used in sand culture,the nitrogen source and composition,the activity of glutamine synthetase and nitrate reductase,and the mRNA content induced by nitrate nitrogen were mensurated;In the tissue culture experiment,Labeled ~(15)N ammonium sulfate or potassium nitrate and mixture of them were used as nitrogen source to mensurate the ratio of NH_4~+-N:NO_3~--N which were absorbed by plants.The results were shown as following:
     Nitrogen uptake of soybean could be divided into there periods,there was evidence difference between cultivated and forage soybean:(1) Inorganic nitrogen period,when the plants absorbed mainly soil-N and fertilizer-N.The period of cultivated soybean began from seedling to beginning bloom(R_1).The proportion of soil-N and fertilizer-N was between 83.8%~85.2%and 12.7%~15.0%respectively in R_1,and the nodulation-N was below 3.0%at this stage;The period of MSD began from seedling to V_4 period,the proportion of soil-N,fertilizer-N and nodulation-N was 75.4%、15.7%and 8.9%in V_4.(2) Nodulation-N fast increasing period,when the plants absorbs mainly soil-N and nodulation-N,nodulation-N increased fast.During the period from R_1 to R_5, nodulation-N accumulated fast and the proportion increased in cultivars,both soil-N and fertilizer-N accumulations still increased,but their proportions in plant decreased;The proportions of soil-N and nodulation-N in cultivation soybean were between 60.0%~67.9%and 28.3%~36.3%respectively in R_5,while that of fertilizer-N was less than 4.0%;The period of MSD was from V_4 to R_5,the proportion of nodulation-N already achieved 69.1%in R_5,soil-N was 29.7%, fertilizer-N was only 1.2%.(3) soil-N and nodulation-N synchronization absorption period,the plants absorbed both soil-N and nodulation-N,cultivation soybean began from beginning size stage to full maturity stage(R_5—R_8),when the nodulation-N and soil-N still had the massive accumulations,and the accumulation of fertilizer-N stagnated;The proportions of soil-N and nodulation-N were between 39.3%~60.5%and 37.5%~59.2%respectively in R_8,and fertilizer-N was less than 2.0%;In this period,MSD absorbed mainly nodulation-N,the accumulation of soil-N and fertilizer-N were few.The proportion ofnodulation-N already reached as high as 71.4%in R_8.
     N-level used had a significant effect on N-absorption and N-accumulation of soybean. (1)Under frame conditions,the order of nitrogen accumulative amount of DN47 is low-N>mid-N>high-N,the difference reached significant level;the order of nodulation-N accumulative amount is low-N>mid-N>high-N,and the nodulation-N accumulative amount of low-N was significantly higher than that of mid-N and high-N,but there was no significant difference between mid-N and high-N.(2)Under sand culture,the proportion of fertilizer-N increased as nitrogen level heightened, but that of nodulation-N was on the contrary;Applying higher N level during these periods:from seedling to V_3,seedling to R_1,and seedling to R_2,then applied lower nitrogen level during the periods from V_3 to R_8,R_1 to R_8,and R_2 to R_8,accumulative nodulation-N amount decreased significantly as the higher nitrogen level period prolonged,but that of fertilizer-N had little difference;Applying lower nitrogen level during the periods:from seedling to R_4,and seedling to R_5,then applied higher nitrogen level during the periods from R_4—R_8,and R_5—R_8,accumulative nitrogen amount were higher than that of lower-N treatment in whole period,the accumulative nitrogen amount of the treatment that applying higher nitrogen level during the period from R_5—R_8 was significantly higher than that of the period from R_4—R_8,but there was no difference between accumulative nodulation-N amount of the two treatments.
     Yield of soybean was affected by N levels(2) Under frame condition,the order of yield of DN47 is low-N>mid-N>high-N,and the yield of low-N and mid-N was significantly higher than that of high-N,but there was no significant difference between low-N and mid-N.(2) Under sand culture,the yield of low-N was lower because nitrogen requirement could not be fulfilled,higher-N could not reach high yield became of the inhibition of higher nitrogen on the growth of nodules. Applying higher N level during these periods:from seedling to V_3,seedling to R_1,and seedling to R_2,then applied lower nitrogen level during the periods from V_3 to R_8,R_1 to R_8,and R_2 to R_8,the yield decreased as the higher nitrogen level period prolonged;applying lower nitrogen level during the periods:from seedling to R_4,and seedling to R_5,then applied higher nitrogen level during the periods from R_4—R_8,and R_5—R_8,the yield was higher than that of lower-N in whole period,but there was no significant difference,which indicated that heightened exogenous nitrogen level between R_4 and R_5 and lower nitrogen level in prophase could increase yield of soybean.
     The regression of yield and proportion of fertilizer-N in seed,yield and proportion of nodulation-N in seed were analyzed,and regression equations were y=-0.017x~2+1.329x+25.294 and y=-0.017x~2+2.091x-12.828 respectively.The two regression equation provided a better fit,and the result of derivation analysis shown that highest yield could be obtained when the proportion of soil-N and nodulation-N was 39.1%and 61.5%respectively.We could deduce:when the contribution rate of exogenous nitrogen and nodulation-N were about 40%and 60%in seeds respectively,these could satisfy the requirement of soybean and benefit to soybean yield formation.
     There were a difference between ammonium and nitrate nutrition,and more ammonium was absorbed by soybean than nitrate.Tissue culture in sterile condition was conducted and the result shown that when the ratio of NH_4~+-N:NO_3~--N in culture medium was 1:1,the rates of NH_4~+-N: NO_3~--N absorbed by soybean were approximately 1.5:1,and the ratios of NH_4~+-N and NO_3~--N absorbed by leaf,stem and root were 1.6:1,1.4:1 and 1.6:1.
     The activity of nitrate reductase(NR) exhibited similarly among different varieties,higher in tender leaf and lower in old leaf,but there were some difference of the activity dynamic of nitrate reductase.Gene of iNR could be induced by NO_3~-,accordingly mRNA of iNR1and iNR2 isoenzymes could be enhanced.
     The activity of glutamine synthetase(GS) exhibited similarly among different varieties,higher in tender and middle leaves and lower in low leaves.The change trends of activity of glutarnine synthetase in different parts were similar,but there was a great difference among different years.
引文
白石斉聖,中川弘毅.2000.硝酸还元酵素の机能と构造[J].化学と生物.38(4):270-277
    毕远林.1999.大豆干物质积累与氮、磷、钾吸收与分配的研究[J].大豆科学.18(4):331-335
    蔡晓布,钱成.2003.氮肥形态和用量对藏东南烤烟产量和质量的影响[J].应用生态学报.14(1):66-70
    曹翠玲.2002.氮素及形态对作物的生理效应.西北农林科技大学博士学位(毕业)论文[D].西北农林科技大学
    陈丽华,李杰,刘丽君等.2002.大豆蛋白质的积累动态及其与产质量形成的关系[J].东北农业大学学报.33(2):116-124
    陈新平,周金池,张福锁.1997.应用不同土壤无机氮测试进行冬小麦氮肥推荐的研究[J].土壤学报.(5):19-21
    陈新平,邹春琴,刘亚萍等.2000.菠菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报.6(1):30-34
    程素贞,罗孝荣.1990.大豆对钼和氮、磷、钾的吸收分配动态及相互关系的初步研究[J].大豆科学.9(3):241-246
    戴廷波,曹卫星,孙传范.2003.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响[J].应用生态学报.14(9):1529-1532
    丁洪,郭庆元.1995.氮肥对不同品种大豆氮积累和品质的影响[J].土壤通报.26(1):18-21
    冯福生,陈文龙,李洁等.1986.不同供氮水平下动小麦叶片中RuBP梭化酶和硝酸还原酶的活性变化[J].植物生理学通讯.6:20-22
    冯兆忠,王效科,段晓男等.2003.不同氮水平对春小麦光合速率日变化的影响[J].生态学杂志.22(4):90-92
    甘银波,陈静,邱正明.1996.不同阶段施用氮肥对大豆氮吸收及固氮的影响[J].中国油料作物学报.4:45-48
    甘银波,陈静.1998.大豆不同生长阶段施用氮肥对生长、结瘤及产量的影响[J].大豆科学.4:45-49
    甘银波,涂学文,田任久.1998.大豆的最佳氮肥施用时期研究[J].大豆科学.17(4):287-291
    高聚林,刘克礼,李惠智等.2004.大豆群体对氮、磷、钾的平衡吸收关系的研究[J].大豆科学.23(2):106-110
    高祖明,张耀栋,张道勇.1989.氮磷钾对叶菜硝酸盐累积和硝酸还原酶、过氧化物酶活性的影响[J].园艺学报.16(4):293-297
    关兴照,李成泰,张朝清,石桂芳.2000.大豆施氮肥接种根瘤菌效果研究[J].黑龙江农业科学.4:20-21
    顾志权,钱卫飞,曹洪生等.1994.小麦分蘖期快速营养诊断技术的应用及改进[J].铁道师范学报.11(4):56-59
    何建国,严华,贾金川等.1999.不同氮肥管理对大豆生长及产量的影响[J].大豆通报.(1):11
    何念祖,孟赐福编著.1987.植物营养原理[M].上海:上海科技出版社.1-17
    何文寿,李生秀,李辉桃.1998.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学.12(4):249-252
    何文寿,李生秀,李辉桃.1999.六种作物不同生育期吸收铵、硝态氮的特性[J].作物学报.25(2):221-227
    洪剑明,黄勤妮,邱泽生等.1995.玉米根细胞质膜硝酸还原酶的研究[J].植物学报.37(12):927-933
    胡昌浩,王群英.1987.玉米不同叶位叶片叶绿素与光合强度变化规律的研究[J].山东农大学报.20(1):43
    胡晨,黄志平,张丽亚等.2007.氮肥施用对杂交大豆生育特性及产量的影响[J].安徽农业科学.35(22):6745-6746
    胡承孝,邓波儿等.1992.施用氮肥对小白菜、蕃茄中硝酸盐累积的影响[J].华中农业大学学报.11(3):239-243
    黄高宝,张恩和,胡恒觉.2001.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报.7(3):293-297
    黄明勤,杨素铀,张仲明等.1987.硝酸还原酶活力与作物耐肥性的研究.W.玉米幼苗硝酸还原酶活力与品种耐肥性的关系[J].作物学报.13(1):19-22
    黄绍文,孙桂芳,金继运等.2004.不同氮素水平对高油玉米籽粒产量及其营养品质的影响[J].中国农业科学.37(2):250-255
    黄正来等.2005.花期追施氮肥对菜用大豆Aclo生理指标及产量影响的研究[J].激光生物学报.14(3):7-12
    贾树龙,刘春田.1995.水分胁迫条件下小麦的产量反应及对养分吸收的特征[J].土壤通报.26(1):6-8
    蒋彭炎,洪晓富,冯来定等.1997.水培条件下氮浓度对水稻氮素吸收和分孽发生的影响研究[J].作物学报.23(2):191-199
    金喜军,马春梅,董守坤.2007.大豆生育期间土壤铵态氮与硝态氮变化及相关性分析[J].东北农业大学学报.38(3):289-293
    巨晓棠,刘学军,张福锁.2002.小麦苗期施入氮肥在土壤不同氮库的分配和去向[J].植物营养与肥料学报.8(3):259-264
    李比希著,刘更另译.1983.化学在农业和生理学上的应用[M].北京:农业出版社.42-85
    李常健,林清华,张楚富.2001.高等植物谷氨酰胺合成酶研究进展[J].生物学杂志.18(4):1-3
    李豪哲,崔雄范,崔明子等.1988.硝酸还原酶活力与作物耐肥性的研究Ⅲ.北方粳稻品种演变过程中硝酸还原酶活力与品种间性状之间的关系[J].作物学报.14(2):163-166
    李豪哲.1986.不同大豆品种苗期硝酸还原酶(NR)的活力[J].科学通报.24:1903-1904
    李豪喆.1986.大豆叶片硝酸还原酶活力的研究.植物生理学通讯[J].11(4):30-32
    李绍曾,楚奎锡.1985.大豆亩产五百斤的生育规律及综合技术措施[J].中国油料作物学报.3:37-40
    李生秀主编.1999.土壤-植物营养研究文集.西安:陕西科学技术出版社[C].1-35
    李雪梅,朱长甫,苗以农.1993.大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力变化[J].植物生理学通讯.29(4):263-265
    李永孝,李佩珽.1995.施肥量和追肥期对夏大豆产量性状的影响[J].大豆科学.14(2):119-125
    李仁岗,王淑敏,王克武等.1982.冬小麦对土壤氮和肥料氮的吸收及氮素平衡的研究[J].土壤通报.13(4):12-22
    连兆煌主编.1994.无土栽培原理与技术[M].北京:中国农业出版社.36-44
    林振武,孙惠珍,陈敬祥.1985.硝酸还原酶活力的体外测定[J].植物生理学通讯.(3):33-35
    林振武等.1983.硝酸还原酶活力与作物耐肥性的研究[J].中国农业科学.8:37-43
    刘丽,甘志军,王宪泽.2004.植物氮代谢硝酸还原酶水平调控机制的研究进展[J].西北植物学报.24(7):1355-1361
    刘鹏,杨玉爱.2000.硼铝胁迫对大豆叶片硝酸还原酶与硝态氮的影响[J].浙江大学学报(农业与生命科学版).20(2):151-154
    刘胜利,孔新,任林昌等.2005.新大豆2号高产生育动态及生理生化指标的研究[J].新疆农业科学.42(4):244-247
    刘文国,范学科,马安良.2002.植物体对氮吸收和同化过程的研究进展[J].杨凌职业技术学院学报.1(2):17-19
    刘晓冰,金剑,张秋英,杨恕平,王光华,李艳华.2001.不同大豆基因型氮素积累运转研究简报[J].大豆科学.20(4):298-30
    刘晓洁.2001.重迎茬大豆栽培施氮技术试验[J].大豆通报.2期
    刘芳.1994,小麦吸收肥料氮和土壤氮的探讨[J].核农学报,15(2):81-84
    马宏玮,康建宏,何文寿等.2003.高产高蛋白高氮肥效率春小麦品种的硝酸还原酶活性的研究[J].宁夏农林科技.(1):3-6
    马利加等著,刘进元等译.2000.植物分子生物学实验指南[M].北京:科学出版社.6-12
    #12
    倪竹如,陈俊伟,阮美颖.2003.氮肥不同施用技术对直播水稻氮素吸收及其产量形成的影响[J].核农学报.17(2):123-126
    普良尼施尼科夫著,王天锋,夏淑芳等译.1956.在植物生活和苏联农业中的氮素[M].科学出版社.43-62
    钱晓晴,沈其荣,徐国华.2003.配合施用NH_4~+和NO_3~-N对旱作水稻生长与水分利用效率的影响[J].土壤学报.40(6):894-900
    沈润平,王中孚,郭进耀等.1998.氮磷钾营养对春大豆产量品质效应的研究[J].江西农业大学学报.1:51-55
    沈文彪.2000.植物硝酸还原酶的新功能:合成NO[J].生命的化学[J].20(6):243-244
    石岩,位东斌,于振文等.2001.施肥深度对早地小麦氮素利用及产量的影响[J].核农学报.15(3):180-183
    宋玉发,赵小铭,黄玉杰等.2007.高蛋白大豆优质高产栽培施肥的研究作物杂志[J].2:53-54
    苏金,朱汝财,伍成祥等.2000.豌豆叶绿体型谷氨酰胺合成酶cDNA的克隆[J].农业生物技术学报.8(4):326
    孙成斌.2002.什么形态的氮容易被作物吸收[J].化学教育.5:3-5
    孙太靖,龚振平,马春梅.2004.大豆植株氮素积累与转运动态的研究[J].东北农业大学学报.35(5):517-521
    孙羲.植物营养原理[M].1995.北京:中国农业出版社.72-73
    汤玉玮,林振武,陈敬祥.1985.硝酸还原酶活力与作物耐肥性的相关性及其在生化育种上应用的探讨[J].中国农业科学.6:39-45
    汤树德.1993.秸杆还田原理及其应用[M].北京:北京农业大学出版社.108-119
    田霄鸿,丁朝辉,李生秀.1999.不同氮素形态及配比对蔬菜生长和品质的影响[J].西北农业大学学报.2:6-10
    田霄鸿,李生秀,王朝辉等.2003.莴笋对不同形态氮素的反应[J].应用生态学报.14(3):377-381
    汪自强,王美娥.2002.春大豆氮利用效率的基因型变异和性状间的相关研究[J].生物数学学报.17(2):221-228
    王光华,刘晓冰,杨恕平等.1999.生殖生长期源库改变对大豆子粒产量和品质的影响[J].大豆科学.16(30):236-241
    王光霞,张少英,邵世勤等.2004.氮素形态对甜菜代谢酶活性和生长发育的影响[J].中国甜菜糖业.(1):35-37
    王金陵.1982.大豆[M].黑龙江科学技术出版社.103-104
    王立刚,刘景辉,刘克礼,高聚林.2004.大豆氮素积累、分配与转移规律的研究[J].作物杂志.(5):20-22
    王宪泽,程炳嵩,张国珍.1990.氮素形态与作物生育的关系及其影响因子[J].山东农业大学学报.(1):93-98
    王宪泽,淘福青,程炳嵩等.1990.小麦对氮素形态适应性的生理分析[J].山东农业大学学报.(2):87-90
    王忠.2000.植物生理学[M].北京:中国农业出版社.107-108
    温尚斌,石连旋,王丹生等.1999。大豆叶片光合与呼吸硝酸还原酶活性及可溶性蛋白含量相互关系的探讨[J].东北师大学报自然科学版.1:67-70
    文启孝,张晓华,杜丽娟等.1988.太湖地区主要土壤中的固定态铵及其有效性[J].土壤学报.25(1):22-30
    吴东根.2007.中国种业[J].大豆产量形成及其限制因素研究.(4):15-17
    吴魁斌,沈国清.1998.对大豆氮素利用率及体内分配规律的研究[J].现代化农业.(12):9-11
    吴平,印莉萍,张立平等编著[M].2001.植物营养分子生理学.科学出版社.
    肖凯,张树华,邹定辉,张荣铣.2000.不同形态氮素营养对小麦光合特性的影响[J].作物学报.6(1)53-59
    徐坤,赵青春.1999.甜椒对不同形态氮素的吸收和分配[J].核农学报.13(6):339-342
    杨肖娥,孙羲.1990.生育后期施用NO_3~--N和NH_4~+-N对水稻的生理效应[J].土壤通报.21(3):110-114
    杨旭,邹志荣,贺忠群等.2003.蔬菜无土栽培营养液中的氮素及其调控[J].西北植物学报.23(9):1644-1649
    印莉萍,柴晓清,李丹等.1997.不同小麦品种叶片衰老过程中谷氨酰胺合成酶和蛋白水解酶的活性变化[J].山西师范大学学报.11(1):46-49
    印莉萍,柴晓清,刘祥林等.1994.叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响[J].植物学报.36(8):597-602
    印莉萍,刘祥林,林忠平.1995.植物谷氨酰胺合成酶基因及其基因表达[J].生物工程进展.15(2):36-41
    余让才,李明启.1997.高等植物硝酸还原酶的光调控[J].植物生理学通讯.33(1):61-65
    张夫道.1998.氮素营养研究中几个热点问题[J].植物营养与肥料学报.4(4):331-338
    张含彬,任万军,杨文钰等.2007.不同施氮量对套作大豆根系形态与生理特性的影响[J].作物学报.33(1):107-112
    张明才,李召虎,田晓莉,段留生,王保民,翟志席,何钟佩.2004.植物生长调节剂SHK-6对大豆叶片氮素代谢的调控效应[J].大豆科学.23(1):15-21
    张树兰,同延安,梁东丽等.2004.氮肥用及施用时间对土体中硝态氮移动的影响[J].土壤学报.41(2):270-277
    张岁歧,山仑,薛青武.2000.氮磷营养对小麦水分关系的影响[J].植物营养学报.6(2):147-151
    赵宏伟,马风鸣,李文华.2004.氮肥施用量对春玉米硝酸还原酶活性及产质量的影响[J].东北农业大学学报.35(3):276-281
    赵洪样,徐克章,李大勇等.2007.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系[J].南京农业大学学报.30(2):94-98
    赵双进,张孟臣,杨春燕.1999.追肥时期对夏大豆植株养分和株型性状及产量的影响.中国农业科学[J].32(增刊):112-116
    赵志光,谭玲玲,王锁民等.2002.植物一氧化氮(NO)研究进展[J].植物学通报.19(16):659-665
    赵平,孙谷畴,彭少麟.1998.植物氮素营养的生理生态学研究[J].生态科学,(2):37-42
    赵越,魏自民,马凤鸣.2003.不同水平铵态氮对甜菜硝酸还原酶和谷氨酰胺合成酶活力的影响[J].中国糖料.1:22-25
    郑淑琴.2001.钾对大豆生理效应及产量和品质的影响[J].黑龙江农业科学.4:1-4
    周阮宝,谷丽萍.1994.植物硝酸还原酶的研究进展[J].植物杂志.(3):5-7
    周树,郑相穆.1985.硝酸还原酶体内分析方法的探讨[J].植物生理学通讯.(1):47-49
    朱云集,崔金梅,王晨阳等.2002.小麦不同生育时期施氮对穗花发育和产量的影响[J].中国农业科学.35(11):1325-1329
    朱兆良.文启孝主编.1990.中国土壤氮素[M].江苏科学技术出版社.3-24
    Afza.R.,Hardarson G.,Zapata F.,Danso S.K..1987.Effects of delayed soil and foliar N fertilization on yield and N_2 fixation of soybean[J].Plant-and-soil.3:361-368
    Alling M J,Boland G.,Willson J H.1976.Relation between acid proteinaseactivity and redistribution of nitrogen during grain development in wheat[J].Plant Physiology.3:721-730.
    Amancio S.,Stulen I..2004.Nitrogen Acquisition and Assimilation in Higher Plants.Plant Ecophysiology[J].3:149-184
    Amarasinghe B H R R,de Bruxelles G L,Braddon M et al.1998.Regulation of GmNRT2expression and nitrate transport activity in roots of soybean(Glycine max)[J].Planta.206:44-52
    Arnon DI.1973.Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen-ion concentration,manganese,copper and oxygen supply[J].Soil Sci..,44:91-120
    Aslam M,Travis R L,Huffaker R C.1992.Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley(HordeumvulgareL.)seedlings[J].Plant Physiology.99:1124-1133
    Aslam M,Travis R L,Huffaker R C.1993.Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and Nitrite in intact roots of barley(Hordeum vulgare L.)seedlings[J].Plant Physiology.102:811-819
    Aslam M,Travis R L,Huffaker R C.1993.Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and Nitrite in intact roots of barley(Hordeum vulgare L.)seedlings[J].Plant Physiology.102:811-819
    Assirirad H,Caldwell MM and Bilbrough C.1993.Effect of soil temperature and nitrogen status on kinetics of ~(15)NO_3~- uptake by roots of field-grown Agropyron deseertorum(Fish.ex Link)Schult[J].New phytol..123:485-489
    Breteler H,Siegerist M.1984.Effect of ammonium on nitrate utilization by roots of dwarf bean[J].Plant Physiology.75:1099-1103
    Brugiere N,Dubois F,Limami A M,Lelamdais M,Roux Y,Sangwan R S.1999.Hirel B.Glutamine syhthetase in the phloem plays a major role in controlling proline preduction[J].Plant Cell.11:1995-2011
    Cathrine L.,Christian M.,Unni S L.,Fiona P.,Satu O..2004.Mechanism and importance of post-translational regulation of nitrate reductase[J].Journal of Experimental Botany.10(1):93-132
    Cramer MD,Lewis OAM,Lips SH.1993.Inorganic carbon fixation and metabolism in maize roots as affected by nitrate and ammonium nutrition[J].Physiology Plant.89:552-556
    Crawford N M., Glass A D M.. 1998. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science. 3(10):3 89-395
    Cren M. 1999. Hirel B. Glutamine synthetase in higher plant: Regulation of gene and protein expression from the organ to the cell[J]. Plant Cell Physiol.. 40:1187-1193
    Cruz C, Lips SH, Martins-Loucao MA. 1993. The effect of nitrogen on Photosynthesis of caobo at high CO_2 concentrations[J]. Physiology Plant. 89:557-578
    Datta R., Sharma R. 1999. Temporal and spatial regulation of nitrate reductase and nitrite reductase in greening maize leaves. Plant Science[J]. 144:77-83
    Dubois F , Brugiere N Sangwan R S .1996. Hirel B. Localization of tobacco cytosolic glutamine syntheses enzymes and the corresponding transcripts shows organ and cell specific patterns of protein synthesis and gene expression[J]. Plant Mol.Biol. .31:803-817
    Duke SH., Duke SO. 1978. In vitro nitrate reductase activity and in vivo phytochrome measurement of maize seedlings as affected by various light treatments[J]. Plant cell physiology. 19:481-483
    Eichel K D Berger. 1989.R J Lambert F Eef af Divergent Phenotypic recurrent selection for nitrate reductase activity in maize II Efficient use of fertilizer nitrogen[J]. Crop Science. 29(6):1389-1402
    Errebhi M.,Wilcox G E.. 1990. Tomato growth and nutrient uptake patterns influenced by nitrogen form ratio[J]. Journal of Plant Nutrition. 13(8):1031-1043
    Filleur S, Daniel-Vedele F. 1999. Expression analysis of a high-affinity nitrate transporterisolated from Arabidopsis thaliana by differential display [J]. Planta. 207:461-469
    Freeman J, Marquez A.Wallsgrove R M,et al.. 1990. Molecular analysis of barley mutants deficient in chloroplast glutamine synthetase[J]. Plant Mol..l4(3):297-311
    Fukita K, Morita T, Nobuyasu H. 1997. Effect of pod removal on absorption and reduction of nitrate in soybean[J]. Soil Sci Plant Nutr..43(1): 63-73
    Fukita K, Morita T, Nobuyasu H. 1997. Effect of pod removal on absorption and reduction of nitrate in soybean[J]. Soil Sci.Plant Nutr.. 43(1): 63-73
    Forde BG 2002. Local and long-range signaling pathways regulating plantresponses to nitrate[J]. Annu Rev Plant Biol 53: 203-224
    Foyer CH, Parry M, Noctor G. 2003. Markers and signals associated with nitrogen assimilation in higher plants[J]. J Exp Bot 54: 585-593
    Gazzarini S, Lejay L, Gojon A et al. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. Plant Cell. 11:937-947
    Gerendas J., Zhu Z., Bendixen R et al.. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plant[J]. Zeitschrift Pflanzenernahrung und Bodenkunde. 160:239-251
    Gojon A, Dapoigny L, Lejay L et al. 1998. Effects of genetic modification of nitratereductase expression on ~(15)NO_3~- uptake and reduction in Nicotiana plants[J].Plant Cell & Environ..21:43-53
    H.Marschner著,李春俭等译.2001.高等植物的矿质营养[M].北京:中国农业大学.159-177
    Hageman R H.,Reed A J.,Femmer R A.,Simcox P D..1980.Some new aspects of the in vivo assay for nitrate reduatase in Wheat(Triticam aestivum L.) leaves[J].Plant Physiology.65:27-32.
    Hanway J.J.,Weber C.R..1971.Accumulation of N,P,and Kby soybean[Glycine max]Merrill plants[J].Agron J..63:406-408
    Hirel,B.,Martin,A.,Terce-Laforque,T.,et al..2005a.Physiology of maize I:A comprehensive and integrated view of nitrogen metabolism in a C4 plant[J].Physiol.Plant.124,167-177
    Hirel,B.,Andrieu,B.,Valadier,M.H.,et al..2005b.Physiology of maize Ⅱ:Identification of physiological markers representative of the nitrogen status of maize(Zea mays) leaves during grain filling[J].Physiol.Plant.124,178-188
    Joseph J V,Zhuo D G,Siddiqi M Y et al.2000.Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley[J].Plant Physiology.123:301-318
    Katrin Fischer,Guillaume G.Barbier,Hans-Juergen Hecht et al..2005.Structural Basis of Eukaryotic Nitrate Reduction:Crystal Structures of the Nitrate Reductase Active Site[J].The Plant Cell,Vol..17,1167-1179
    King B J,Siddiqi MY,Ruth T J et al.1993.Feedback regulation of nitrate influx in barley roots by nitrate,nitrite,and ammonium[J].Plant Physiology.102:1279-1286
    Krapp A,Fraisier V,Scheible W-R et al.1998.Expression studies of Nrt2:1Np,aputative high affinity nitrate transporter:Evidence for its role in nitrate uptake[J].Plant J..6:23-732
    Kronzucker H J,Glass A D M,Siddiqi M Y.1995.Nitrate induction in spruce:Anapproach using compartmental analysis[J].Planta.196:683-690
    Lea P J,Blackwell R D,Joy K W.1992.Ammonia assimilation in higher plants[A].In:Meng K and Pilbeam D J(eds.).Nitrogen Melabotism of Plant[C].Oxford University Press,New York.153-186
    Lee R B,Drew M C.1986.Nitrogen-13 studies of nitrate fluxes in barley roots.Ⅱ.Effect of plant N-status on the kinetic parameters of nitrate influx[J].Exp Bot.185:1768-1779
    Leffel R.C.,Bolgiano P.B.,Thibeau D.J..1992.Nitrogen metabolism of normal and high-seed-protein soybean[J].Crop Sci..32:747-750
    Li M G,Villemur R,Hussey P J,et al..1993.Differential expression of six glutamine synthetase genes inZea mays[J].Plant Mol.Biol..23(2):401-407
    Lillo C..1994.Light/dark regulation of higher plant nitrate reductase related to hysteresis and calcium/magnesium inhibition[J].Physiol.Plant.91:295-299
    Marschner H.1986.Mineral nutrition of higher plants[M].Academic Press,Inc.,London,UK,433-438
    Magalhaes JR, Huber DM.. 1991. Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species[J]. J Plant Nutr..l4(2):175-185
    Masclaux C, Valadier M-H, Brugie're N, et al.. 2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence[J]. Planta. 211: 510-518
    Minchin F. R., Summerfield R. J., Newes M. C. P. 1980. Carbon metabolism, nitrogen assimilation, and seed yield of cowpea (Vignaunguiculata L. Walp. ) grown in an adverse temperature regime[J]. Exp. Bot.. 31:327-347
    Minchin F.R., Summerfield R.J., Newes M.C.P. 1980.Carbon metabolism .nitrogen assimilation, and seed yield of cowpea (Vignaunguiculata L. Walp.) grown in an adverse temperature regime[J]. J. Exp Bot. 31:1327-1347
    Nason A. Evans HJ. 1953. Triphosphopyridine nucleotide-nitrate reductase in Neurospora[J]. J. Biol. Chem. (202):655-673
    Nussaume L., Vincentz M., Meyer C, Boutin J.P. Caboche M.. 1995. Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion[J]. Plant Cell.,7: (5):611-621
    Obara M , Sato T , Yamaya T. 2000. High content cytosolic glutamine synthetase doses not accompany a high activity of the enzyme in rice ( Oryza sativa) leaves of indica cultivars[J]. Physiol. Plant. 108:11-18
    Ochs G, Schoth G, Trischler M , Kosemund K. 1999. Wild A . Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop B rassica napus[J]. Plant Mol. Biol. 39:395-405
    Paula M M, Ligia M L, Isabel M S,et al. 2003. Expression of the plastid-located lutamine synthetase of medicago trun-catula[J]. Plant PhysioL132(1):1390-1399
    Peuke A D., Jeschke W D.. 1993. The uptake and flow of C.N and ions between roots and shoots in Rlclnuscommunis L. I. Grown with ammonium or nitrate as nitrogen source[J]. Journal of Experimental Botany. 44(264): 1167-1176
    Rajasekhar VK.,Gowri G,Campbell WH.. 1988. Phytochrome mediated light regulation of nitrate reductase expression in squash cotyledons[J]. Plant physiology. 88:242-251
    Rawat S R, Silim S N, Kronzucker H J et al. 1999. AtAMTl gene expression and NH_4~+ uptake in roots of Arabidopsis thaliana: Evidence for regulation by root glutamine levels[J]. Plant J.. 19:143-152
    Robert H., Desiree GF., Christina W., Christine H., Guido H., Pia WL., Christ E., Jorg K., Heinz R., Werner MK, Ralf RM.. 2001. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation[J]. Journal of Experimental Botany. 52(359):1251-1265
    Rongchen Wang, Mamoru Okamoto, Xiujuan Xing et al. 2003. Crawford. Microarray analysis of the nitrate response in arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism[J]. Plant Physiology. 132:556-567
    Ryan S A, Nelson R S, Harper J E. 1993. Soybean mutant lacking constitutive nitrate reductase activity[J]. Plant Physiol, 72:510-514
    Sakamoto A, Ogawa M, Masumur A T,et al.. 1989. Three cDNA sequences coding for glutamine synthetase polypeptides inOryza sativaL[J] .Plant Mol. Biol.. 13(5):611-614
    Salado-Navarro L.R., Hinson K., Sinclair T.R.. 1985. Nitrogen partitioning and dry matter allocation in soybeans with different seed protein concentration[J]. Crop-Sci. 25(3):451-455
    Schonbeck M W, Hsu F C, Carlsen T M. 1986. Effect of pod number on dry matter and nitrogen accumulation and distribution in soybean[J]. Crop Sci.. 26: 7683-7688
    Schrader L.E., G.L.Ritenour, G.L.Eilrich, et al. 1968. Some characteristics of nitrate reductase from higher plants[J]. Plant Physiology. (43):930-940
    Siddiqi M Y, Glass A D M, Ruth T J et al. 1990. Studies of the uptake of nitrate in barley: I. Kinetics of ~(13)NO_3~- influx[J]. Plant Physiology. 93:1426-1432
    Sinclair T.R., Dewit C.T.. 1975. Photosynthate and nitrogen requirement for seed production by various[J]. Crop Sci.. 18:565-567
    Sinclair T.R., Dewit C.T..1976. Analysis of carbon and nitrogen limitations to soybean yield[J]. Agron.J..68:319-324
    Spaeth S.C., Sinclair T.R.. 1983. Variation in nitrogen accumulation and distribution among soybean cultivais[Glycine.max.genotypes] [J]. Field-Crops-Res. 1:1-12
    Srivastava HS, Singh RP . 1987. Role and regulation of L-glutamate dehydrogenase activity in higher plants[J]. Phytochemistry 26: 597-610
    Stevenson E J., Madison Wis. 1982. Nitrogen in agricultural Soils[J]. American society of agronomy.6:68-75
    Streeter J.G. 1978. Effect of N starvation of soybean plants at various stage of growth on seed yield and N concentration of plant parts at maturity[J]. Argon. J..70:74-76
    Taiz L. 1992. The Plant vacuole[J]. J. Exp. Boil.. 172:113-122
    Temple S J , Heard J , Ganit G, Duun K, Sengupta-Gopalan C. 1995. Characterization of a nodule-enhanced glutamine synthetase from alfalfa: Nucleotide sequence , in situ localization, and transcript analysis[J]. Mol. Plant-Microbe Interact. 8:218-227
    Temple SJ , Bagga S , Sengupta-Gokpalan C. 1998. Downregulation of specific members of the glutamine synthetase gene family in alfalfa by antisense RNA technology [J]. Plant Mol. Biol.. 37:535-547
    Tingey S V, Tsai F Y, Edwards J W,et al.. 1988. Chloroplast and cytosolic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo[J]. Biol.Chem.. 263(20):9 651-9 657
    Vessey J K., Henry L T.Chaillous and RaPer C D..1990. Root-zone activity affects relative uptake of nitrate and ammonium form mixed nitrogen sources[J].J.of plant Nutrition.13(1):95-116
    Vidmar J J, Zhuo D, Siddiqi M Y et al. 2000. Regulation of high-affinity nitrate transportergenes and high-affinity nitrate influx by nitrogen pools in roots of barley[J]. Plant Physiology. 123:307-318
    Von Wiren N, Lauter F R, Ninnemann O et al. 2000. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato[J]. Plant J.. 21:167-175
    Wang M Y, Siddiqi M Y, Ruth T J et al.. 1993. Ammonium uptake by rice roots. II. Kinetics of ~(13)NH_4~+ influx across the plasmalemma[J]. Plant Physiology. 103:1259-1267
    Watababe I, Tabuchi K and Nakano H. 1986. Response of soybean to supplemental nitrogen after flowering. IN:S Shanmugasundaram, F W Sulaberger. Soybean in Trpical and Subtropical Cropping System. AVRDC, Shanhua, Taiwan, China.308-310
    Werner M K, Hendrik W., Andrea K., Chyn BT., Peter R., Masatoshi S., Elisabeth P.. 2002. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction[J]. Journal of Experimental Botany. 53(370):875-882
    Wu chu, Wang zheng-quan,, Fan zhi-qiang, Sun hai-long. 2003. Effects of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis,photosynthesis,and biomass partitioning in Fraxinus mandshurica seedlings[J]. Plant Biology. 27(6):771-779
    Wu S, Lu Q, Kriz A L et al. 1995. Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean :analysis in wild-type and mutant[J]. Plant mol Biol, 29:491-506
    Yamasaki H., Shimoji H., Ohshiro Y., Sakihama Y. 2001. Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria[J]. Nitric Oxide. 5:261-270
    Zeiher C, Egli D.B., Leggett J.E., Reicosky D.A.. 1982. Cultivar differences in nitrogen redistribution in soybeans[J]. Agron.j..74(2):375-379
    Zhang C F, Peng S B, Peng X X, et al. 1997. Response of glumine synthetase isoforms to nitrogen sources in rice roots[J]. Plant Science. 125:163-170
    Zhuo D, Okamoto M, Vidmar J J et al. 1999. Regulation of putative high-affinity nitratetransporter (Nrt2.1At) in roots of Arabidopsis thaliana [J]. Plant J.. 17:563-569

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700