乳酸杆菌对ApoE~(-/-)小鼠动脉粥样硬化形成的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:心血管疾病是世界范围内致病率和致死率主要的原因,动脉粥样硬化是心血管病的病理基础。降脂治疗是防治心血管疾病的一种常规手段,常用的降脂药由于是化学合成的药物,各有其副作用和不良反应,临床上迫切需要疗效更好更安全的降胆固醇药。乳酸杆菌从公元3世纪起即被人们用于发酵食物,悠久的使用历史证明了乳酸杆菌是一种安全的益生菌并具有多种功效。从20世纪六七十年代起人们开始关注乳酸杆菌的降胆固醇作用并迅速成为益生菌研究领域的热点。然而,乳酸杆菌降胆固醇的效果一直存在争议,有关乳酸杆菌对心血管疾病作用的研究非常有限,而直接研究乳酸杆菌对动脉粥样硬化形成影响的报道更加少。目的:研究嗜酸乳酸杆菌ATCC4356对ApoE-/-小鼠血清胆固醇和动脉粥样硬化形成的影响并从乳酸杆菌对炎症、氧化应激和肠道菌群的调节三方面阐明可能的机制。
     方法:(1)实验对象分组和饲养:野生型C57BL/6J小鼠灌胃生理盐水作为正常对照组(WT组);选取ApoE-/-小鼠为动脉粥样硬化动物模型,ApoE-/-小鼠灌胃生理盐水作为动脉粥样硬化模型对照组(Vehicle组);ApoE-/-小鼠灌胃5×107CFU嗜酸乳酸杆菌ATCC4356作为菌液低剂量组(La.L组);ApoE-/-小鼠灌胃5×108CFU嗜酸乳酸杆菌ATCC4356组作为菌液高剂量组(La.H组)。小鼠均为8周龄的雄性小鼠,每天灌胃体积为0.5mL,连续12周。WT组小鼠饲料为普通饲料,ApoE-/-小鼠用高脂高胆固醇饲料(含15%猪油+0.25%胆固醇)喂养以加速动脉粥样硬化模型的形成。(2)实验过程中,定期记录小鼠体重并观察体重变化,实验结束后将小鼠麻醉处死、取材、保存。(3)检测乳酸杆菌对血清胆固醇的影响:利用全自动生化分析仪检测血清总胆固醇(total cholesterol, TC)、甘油三酯(tryglyeride, TG)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)和低密度脂蛋白胆固醇(low density lipoprotein cholesterol, HDL-C)的水平。(4)检测小鼠主动脉粥样硬化形成情况:对小鼠主动脉大体和主动脉根部冰冻切片行油红O染色,对动脉粥样斑块面积进行定量;对主动脉根部切片进行H&E染色观察粥样斑块的病理变化。(5)检测氧化应激分子的变化:用酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)检测各组小鼠血清中氧化型低密度脂蛋白(oxidized low density lipoprotein, ox-LDL)的水平,用生化检测试剂盒检测小鼠血清和肝脏中丙二醛(Malondialdehyde, MDA)、超氧化物歧化酶(Superoxide dismutase, SOD)和谷胱甘肽(Glutathione, GSH)的水平。(6)检测炎症因子的变化:采用ELISA方法检测小鼠血清肿瘤坏死因子-α (Tumor necrosis factor alpha, TNF-α)和白介素-10(Interleukin10, IL-10)的蛋白水平;采用实时荧光定量聚合酶链式反应(real-time polymerase chain reaction, real-time PCR)检测各组小鼠主动脉的TNF-α和IL-10的mRNA表达水平;(7)检测核因子P65(nuclear factor kappa B, NF-κB P65)信号通路的激活情况:用western blot检测总蛋白核因子κB抑制蛋白α蛋白(nuclear factor-kappa-B inhibitor alpha, IκB-α)、胞浆蛋白和胞核蛋白NF-κB P65的蛋白表达水平。(8)检测小鼠肠道菌群的变化:对小鼠粪便进行倍比稀释后,利用选择性培养基,Mac用于大肠杆菌、EC用于肠球菌、MRS用于乳酸杆菌和BS用于双岐杆菌的分离培养并进行菌落的鉴定和计数。用MTT方法检测嗜酸乳酸杆菌ATCC4356对肠上皮细胞Caco-2细胞增殖的影响。
     结果:(1)成功构建动脉粥样硬化小鼠模型。(2)小鼠体重的变化:高脂高胆固醇喂养的ApoE-/-小鼠体重增加要大于普通饮食喂养的野生型C57BL/6J小鼠,但是嗜酸乳酸杆菌ATCC4356对小鼠体重没有影响。(3)乳酸杆菌对胆固醇的影响:ApoE-/-小鼠血清的LDL-C、TC和HDL-C都显著高于WT组,但是乳酸杆菌对ApoE-/-小鼠的血清胆固醇并没有影响。(4)粥样斑块的形成情况:高脂高胆固醇喂养的ApoE-/-小鼠在实验结束时可以形成明显的动脉粥样斑块病变,给予乳酸杆菌处理的小鼠,动脉粥样斑块面积减少,病变减轻,La.H组与Vehicle组比较有显著性差异(P<0.05)。(5)氧化应激分子的检测结果:与WT组相比,、Vehicle组小鼠的血清ox-LDL、MDA显著升高,SOD活力降低,用嗜酸乳酸杆菌ATCC4356干预可以降低ox-LDL、MDA水平,并增加SOD活性,但对GSH无影响。(6)炎症分子的变化结果:乳酸杆菌可以降低血清TNF-α水平,La.H组与Vehicle组比有显著性差异(P<0.05),但是对IL-10的蛋白含量无影响。Real-time PCR结果显示,与WT组小鼠相比,Vehicle组小鼠主动脉TNF-α mRNA表达水平增高,IL-10mRNA表达水平减低,嗜酸乳酸杆菌ATCC4356干预可以逆转这些变化。(8)NF-κB信号通路的激活情况:Western Blot结果显示,Vehicle组小鼠主动脉总蛋白IκB-a蛋白降解显著,胞浆NF-κB P65蛋白表达减少,胞核NF-κB P65蛋白表达增加,应用嗜酸乳酸杆菌ATCC4356处理后,IκB-α蛋白降解减少,胞浆NF-κB P65蛋白表达增加,胞核NF-κB P65蛋白表达减少,提示NF-κB P65核转位减少。(9)肠道菌群的改变结果:高脂高胆固醇喂养的Vehicle组ApoE-/-小鼠与普通饮食喂养的WT组小鼠相比,肠道内容物中双岐杆菌、乳酸杆菌数量减少,大肠杆菌数量增加,肠球菌数量无明显改变。给ApoE-/-小鼠灌胃嗜酸乳酸杆菌ATCC4356菌液12周后,小鼠肠道内容物的双岐杆菌、乳酸杆菌和肠球菌数量增加,大肠杆菌数量减少。MTT结果显示1×108CFU/mL的嗜酸乳酸杆菌ATCC4356可以显著增加Caco-2细胞的增殖。
     结论:嗜酸乳酸杆菌ATCC4356有减轻动脉粥样硬化形成的作用,该作用不依赖于降胆固醇机制,而与降低炎症、抗氧化应激和调节肠道菌群有关。抗炎和抗氧化应激可能是通过抑制NF-κB P65信号通路的激活来实现的。对肠道菌群的调节可能与促进肠上皮细胞细胞增殖,保护肠上皮屏障有关。图33幅,表1个,参考文献115篇
Background:Cardiovascular disease is the major cause leading to mortality and morbidity throughout the world and its basic pathogenesis is atherosclerosis. Lipid-lowering therapy is a kind of conventional treatment. However, as the commonly used lipid-lowering drugs are synthesized by chemical methods and have side-effects and adverse reactions, the drugs having better curative effects and being safer are urgently needed in clinic. Lactobacillus has been used in fermenting foods since the third century, AD. The long term used history proves that Lactobacillus is a kind of safe probiotics and owns variety effects. In1960's and1970's, people began to paid attention to its cholesterol-lowering effect, which is also rapidly becoming the hot field of probiotics research area. Yet there has been controversy on the cholesterol-lowering effect of Lactobacillus. In addition, the research about the effect of Lactobacillus on cardiovascular disease is limited and fewer studies have investigated the role of Lactobacillus directly in atherogenesis.
     Objective (1) To investigate the effect of Lactobacilus (L.) acidophilus ATCC4356on the development of atherosclerosis (As) and serum cholesterol in ApoE-/-mice. The underlying mechanisms were further studied through detecting the modulation of oxidative and inflammatory process, and the regulation of intestinal microflora.
     Methods (1) Grouping and feeding of mice:8week-old male mice were randomly assigned to4groups:(a)WT group: Wild Type C57BL/6J mice were given normal saline (NS) as normal control group (WT);(b) Vehicle group:ApoE-/-mice were treated with NS as model control group;(c) La. L group:ApoE-/-mice treated with low dose (5×107CFU) of L. acidophilus ATCC4356daily;(d) La. H group:ApoE-/-mice treated with high dose (5×10CFU) of L. acidophilus ATCC4356daily. C57BL/6J mice were fed with normal chow, while all the ApoE-/-mice were fed with high fat and high cholesterol diet (including15%fat and0.25%cholesterol). The volume of NS and L. acidophilus ATCC4356was0.5mL/day per mouse. The experimental time was12weeks.(3) During the course of experiment, mice body weights were monitored once a week. After12weeks of intervention the mice were sacrificed, the needed materials were drawn from responding organ and frozen in liquid nitrogen or-80℃.(4) Detecting the effects of L. acidophilus ATCC4356on mice serum cholesterol:Serum lipid levels, including total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C), were tested by automatic biochemical analyzer.(5) Testing the development of As in mice aorta: Aortic en face analysis and cryosections of aortic root were stained with Oil Red O to examine the aortic atherosclerotic lesions; The morphologic changes in the atherosclerotic lesions were identified by hematoxylin-eosin (H&E) staining.(6) Examining the oxidative status: Eenzyme-linked immunosorbent assay (ELISA) kits was used to test the serum levels of oxidized low density lipoprotein (ox-LDL); Malondialdehyde (MDA) levels, superoxide dismutase (SOD) activities and glutathione (GSH) concentrations were detected by biochemical analyzed kits to show the oxidative status.(7) Detecting the changes of inflammatory factors:The protein levels of tumor necrosis factor alpha (TNF-α) and interleukin10(IL-10) in mice serum were assessed by ELISA kits; the mRNA levels of TNF-a and IL-10in aorta were analyzed with quantitative real-time PCR.(8) Testing the activation of nuclear factor kappa-B P65(NF-κB p65) signaling pathway:The expression levels of nuclear factor-kappa-B inhibitor alpha (IκB-α), cytoplasmic and nuclear NF-κB p65in aorta were determined by western blot.(9) Analyzing the changes of intestinal microflora:The contents of colon were homogenized and diluted with NS, then certain diluted contents were plated on responding selective media to distinguish bacterial and count the number of colony forming units (CFU). The effect of L. acidophilus ATCC4356on proliferation of Caco-2cells was detected by MTT method.
     Results (1) The atherosclerotic animal models were successfully established.(2) The changes of mice body weights:Body increments in high fat and high cholesterol fed ApoE-/-mice were higher than those in normal chow fed wide type C57BL/6J mice, while L. acidophilus ATCC4356could not affect the body weights.(3) The effect of L. acidophilus ATCC4356on mice serum cholesterol:The serum levels of TC, LDL-C and HDL-C in ApoE-/-mice were significantly higher that those in WT group mice, but there were no differences among ApoE-/-mcie treated with or without L. acidophilus ATCC4356.(4) Atherosclerotic lesion area:At the end of experiment, the Vehicle group mice could develop apparent atherosclerotic lesions in aorta. However, ApoE-/-mice treated with L. acidophilus ATCC4356showed decreased atherosclerotic lesion size in both en face aorta and aorta root. H&E staining also showed attenuated morphologic severity in La.H group.(5) The results of oxidative status examination:Compared to WT mice, ApoE-/-mice in Vehicle group showed higher levels of serum ox-LDL and MDA, but lower levels of SOD. Administration of L. acidophilus ATCC4356could decrease the levels of ox-LDL and MDA while increase the activities of SOD in a dose-dependent manner. However, the levels of GSH showed no changes.(6) The results of inflammatory molecules detection:Serum levels of TNF-α were increased while IL-10levels were reduced in Vehicle group compared with WT group. The aortic mRNA expression of TNF-α and IL-10also showed the same trend. Treatment with L. acidophilus ATCC4356could reverse these trends.(7) The activation of NF-κB p65signal pathway was suppressed:The results of Western blot demonstrated that compared to ApoE-/-mice in Vehicle group, the degradation of aortic IκB-α was suppressed, expression of cytoplasmic NF-κB was upregulated while nuclear NF-κB p65was downregulated in ApoE-/-mice treated with L. acidophilus ATCC4356, suggesting the inhibition of NF-κB p65nuclear translocation.(8) The changes of intestinal microflora:The numbers of both intestinal Lactobacillus and Bifidobacterium were lowered in high fat and high cholesterol fed Vehicle group mice than those in WT mice. Administration of L. acidophilus ATCC4356to ApoE-/-mice showed significant increases in the numbers of intestinal Lactobacillus, Bifidobacterium and Enterococcus spp. colonies as compared to ApoE-/-mice treated with vehicle only.1×108CFU/mL L. acidophilus ATCC4356could augment the proliferation of Caco-2cells.
     Conclusions Administration of L.acidophilus ATCC4356in ApoE-/-mice can attenuate the development of atherosclerotic lesions through the mechanisms of reducing oxidative stress, anti-inflammatory response and regulating intestinal microflora, rather than lowering cholesterol levels. The effects on preventing oxidative stress and inflammation are possably associated with inhibiting the activation of NF-κB singal pathway. L.acidophilus ATCC4356can promote the proliferation of Caco-2cells to strengthen the intestinal barrier function, which is the possible underlying mechanism of regulating gut flora. Figures:33, Table:1, References:115
引文
[1]杨永宗.动脉粥样硬化性心血管病基础与临床[M].北京:科学技术出版社,2009:53-64.
    [2]Mizuno Y, Jacob RF, Mason RP. Inflammation and the development of atherosclerosis[J]. J Atheroscler Thromb,2011,18(5):351-358.
    [3]Shoenfeld Y, Sherer Y, Harats D. Artherosclerosis as an infectious, inflammatory and autoimmune disease[J]. Trends Immunol,2001,22(6):293-295.
    [4]Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med,2005,352(16):1685-1695.
    [5]Ross R. Atherosclerosis-an inflammatory disease[J].N Engl J Med,1999, 340(2):115-126.
    [6]Krintus M, Kozinski M, Stefanska A, et al. Value of C-Reactive protein as a risk factor for acute coronary syndrome:a comparison with apolipoprotein concentrations and lipid profile[J]. Mediators Inflamm,2012,419804.doi:10.1155/ 2012/419804.
    [7]Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis [J]. Physiol Rev,2004,84(4):1381-1478.
    [8]杜福昌,王海燕,朱杰,等.冠心病与脑卒中发病差异的影响因素[J].中华心血管病杂志,1997,25(1):16-19.
    [9]Hjermann I. Intervention of smoking and eating habits in healthy men carrying high risk forcoronary heart disease. The Oslo Study.[J]. Acta Med Scand Suppl,1981,651(4):281-284.
    [10]Mann GV. Studies of a surfactant and cholesteremia in the Maasai[J]. Am J Clin Nutr,1974,27(5):464-469.
    [11]Shaper AG, Jons KW, Jones M, et al. Serum lidids in three nomadic tribes of northern kenya [J]. Am J Clin Nutr,1963,13:135-146.
    [12]Saini R, Saini S, Sharma S. Potential of probiotics in controlling cardiovascular diseases[J]. J Cardiovasc Dis Res,2010,1(4):213-214.
    [13]Marteau P, Shanahan F. Basic aspects and pharmacology of probiotics:an overview of pharmacokinetics, mechanisms of action and side effects[J]. Best Pract Res Clin Gastroenterol,2003,17(5):725-740.
    [14]Snydman DR. The safety of probiotics[J]. Clin Infect Dis,2008,46 Suppl 2:S104-111.
    [15]de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics[J]. Adv Biochem Eng Biotechnol,2008,111(2):1-66.
    [16]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environment-tal factor that regulates fat storage[J]. Proc Natl Acad Sci USA,2004,1(44):15718-15723.
    [17]Cani PD, Neyrinck AM, Fava F, et al. Selective increase of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J]. Diabetologia,2007,50(11):2374 2383.
    [18]Wu X, Ma C, Han L, et al. Molecular characterisation of the faecal microbiota in patients with type Ⅱ diabetes [J]. Curr Microbiol,2010,61(1):69-78.
    [19]Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis [J]. Curr Opin Clin Nutr Metab Care,2007,10(6):729-734.
    [20]郭贵海,王崇文.肠道菌群调节剂的研究进展[J].临床内科杂志,2002,19(2):88-90.
    [21]吕琼,陈其御.乳酸杆菌免疫作用的研究进展[J].国际检验医学杂志,2009,30(1):54-56.
    [22]凌代文.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999:117,122,124.
    [23]周庭银,倪语星.临床微生物检验标准化操作[M].上海:上海科学技术出版社,2009:192,198,199,211.
    [24]黄颖,隋玉杰,钟莉莉,等.藏灵菇发酵乳中降胆固醇乳酸菌的分离及鉴定[J].吉林大学学报(医学版),2010,36(6):1181-185.
    [25]Dai XY, Ou X,Hao XR, et al. The effect of T0901317 on ATP-binding cassette transporter A1 and Niemann-Pick type C1 in ApoE-/- mice[J]. J Cardiovasc Pharmacol,2008,51(5):467-475.
    [26]彭旷,杨永宗.载脂蛋白E及其基因敲除小鼠的研究进展[J].心血管病学进展,2006,27,S1:74-78.
    [27]Chamberlain J, Francis S, Brookes Z, et al. Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding[J]. PLoS One,2009, 4(4):e5073.
    [28]林征,吴小南,汪家梨.雄性SD大鼠高脂血症模型饲料配方的实验研究[J].海峡预防医学杂志,2007,6(2):56-57.
    [29]Moheimani F, Moore L, Ferrante JV, et al. Inhibition of atherosclerotic lesion development in the ApoE-/- mouse by a novel 0-oxa polyunsaturated fatty acid[J]. J Cardiovasc Pharmacol,2010,56(4):431-439.
    [30]Xie N, Cui Y, Yin YN, et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal micro flora in rats fed a high-cholestero diet [J]. BMC Complement Altern Med,2011,11:53. doi:10.1186/1472-6882-11-53.
    [31]Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesityand diabetes in mice [J]. Diabetes,2008,57(6):1470-1481.
    [32]Huang Y, Wang J, Cheng Y, et al. The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats aremediated by the down-regulation of Niemann-Pick Cl-like 1[J].Br J Nutr,2010,104 (6):807-812.
    [33]Park YH, Kim JG, Shin YW, et al. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs[J]. Biosci Biotechnol Biochem,2008,72(2):595-600.
    [34]Agerholm-Larsen L, Raben A, Haulrik N, et al. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases[J]. Eur J Clin Nutr,2000,54(4):288-297.
    [35]Hatakka K, Mutanen M, Holma R, et al. Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered incapsules is ineffective in lowering serum lipids[J]. J Am Coll Nutr,2008,27(4): 441-447.
    [36]Aureli P, Capurso L, Castellazzi AM, et al. Probiotics and health:an evidence-based review[J]. Pharmacol Res,2011,63(5):366-376.
    [37]唐志红,夏敏,朱惠莲,等.乳酸杆菌对ApoE-/-小鼠动脉粥样斑块形成抑制作用.中国公共卫生,2009,25(11):1352-1354.
    [38]Uchida M, Ishii I, Inoue C, et al. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet[J]. J Atheroscler Thromb,2010,17(9):980-988.
    [39]范乐明.动脉粥样硬化炎症机制的再认识[J].中国动脉硬化杂志,2005,13(3):249-253.
    [40]Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages:contributions to atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2004,24(1):23-28.
    [41]张书文,孟和毕力格,吕加平.乳酸菌清除自由基能力的研究概况[J].中国乳品工业,2008,36(4):44-47.
    [42]Lin MY, Chang FJ.Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356 [J]. Dig Dis Sci,2000,45(8):1617-1622.
    [43]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quatitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods,2001, 25 (4):402-408.
    [44]谷舒怡,季晖,李萍.氧化应激诱导动脉粥样硬化的机制及相关治疗药物[J].药学进展,2010,34(3):110-117.
    [45]Madamanchi NR, Vendrov A, Runge MS.Oxidative stress and vascular disease[J]. Arterioscler Thromb Vasc Biol,2005,25(1):29-38.
    [46]Kullisaar T, Songisepp E, Mikelsaar M, et al. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects[J]. Br J Nutr,2003,90(2):449-456.
    [47]Cavallini DC, Suzuki JY, Abdalla DS, et al. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model[J]. Lipids Health Dis,2011,10:126. doi:10.1186/1476-511X-10-126.
    [48]Fang X, Weintraub NL, Rios CD, et al. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells[J]. Circ Res,1998,82(12):1289-1297.
    [49]Yang H, Roberts LJ, Shi MJ, et al. Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase inmice lacking apolipoprotein E[J]. Circ Res,2004,95(11):1075-1081.
    [50]海春旭.自由基医学[M].西安:第四军医大学出版社,2006:270.
    [51]Bilici M, Efe H, Koroglu MA, et al. Antioxidativ enzyme activities and lipid peroxidation in major depression:alterations by antidepressant treatments[J]. J Affect Disord,2001,64(1):43-51.
    [52]Galecki P, Szemraj J, Bienkiewicz M, et al. Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment[J]. Pharmacol Rep,2009,61(3):436-447.
    [53]Virtanen T, Pihlanto A, Akkanen S, et al. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria[J]. J Appl Microbiol,2007,102 (1):106-115.
    [54]孟和毕力格,周雨霞,张和平等.酸马奶中乳杆菌MG2-1株的抗氧化活性作用研究[J].中国乳品工业,2005,33(9):21-24.
    [55]Fabian E, Elmadfa I. Influence of daily consumption of probiotic and conventional yoghurt on the plasma lipid profile in young healthy women[J]. Ann Nutr Metab,2006,50(4):387-393.
    [56]Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis:a comprehensive review of studies in mice[J]. Cardiovasc Res,2008,179(3):360-376.
    [57]Ohta H, Wada H, Niwa T, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice[J]. Atherosclerosis,2005,180(1):11-17.
    [58]Chew M, Zhou J, Daugherty A, et al. Thalidomide inhibits early atherogenesis in apoE-deficient mice[J]. APMIS Suppl,2003, (109):113-116.
    [59]Pinderski Oslund LJ, Hedrick CC, Olvera T, et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol.1999, 19(12):2847-2853.
    [60]Caligiuri G, Rudling M, Ollivier V, et al.Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice[J]. Mol Med.2003,9(1-2):10-17.
    [61]Namiki M, Kawashima S, Yamashita T, et al.Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice[J].Atherosclerosis,2004,172(1):21-29.
    [62]Abdin AA, Saeid EM.An experimental study on ulcerative colitis as a potential target for probiotic therapy by Lactobacillus acidophilus with or without "olsalazine"[J].J Crohns Colitis,2008,2(4):296-303.
    [63]Pessi T, Siitas Y, Hurme M, et al.Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG[J].Clin Exp Allergy,2000,30 (12):1804-1808.
    [64]Kumar R, Yong QC, Thomas CM. Do multiple nuclear factor kappa B activation mechanisms explain its varied effects in the heart? [J].The Ochsner Journal, 2013,13(1):157-165.
    [65]Siomek A. NF-κB signaling pathway and free radical impact [J].Acta Biochimica Polonica,2012,59(3):323-331.
    [66]Kaltschmidt C, Kaltschmidt B, Henkel T,et al. Selective recognition of the activated form of transcription factor NF-kappa B by a monoclonal antibody[J]. Biol Chem Hoppe Seyler,1995,376(1):9-16.
    [67]Dyson HJ, Komives EA. Role of disorder in IκB-NFκB interaction[J]. IUBMB Life,2012,64(6):499-505.
    [68]Gasparini C, Feldmann M. NF-κB as a target for modulating inflammatory responses [J].Curr Pharm Des,2012,18(35):5735-5745.
    [69]陈瑗,周玫.氧化应激-炎症在动脉粥样硬化发生发展中作用研究的新进展[J].中国动脉硬化杂志,2008,16(10):757-762.
    [70]Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion [J]. J Clin Invest,1996,97 (7): 1715-1722.
    [71]Chen K, Liang N, Luo X, et al. Lactobacillus acidophilus strain suppresses the transcription of pro inflammatory-related factors in human HT-29 cells[J].J Microbiol Biotechnol,2013,23(1):64-68.
    [72]Hegazy SK, El-Bedewy MM. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis[J]. World J Gastroenterol, 2010,16(33):4145-4151.
    [73]Cani PD, Delzenne NM. The gut microbiome as therapeutic target[J]. Pharmacol Ther.2011;130(2):202-212.
    [74]李兰娟.感染微生态研究进展——肠道菌群对机体代谢影响[J].中国微生态学杂志,2009,8(1):1-3.
    [75]金红芝,李堃宝.人肠道微生态系统的研究进展[J].自然杂志,2004,26(2):88-91.
    [76]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J].Proc Natl Acad Sci USA.2004,1 (44):15718-15723.
    [77]Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through amechanism associated with endotoxaemia[J]. Diabetologia,2007,50(11):2374-2483.
    [78]Wu X, Ma C, Han L, et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes[J]. Curr Microbiol,2010,61(1):69-78.
    [79]Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes[J]. Nature,2008,455(7216): 1109-1113.
    [80]Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol,2009,9(5):313-323.
    [81]Guarner F, Malagelada JR. Gut flora in health and disease [J]. Lancet, 2003,361 (9356):512-519.
    [82]Neish AS. Microbes in gastrointestinal health and disease[J]. Gastroenterology,2009,136 (1):65-80.
    [83]Hand T, Belkaid Y. Microbial control of regulatory and effector T cell responses in the gut[J]. Curr Opin Immunol,2010,22(1):63-72.
    [84]Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients[J]. PLoS One,2011,6(1):e16393.doi:10.1371/ journal.pone.0020447.
    [85]Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome[J]. PLoS One,2011,6(5):e20447. doi:10.1371/journal. pone. 0020447.
    [86]Ohigashi S, Sudo K, Kobayashi D, et al. Changes of the Intestinal Microbiota, Short Chain Fatty Acids, and Fecal pH in Patients with Colorectal Cancer[J]. Dig Dis Sci,2013 Jan 11[Epub ahead of print].
    [87]袁杰利,李兵,康白.中国人群肠道微生态失衡与亚健康状况调查[C]。第六届全国儿科微生态学学术会议暨儿科微生态学新进展学习班资料汇编,2008年.
    [88]郭贵海,王崇文.肠道菌群调节剂的研究进展[J].临床内科杂志,2002,19(2):88-90.
    [89]Tomkin GH. Atherosclerosis, diabetes and lipoproteins[J].Expert Rev Cardiovasc Ther,2010,8(7):1015-1029.
    [90]Ferrante AW Jr. Obesity-induced inflammation:a metabolic dialogue in the language of inflammation [J]. J Intern Med,2007,262(4):408-414.
    [91]Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J]. Nat Med,2004,10(4):416-421.
    [92]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol,2010, 11(5):373-384.
    [93]Erridge C. Diet, commensals and the intestine as sources of pathogen-associated molecular patterns in atherosclerosis, type 2 diabetes and non-alcoholic fatty liver disease [J]. Atherosclerosis,2011,216(1):1-6.
    [94]Stepankova R, Tonar Z, Bartova J, et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standardlow cholesterol diet[J].J Atheroscler Thromb,2010,17(8):796-804.
    [95]Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J].Proc Natl Acad Sci USA,2005,102 (31):11070-11075.
    [96]Cani PD, Delzenne NM, Amar J, et al. Role of gut micro flora in the development of obesity and insulin resistance following high-fat diet feeding[J]. Pathol Biol (Paris),2008,56(5):305-309.
    [97]Cavallini DC, Suzuki JY, Abdalla DS, et al. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in ananimal model[J]. Lipids Health Dis,2011,10:126. doi:10.1186/1476-511X-10-126.
    [98]Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J].Cell Host Microbe,2008,3(4):213-223.
    [99]Karlsson C, Ahrne S, Molin G, et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon:a randomized controlled trial[J].Atherosclerosis,2010,208(1):228-233.
    [100]Gill HS, Shu Q, Lin H, et al. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancingprobiotic Lactobac illus rhamnosus strain HN001[J]. Med Microbiol Immunol,2001,190(3):97-104.
    [101]Mangell P, Nejdfors P, Wang M, et al. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability [J]. Dig Dis Sci,2002,47 (3):511-516.
    [102]Goldin BR, Gorbach SL.The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity[J]. Am J Clin Nutr,1984,39(5):756-761.
    [103]Coakley M, Ross RP, Nordgren M, et al. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species[J]. J Appl Microbiol, 2003, 94(1):138-145.
    [104]Vanderhoof JA. Probiotics:future directions[J]. Am J Clin Nutr,2001,73 (6):1152S-1155S.
    [105]Walker WA.Role of nutrients and bacterial colonization in the development of intestinal host defense[J]. J Pediatr Gastroenterol Nutr,2000,30 Suppl 2:S2-7.
    [106]Mattar AF, Teitelbaum DH, Drongowski RA, et al. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model[J]. Pediatr Surg Int,2002,18(7):586-590.
    [107]Liu DY, Li JJ.Effect of hyperoxia on the intestinal IgA secretory compon-ent in neonatal rats and on intestinal epithelial cells in vitro[J]. Braz J Med Biol Res, 2010,43(11):1034-1041.
    [108]Yokomizo A, Moriwaki M. Transepithelial permeability of myricitrin and its degradation by simulated digestion in human intestinal Caco-2cell monolayer[J]. Biosci Biotechnol Biochem,2005,69(9):1774-1776.
    [109]Walker WA. Development of the intestinal mucosal barrier[J]. J Pediatr Gastroenterol Nutr,2002,34 Suppl 1:S33-S39.
    [110]Sturm A, Dignass AU. Epithelial restitution and wound healing in inflammatory bowel disease[J]. World J Gastroenterol,2008,14(3):348-353.
    [111]洪娜,于成功.肠道菌群在炎症性肠病发生中的作用[J].胃肠病学,2011,16(11):692-695.
    [112]牛敏.溃疡性结肠炎患者肠道菌群分布的研究现状[J].微生物学免疫学进展杂志,2012,6(2):68-72.
    [113]苏勇,朱伟云.分子生物学技术在胃肠道微生态中应用研究进展[J].生物技术通报,2006,9(4)73-77.
    [114]朱义芳,赵聪,孙晓滨,等.肠道菌群检测方法学评价及其在肠易激综合征中的应用[J].国际消化病杂志,2011,31(2):78-94.
    [115]吴仲文,韩樱,鲁海峰,等.粪便DNA抽提方法的比较研究[J].中华检验医学杂志,2007,30(1):67-71.
    [1]Dahlof B. Cardiovascular disease risk factors:epidemiology and risk assessment [J]. Am J Cardio 1,2010,105(1 Suppl):3A-9A.
    [2]Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med,2005,352 (16):1685-1695.
    [3]Moreno PR, Falk E, Palacios IF, et al.Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture[J].Circulation,1994,90(2):775-78.
    [4]Choudhury RP, Fisher EA. Molecular imaging in athero sclerosis, thrombosis, and vascular inflammation[J]. ArteriosclerThromb Vasc Biol,2009, (7):983-991.
    [5]Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease[J]. Curr Opin Lipidol,2001,12(4):383-389.
    [6]Corti R, Fuster V, Badimon JJ. Pathogenetic concepts of acute coronary syndromes[J]. J Am Coll Cardiol,2003,41(4 Suppl S):7S-14S.
    [7]Davies MJ, RichardsonPD, WoolfN, et al. Risk of thrombosis in human atherosclerotic plaques:role of extracellular lipid, macrophage, and smooth muscle cell content[J].Br Heart J,1993,69(5):377-381.
    [8]Deguchi JO, Aikawa M, Tung CH, et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo[J]. Circulation, 2006,114(1):55-62.
    [9]Mallat Z, Taleb S, Ait-Oufella H, et al. The role of adaptive T cell immunity in atherosclerosis[J]. J Lipid Res,2009,50(Suppl):S364-369.
    [10]Gupta S, Pablo AM, Jiang XC, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice[J]. J Clin Invest,1997,99(11):2752-2761.
    [11]Whitman SC, Ravisankar P, Elam H, et al. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/- mice[J]. Am J Pathol,2000,157 (6):1819-1824.
    [12]King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/-mice [J].Arterioscler Thromb Vasc Biol,2002,22(3):456-461.
    [13]Lewis MJ, Malik TH, Ehrenstein MR, et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice[J]. Circulation,2009,120(5):417-426.
    [14]Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis[J].J Clin Invest,2004,114(3):427-437.
    [15]Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis[J].J Exp Med,2008,205(2):339-346.
    [16]Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis[J]. Trends Cardiovasc Med,2007,17(4):113-118.
    [17]Miossec P, Korn T, Kuchroo VK.Interleukin-17 and type 17 helper T cells [J]. N Engl J Med,2009,361(9):888-898.
    [18]Taleb S, Tedgui A, Mallat Z. Adaptive T cell immune responses and atherogenesis[J].Curr Opin Pharmacol,2010,10(2):197-202.
    [19]Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2008,28(5):812-819.
    [20]Clarke MC, Littlewood TD, Figg N, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration [J]. Circ Res,2008,102(12):1529-1538.
    [21]Yasojima K, Schwab C, McGeer EG, et al. Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques[J].Arterioscler Thromb Vase Biol,2001,21(7):1214-1219.
    [22]Verdeguer F, Castro C, Kubicek M, et al. Complement regulation in murine and human hypercholesterolemia and role in the control of macrophage and smooth muscle cell proliferation [J]. Cardiovasc Res,2007,76(2):340-350.
    [23]Niculescu F, Rus H. The role of complement activation in atherosclerosis[J]. Immunol Res,2004,30(1):73-80.
    [24]Torzewski J, Torzewski M, Bowyer DE, et al. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries[J]. Arterioscler Thromb Vase Biol, 1998,18(9):1386-1392.
    [25]Saadi S, Holzknecht RA, Patte CP, et al. Endothelial cell activation by pore-forming structures:pivotal role for interleukin-1 alpha[J]. Circulation,2000, 101(15):1867-1873.
    [26]Wu G, Hu W, Shahsafaei A, et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex[J].Circ Res,2009,104(4):550-558.
    [27]Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells[J].J Exp Med,1994,179(3):985-992.
    [28]Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells:role of mitogen activated proteinkinase and phosphatidylinositol 3-kinase[J].Atherosclerosis,1999,142(1):47-56.
    [29]Sakuma M, Morooka T, Wang Y, et al. The intrinsic complement regulator decay-accelerating factor modulates the biological response to vascular injury [J].Arterioscler Thromb Vase Biol,2010,30(6):1196-1202.
    [30]Lai CL, Ji YR, Liu XH, et al. Relationship between coronary atherosclerosis plaque characteristics and high sensitivity C-reactive proteins,interleukin-6[J]. Chin Med J (Engl),2011,124(16):2452-2456.
    [31]Danesh J, Kaptoge S, Mann AG, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease:two new prospective studies and a systematic review[J]. PLoS Med,2008,5(4):e78
    [32]Huber SA, Sakkinen P, Conze D, et al. Interleukin-6 exacerbates early atherosclerosis in mice[J].Arterioscler Thromb Vasc Biol,1999,19(10):2364-2367.
    [33]Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor anTGonist [J].Int Rev Immunol,1998,16(5-6):457-499.
    [34]Kamari Y, Shaish A, Shemesh S, et al. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-la[J].Biochem Biophys Res Commun,2011,405 (2): 197-203.
    [35]Bhaskar V, Yin J, Mirza AM, et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice[J].Atherosclerosis.2011,216 (2):313-320.
    [36]Campbell LA,Nosaka T, Rosenfeld ME, et al. Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice[J]. Infect Immun.2005,73(5):3164-3165.
    [37]Branen L, Hovgaard L, Nitulescu M, et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice[J]. Arterioscler Thromb Vasc Biol.2004,24(11):2137-2142.
    [38]Kablak-Ziembicka A, Przewlocki T, Stepien E, et al. Relationship between carotid intima-media thickness, cytokines, atherosclerosis extent and a two-year cardiovascular risk in patients with arteriosclerosis[J].Kardiol Pol.2011, 69(10):1024-1031.
    [39]Ohta H, Wada H, Niwa T, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice[J]. Atherosclerosis,2005,180(1):11-17.
    [40]Wakkach A, Cottrez F, Groux H. Can interleukin-10 be used as a true immunoregulatory cytokine? [J].Eur Cytokine Netw,2000,11 (2):153-160.
    [41]Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall[J]. Circ Res,2001,88(9):877-887.
    [42]Han X, Kitamoto S, Wang H, et al. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice[J]. FASEB J,2010, 24(8):2869-2880.
    [43]Caligiuri G, Rudling M, Ollivier V, et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice[J]. Mol Med,2003,9(1-2):10-17.
    [44]Kablak-Ziembicka A, Przewlocki T, Stepien E, et al. Relationship between carotid intima-media thickness, cytokines, atherosclerosis extent and a two- year cardiovascular risk in patients with arteriosclerosis[J]. Kardiol Pol,2011,69 (10):1024-1031.
    [45]Nakashima Y, Raines EW, Plump AS, et al.Up regulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse[J]. Arterioscler Thromb Vasc Biol,199818(5):842-851.
    [46]Hulthe J, Wikstrand J, Mattsson-Hulten L, et al.Circulating ICAM-1 (intercellular cell-adhesion molecule 1) is associated with early sTGes of atherosclerosis development and with inflammatory cytokines in healthy 58-year-old men:the atherosclerosis and insulin resistance (AIR) study[J].Clin Sci (Lond), 2002,103(2):123-129.
    [47]Yu G, Rux AH, Ma P, et al.Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP and NF-kappaB-dependent manner[J].Blood,2005,105(9):3545-3551.
    [48]Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J].J Clin Invest,1994,94(6):2493-2503.
    [49]Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes[J]. J Am Coll Cardiol,1998,32(2):368-372.
    [50]Heo SH, Cho CH, Kim HO, et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease:involvement of matrixmetalloproteinases 2 and 9[J]. J Clin Neurol,2011,7(2):69-76.
    [51]Yamada S, Wang KY, Tanimoto A, et al. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits[J].Am J Pathol.2008,172 (5):1419-1429.
    [52]Kulach A, Dabek J, Glogowska-Ligus J, et al. Effects of standard treatment on the dynamics of matrix metalloproteinases gene expression in patients withacute coronary syndromes[J].Pharmacol Rep,2010,62(6):1108-1116.
    [53]Gonzalez-Quesada C, Frangogiannis NG. Monocyte chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes[J].Curr Atheroscler Rep,2009,11(2):131-138.
    [54]de Lemos JA, Morrow DA, Blazing MA, et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes:results from the A to Z trial[J]. J Am Coll Cardiol,2007,50(22):2117-2124.
    [55]Piemonti L, Calori G, Lattuada G, et al. Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals[J]. Diabetes Care, 2009,32(11):2105-2110.
    [56]Yeh ET. CRP as a mediator of disease[J]. Circulation,2004,109(6):11-14.
    [57]Ridker PM, Danielson E, Fonseca FA, et al.Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin:a prospective study of the JUPITER trial[J]. Lancet,2009, 373(9670):1175-1182.
    [58]Ikeda U, Takahashi M, Shimada K.C-reactive protein directly inhibits nitric oxide production by cytokine-stimulated vascular smooth muscle cells[J].J Cardiovasc Pharmacol,2003,42(5):607-611.
    [59]Venugopal SK, Devaraj S, Jialal I. C-reactive protein decreases prostacyclin release from human aortic endothelial cells[J]. Circulation, 2003,108(14):1676-1678.
    [60]Kopff B, Jegier A. Adipokines:adiponectin, leptin, resistin and coronary heart disease risk[J]. Przegl Lek,2005,62 (Suppl 3):69-72.
    [61]Kim OY, Koh SJ, Jang Y, et al. Plasma adiponectin is related to other cardiovascular risk factors in nondiabetic Korean men with CAD,independent of adiposity and cigarette smoking:cross-sectional analysis[J]. Clin Chim Acta,2006, 370(1-2):63-71.
    [62]Li FY, Cheng KK, Lam KS, et al. Cross-talk between adipose tissue and vasculature:role of adiponectin[J]. Acta Physiol (Oxf),2011,203(1):167-180.
    [63]Vaiopoulos AG, Marinou K, Christodoulides C, et al. The role of adiponectin in human vascular physiology[J]. Int J Cardiol,2012,155(2):188-193.
    [64]Montecucco F, Mach F. Update on statin-mediated anti-inflammatory activities in atherosclerosis[J].Semin Immunopathol,2009,31(1):127-142.
    [65]苏江利,郭春杰,刘力峰.动脉粥样硬化药物治疗进展[J].山东医药,2006,46(5):77-78.
    [66]Jain MK, Ridker PM. Anti-inflammatory effects of statins:clinical evidence and basic mechanisms[J]. Nat Rev Drug Discov,2005,4(12):977-987.
    [67]Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia[J].N Engl J Med,2008,358 (14):1431-1443.
    [68]Mason RP, Walter MF, Day CA, et al. Intermolecular differences of 3-hydroxyl-3-methylglutaryl coenzyme a reductase inhibitors contribute to distinct pharmacologic and pleiotropic actions[J].Am J Cardiol,2005,96(5A):11F-23F.
    [69]Kinlay S. Low-density lipoprotein-dependent and independent effects of cholesterol-lowering therapies on C-reactiveprotein:a meta-analysis [J].J Am Coll Cardiol,2007,49(20):2003-2009.
    [70]Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators[J].Circulation,1999,100(3):230-235.
    [71]Keating GM. Fenofibrate:a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus[J]. Am J Cardiovasc Drugs,2011,11(4):227-247.
    [72]Ye J, Kiage JN,Arnett DK, et al. Short-term effect of fenofibrate on C-reactive protein:A meta-analysis of randomized controlled trials[J].Diabetol Metab Syndr.2011,3:24.doi:10.1186/1758-5996-3-24.
    [73]Belfort R, Berria R, Cornell J, et al. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism inpatients with the metabolic syndrome[J].J Clin Endocrinol Metab,2010,95 (2): 829-836.
    [74]Ballantyne CM, Davidson MH, Setze CM, et al. Effects of combination therapy with rosuvastatin and fenofibric acid in patients with mixed dyslipidemia and high-sensitivity C-reactive protein (≥2 mg/L) [J]. J Clin Lipidol,2011 5(5): 401-407.
    [75]Imanishi T, Kuroi A, Ikejima H, et al. Effects of angiotensin converting enzyme inhibitor and angiotensin II receptor anTGonist combination on nitricoxide bioavailability and atherosclerotic change in Watanabe heritable hyperlipidemic rabbits[J]. Hypertens Res,2008,31(3):575-584.
    [76]Fukuda D, Enomoto S, Nagai R, et al. Inhibition of renin-angiotensin system attenuates periadventitial inflammation and reduces atherosclerotic lesion formation [J].Biomed Pharmacother,2009,63(10):754-761.
    [77]Verma S, Mamdani MM, Al-Omran M, et al. Angiotensin receptor blockers vs. angiotensin converting enzyme inhibitors and acute coronary syndrome outcomes in elderly patients:a population-based cohort study (UMPIRE study results) [J]. J Am Soc Hypertens,2007, 1(4);286-294.
    [78]Hong C, Tontonoz P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors[J].Curr Opin Genet Dev,2008,18(5):461-467.
    [79]Dai X, Ou X, Hao X, et al. Effect of T0901317 on hepatic proinflammatory gene expression in apoE-/- mice fed a high-fat/high-cholesterol diet[J]. Inflammation,2007,30(3-4):105-117.
    [80]Minick CR, Fabricant CG, Fabricant J, et al. Atheroarteriosclerosis induced by infection with a herpesvirus [J].Am J Pathol,1979,96(3):673-706.
    [81]Damy SB, Higuchi ML, Timenetsky J, et al. Mycoplasma pneumoniae and/or Chlamydophila pneumoniae inoculation causing different aggravations in cholesterol- induced atherosclerosis in apoE KO male mice [J]. BMC Microbiol, 2009,9:194. doi:10.1186/1471-2180-9-194.
    [82]Petyaev IM, Zigangirova NA, Petyaev AM, et al. Isolation of Chlamydia pneumoniae from serum samples of the patients with acute coronary syndrome[J]. Int J Med Sci,2010,7(4):181-190.
    [83]Dai DF, Lin JW, Kao JH, et al. The effects of metabolic syndrome versus infectious burden on inflammation, severity of coronary atherosclerosis, and major adverse cardiovascular events[J].J Clin Endocrinol Metab,2007,92(7):2532-2537.
    [84]Szklo M, Ding J, Tsai MY, et al. Individual pathogens, pathogen burden and markers of subclinical atherosclerosis:the Multi-Ethnic Study of Atherosclerosis [J]. J Cardiovasc Med (Hagerstown),2009,10(10):747-751.
    [85]Grau AJ, Fischer B, Barth C, et al. Influenza vaccination is associated with a reduced risk of stroke[J]. Stroke,2005,36(7):1501-1506.
    [86]Davis MM, Taubert K, Benin AL, et al. Influenza vaccination as secondary prevention for cardiovascular disease:a science advisory from the American Heart Association/American College of Cardiology[J]. Circulation,2006,114 (14):1549-1553.
    [87]Grayston JT. Antibiotic treatment of atherosclerotic cardiovascular disease[J].Circulation,2003,107(9):1228-1230.
    [88]Cannon CP, Braunwald E, McCabe CH, et al. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome [J].N Engl J Med,2005,352 (16):1646-1654.
    [89]吴宗贵.动脉粥样硬化:新发现、新策略[J].上海医学,2006,29(9):601-602.
    [90]Saini R, Saini S, Sharma S. Potential of probiotics in controlling cardiovascular diseases [J]. J Cardiovasc Dis Res,2010,1(4):213-214.
    [91]Marteau P, Shanahan F. Basic aspects and pharmacology of probiotics:an overview of pharmacokinetics, mechanisms of action and side-effects[J].Best Pract Res Clin Gastroenterol,2003,17(5):725-740.
    [92]Snydman DR. The safety of probiotics[J]. Clin Infect Dis,2008, Suppl 2:S104-11; discussion S144-S151.doi:10.1086/523331.
    [93]Wohlgemuth S, Loh G, Blaut M. Recent developments and perspectives in the investigation of probiotic effects[J]. Int J Med Microbiol,2010,300(1):3-10.
    [94]Turpin W, Humblot C, Thomas M, et al. Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms[J].Int J Food Microbiol, 2010,143(3):87-102.
    [95]Cavallini DC, Bedani R, Bomdespacho LQ, et al. Effects of probiotic bacteria, isoflavones and simvastatin on lipid profile and atherosclerosis in cholesterol- fed rabbits:a randomized double-blind study [J]. Lipids Health Dis, 2009,8:1.doi:10.1186/1476-511X-8-1.
    [96]Uchida M, Ishii I, Inoue C, et al. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet [J]. J Atheroscler Thromb,2010,17(9):980-988.
    [97]Tsai TY, Chu LH, Lee CL, et al. Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordicacharantia [J].J Agric Food Chem,2009,57(5):2065-2071.
    [98]唐志红,夏敏,朱惠莲,等.乳酸杆菌对ApoE-/-小鼠动脉粥样斑块形成抑制作用.中国公共卫生,2009,25(11):1352-1354.
    [99]Naruszewicz M, Johansson ML, Zapolska-Downar D, et al. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers[J].Am J Clin Nutr,2002,76(6):1249-1255.
    [100]Portugal LR, Goncalves JL, Fernandes LR, et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis inapolipoprotein E knock-out mice[J].Braz J Med Biol Res,2006,39(5):629-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700