鸡源分离菌超广谱β-内酰胺酶基因分型和整合子分子特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着抗菌药长期广泛使用,肠杆菌科鸡源分离菌对药物的耐药率逐年升高,且呈多重耐药趋势。导致细菌获得多重耐药的因素有很多,其中超广谱β-内酰胺酶(extended spectrumβ- lactamases,ESBLs)和整合子被证实常参与细菌多重耐药的形成。为此,做了以下研究:
     (一)利用VITEK-32全自动细菌鉴定仪对从河南省14个地市不同养鸡场分离的64株鸡源分离菌进行鉴定,获得51株鸡源大肠杆菌、8株鸡源沙门菌、4株鸡源奇异变形杆菌和1株鸡源鲍曼不动杆菌,其中鸡源鲍曼不动杆菌为国内外首次分离。采用微量稀释法测定64株鸡分离菌对β-内酰胺类、氨基糖苷类、四环素类、氯霉素类、氟喹诺酮类和磺胺等六类共24个药物或组合的多重耐药表型。结果发现58.8%~74.5%的鸡源大肠杆菌对三代头孢耐药,96%(49/51)为四重及以上耐药菌株,92.2%(47/51)呈五重及以上耐药,82.4%(42/51)呈六重及以上耐药。8株鸡源沙门菌的多重耐药谱均不低于四重,且其中两株菌呈现出同时耐12重药物。其他五株分离菌的耐药谱均低于3重(其中Dpro为五重耐药除外),且均对三代头孢敏感。
     (二)ESBL检测结果表明54.7%(35/64)受试菌为产ESBL菌。利用PCR法检测64株受试菌携带β-内酰胺酶基因情况,结果发现38株携带TEM基因,包括TEM-1亚型37株,TEM-57亚型1株,其中TEM-57亚型为首次在鸡源分离菌中检出。19株携带CTX-M基因,包括14株CTX-M-65,1株CTX-M-14,3株CTX-M-24和1株CTX-M-90,其中CTX-M-90为首次发现并命名的一个新基因亚型,CTX-M-65亚型为首次在动物源分离菌中检出。由此得出CTX-M基因突变过程为CTX-M-14→CTX-M-24或CTX-M-90→CTX-M-65。21株携带OXA基因,包括11株OXA-1,2株OXA-2和16株OXA-10。说明TEM-1是目前河南省养鸡场鸡源分离菌中的主要基因亚型,其次为OXA-10、CTX-M-65和OXA-1。
     (三)分析产ESBL菌和非产ESBL菌携带β-内酰胺酶基因情况和多重耐药谱。结果发现74.3%产ESBL菌(26/35)同时携带两种以上β-内酰胺酶基因,而仅6.9% (2/29)非产ESBL菌同时检出2种β-内酰胺酶基因。在35株产ESBL菌中,100%耐氨苄西林,对三代头孢的耐药率为77.1%~91.4%,对三代头孢/酶抑制剂联用的耐药率为0~37.1%,同时,产ESBL菌的多重耐药谱均不低于六重,其中94.3%(33/35)为七重及以上耐药菌株。而非产ESBL菌对β-内酰胺类的耐药率均低于45%(氨苄西林除外),44.8% (13/29)的多重耐药谱不低于6重,仅20.7%(6/29)不低于七重。比较产酶菌ESBL基因型与多重耐药谱关系后发现47.4%(9/19)产CTX-M-ESBL菌多重耐药谱不低于十重,而在16株非产CTX-M-ESBL菌中,仅18.8%(3/16)不低于十重。同时还发现在15株产CTX-M-65或CTX-M-90菌株中,60%(9/15)多重耐药谱超过10重,20%(3/15)为12重;而4株携带CTX-M-14或CTX-M-24菌株多重耐药谱均低于10重。即携带CTX-M-65或CTX-M-90的菌株对受试药物耐药性较携带CTX-M-14或CTX-M-24菌株严重,提示CTX-M基因亚型的突变趋势与细菌耐药表型扩大延伸方向基本一致。
     (四)采用1/2 MIC头孢曲松或头孢噻肟诱导培养5株非产ESBL鸡源大肠杆菌和O78。结果发现培养至10代时,头孢曲松或头孢噻肟的MIC值升高了8~64倍;培养至20代时,两药的MIC值又升高了2~16倍,其中头孢噻肟诱导的O78已对头孢噻肟耐药;培养至30代时,诱导菌对头孢曲松、头孢噻肟、庆大霉素、阿米卡星、多西环素、氟苯尼考和恩诺沙星均耐药。说明在单一抗菌药定向选择性压力下,细菌表达多重耐药表型的速度是较快的。
     (五)经PCR检测及测序分析,未诱导前O78为TEM-1型,头孢噻肟诱导至20代时,TEM序列发生一处碱基变异(24T→C);诱导至30代时,TEM-1序列发生两处碱基变异(24T→C,40C→T),其中后一处碱基突变引起14Pro→Ser,即TEM-1基因可直接突变为一个新基因亚型,说明药物定向诱导对菌株TEM基因变异起了重要作用。未诱导前,受试菌均不携带CTX-M基因,诱导至20代时,头孢噻肟诱导O78已突变为CTX-M-14-ESBL菌株;诱导至30代时,所有诱导菌株均成为CTX-M-ESBL(CTX-M-90和CTX-M-65)菌株,说明在三代头孢定向选择性压力下,CTX-M型基因具有较快变异速度。分析各CTX-M基因序列推断出CTX-M基因突变过程:非产ESBL菌首先获得CTX-M-14基因,接着该基因发生氨基酸点突变成为CTX-M-90,然后CTX-M-90基因进一步积累氨基酸点突变,菌株获得CTX-M-65基因,随着诱导的深入,CTX-M-65基因也开始出现碱基突变,但由于该突变仅为沉默突变,故暂时未有新基因亚型产生。此外,本诱导试验获得的CTX-M基因亚型均在前期鸡源分离菌检测时有检出,说明本诱导试验的推断出的CTX-M基因突变过程可在一定程度上反映出临床菌实际的突变过程,诱导药物与临床菌实际接触的药物相似。
     (六)利用PCR技术检测51株鸡源大肠杆菌中整合子流行情况。结果表明86.3%(44/51)检出Ι类整合子,3.9%(2/51)检出Ⅱ类整合子,未检出Ⅲ类整合子和非典型Ι类整合子。基因盒插入区片段经克隆、测序和比对后发现在44株Ι类整合子中耐药基因盒组合类型包括sat(100%)、dfrA1/aadA1(45.4%)、dfrA17/aadA5(22.5%)、dfrA1/sat/aadA2(6.8%)和约4800 bp的未知基因盒(27.3%),其中dfrA1/sat/aadA2基因组合为国内外首次报道。进一步采用巢式PCR和PCR定位技术检出4800 bp未知基因盒内含有blaCTX-M基因,且该基因位于基因盒区的中下游。两株Ⅱ类整合子阳性菌中检出的耐药基因盒组合均为dfrA1/sat1/aadA1。
     (七)分析鸡源大肠杆菌整合子与ESBL的关系后发现93.6%产ESBL鸡源大肠杆菌(29/31)携带整合子,而在20株非产ESBL鸡源大肠杆菌中,此数值为75%,两组之间的差异具有统计学意义,说明整合子在产ESBL鸡源大肠杆菌中分布更为集中。在15株携带整合子的非产ESBL菌中,80%菌株(12/15)携带一种整合子,且整合子的可变区仅整合了一种耐药基因;而对29株携带整合子的产ESBL菌来说,有89.6%菌株(26/29)携带2~4种整合子。
ABSTRACT With the widespread use of antimicrobial agents for prophylaxis and therapy of infected animals, the wild dissemination of antimicrobial resistance, especially multidrug-resistance (MDR), is increasing among chicken Enterobacteriaceae in the worldwide. There are many ways for bacteria to obtain multidrug-resistance, example for extended-spectrumβ-lactamases (ESBLs) and integrons. Therefore, the present study was delineated to identify and characterize.
     1. Sixty-four chicken Enterobacteriaceae isolates were identified with the Vitek-32 automatic microbe system, which were isolated from different chicken farms, Henan province. All isolates were as follows: Escherichia coli (n=51), Salmonella (n=8), Proteus mirabilis (n=4), and Acinetobacter baumannii (n=1). To our knowledge, Acinetobacter baumannii was isolated firstly from chickens. The MDR profiles of 64 clinical isolates were determined at the same time using the CLSI microbroth dilution method. The antimicrobial agents containedβ-lactam antibiotics, aminoglycosides, tetracyclines, amphenicols, fluoroquinolones, and sulfanilamide. The results demonstrated that 58.8%~74.5% E.coli showed resistance to third generation cephalosporins, 96% (49/51) were resistant to more than four antimicrobial agents, 92.2% were more than five, and 82.4% were more than six. The MDR profiles of 8 Salmonella isolates were more than four. The other isolates were sensitive to third generation cephalosporins, and their MDR profiles were not more than three.
     2. The ESBLs detection showed that 54.7% (35/64) isolates were ESBL-producing bacteria. With the PCR, BlaTEM was detected in 38 isolates, blaCTX-M was detected in 19 isolates and 21 isolates harboured blaOXA among 64 strains. Except for one isolate that had TEM-57, which was first detected in chicken E.coli, most of blaTEM isolates possessed TEM-1. The blaCTX-M isolates encoding CTX-M-65, CTX-M-14, CTX-M-24, and CTX-M-90 were 14, 1, 3, and 1 among 19 CTX-M-ESBL isolates, respectively. The CTX-M-90 gene was the new subtype in all ESBL genotypes. Based on the amino acid sequences of four CTX-M subgenes, we postulated possible evolution scheme was CTX-M-14→CTX-M-24 or CTX-M-90→CTX-M-65. The blaOXA contained OXA-1 (11 strains), OXA-2 (2 strains), and OXA-10 (16 strains). These findings indicated that TEM-1 was the most frequently encountered blaTEM allele in chicken clinical bacterial populations, Henan. Then the more commonβ-lactamase alleles were OXA-10, CTX-M-65, and OXA-1.
     3. Twenty-six out of 35 ESBL-producing isolates (74.3%) carried more than two bla genes, whereas, only 6.9% (2/29) non-ESBL-producing isolates harboured two bla genes. The resistant rates of 35 ESBL-producing isolates to ampicillin, third generation cephalosporins, and third generation cephalosporins/beta-lactamase inhibitors were 100%, 77.1%~91.4%, and 0~37.1%. The MDR profiles of those isolates were more than six, and 94.3% (33/35) were more than seven. But, the resistant rates of 29 non-ESBL-producing isolates toβ-lactam antibiotics were lower than 45% (except ampicillin), only 44.8% (13/29) owned more than six MDR profiles, and 20.7%(6/29)were more than seven. The MDR profiles of 47.4% CTX-M-ESBL isolates (9/19) were not less than ten, yet that was only 18.8% (3/16) among non-CTX-M-ESBL isolates. At the same time, the results showed that 60% isolates harbouring blaCTX-M-65 or blaCTX-M-90 had more than ten MDR profiles, 20% (3/15) had more than twelve, but the other blaCTX-M isolates demonstrated less than ten. The resulte suggested that the CTX-M-65 and CTX-M-90 subgroups were more prone to exhibit the MDR phenotypes than the -14 and CTX-M-24, indicating that there has identity of the blaCTX-M evolutionary tendency and the MDR phenotypes extended trend.
     4. Five non-ESBL chicken E.coli and O78 strains were cultivating in broth, which contained ceftriaxone or cefotaxime with 1/2MIC subinhibitory concentrations. When the strains were cultivated to the tenth generation, the MICs of two drugs increased 8~64 times. The MICs increased 8~64 times again and the O78 strain induced by cefotaxime expressed resistance to cefotaxime when cultivated to the twentieth generation. The strains passaged to the thirtieth generation demonstrated resistance to ceftriaxone, cefotaxime, gentamicins, amikacin, doxycycline, florfenicol, and enrofloxacin, indicating that the speed of bacteria obtaining MDR genes and presenting MDR phenotypes was fast with antimicrobial agents selective pressures.
     5. With PCR and sequencing analysis, O78 strain harboured TEM-1 When the strain was induced to the 20th passage with cefotaxime, the nucleotide sequence occurred one base mutation (24T→C). It had two base mutations (24T→C, 40C→T) at the 30th generation, and the latter mutation led to a new amino acid substitution (14Pro→Ser), that is, TEM-1 subtype evolved to a new subtype. This result illustrated that the antimicrobial agents selective pressures play an important role in blaTEM evolations. All strains did not carry any blaCTX-M before inductions. The O78 strain had changed to a CTX-M-14- ESBL strain When it was cultured to the twentieth generation with cefotaxime. At the thirtieth generation, All the strains had evolved to CTX-M-ESBL strains (CTX-M-90 or CTX-M-65). This finding demonstrated that the variable speed of blaCTX-M was higher than that of blaTEM. We could mainly concluded the evolutionary process of blaCTX-M by analysis the different CTX-M amino acid sequences. With the drugs selective pressures, the non-ESBL strains firstly obtained blaCTX-M-14, then blaCTX-M-90, and then blaCTX-M-65. It is worth noting that CTX-M subtypes obtained from inductive trials are detected simultaneously in chicken isolates, which suggested that the blaCTX-M evolutionary process could partially reflect that of isolates.
     6. Forty-four of the 51 chicken E.coli (86.3%) detected class 1 integron and 3.9% (2/51) contained class 2 integron. Five gene arrangements have been detected among class 1 integrons, containing sat (100%), dfrA1/aadA1 (45.4%), dfrA17/aadA5 (22.5%), dfrA1/sat/aadA2 (6.8%), and 4800 bp unknown. cassette array. To our knowledge, dfrA1/sat/aadA2 was a novel gene cassette array. blaCTX-M was detected in 4800 bp unknown cassette array and located the downstream by nested PCR and PCR mapping. Class 2 integrons contained the one array gene cassette of dfrA1/sat1/aadA1.
     7. The results showed that 93.6% ESBL-producing chicken E.coli (29/31) carried integrons, but the value was 75% among non-ESBL strains. The difference between two groups has a statistical significance, which illustrated that the ESBL-producing E.coli are more prone to harbour integrons. Among 15 non-ESBL strains with integrons, 90% isolates (12/15) carried only an integron, and the variable region only integrated one resistant gene cassette. But 89.6% ESBL strains with integrons (26/29) contained 2~4 integrons.
引文
[1]朱力军.动物大肠杆菌耐药性的变化趋势[J].中国兽药杂志, 2001, 35(2): 16-18.
    [2]徐小艳,王国相,印继华,等. 1975~2002年大肠杆菌耐药性变化情况调查[J].畜牧与兽医, 2003, 35(3): 16-17.
    [3] Yang H C, Chen S, White D G, et al. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China [J]. J Clin Microbiol, 2004, 42(8): 3483-3489.
    [4]刘栓江,杨汉春,王建舫,等.鸡源大肠杆菌的耐药性监测[J].中国兽医杂志, 2004, 40(6): 48-49.
    [5] Lei L C, Zheng D, Han W Y, et al. Antibiotic sensitivity detection and analysis of Escherichia coli isolated clinically in China [J].中国兽医学报, 2005, 25(5): 470-473.
    [6]刘聚祥,李宏娟,李占雷,等.我国部分地区鸡致病性大肠杆菌的耐药性检测与分析[J].河北农业大学学报, 2007, 30(5): 94-98.
    [7]白静,王宇.河南省鸡致病性大肠杆菌血清型、耐药性的研究[J].河南农业科学, 2007, 10: 105-107.
    [8]田勇,郑雪花,张建军,等.鸡源大肠埃希氏菌多药耐药性的监测与分析[J].中国兽医杂志, 2008, 44(1): 18-20.
    [9] Guerra B, Junker E, Schroeter A, et al. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry [J]. J Antimicrob Chemother, 2003, 52(3): 489-492.
    [10] Zhao S, Maurer J J, Hubert S, et al. Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates [J]. Vet Microbiol, 2005, 107(3-4): 215-224.
    [11] Kim T E, Jeong Y W, Cho S H, et al.Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates [J]. J Clin Microbiol, 2007, 45(10): 3309-3315.
    [12] Borges W, Walmsley A. The structure and function of drug pumps [J]. Trends Microbiol, 2001, 9(2): 71-79.
    [13] Sehiya H, Mima T, Morita T. et al. Functional cloning and characterization of a multidrug efflux pump, mexHI-opmD, f rom a Pseudomonas aeruginosa mutant [J]. Antimicrob Agents Chemother, 2003, 47(9): 2990-2992.
    [14] Hasdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria [J]. Microbiol Bul, 2007, 41(2): 309-327.
    [15] Yang S, Clayton S R, Zechiedrich E L. Relative contributions of the AcrAB, MdfA and NorE efflux pumps toquinolone resistance in Escherichia coli [J]. J Antimicrob Chemother, 2003, 51 (3):545-556.
    [16] Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export [J]. Nature, 2000, 405 (6789): 914.
    [17] Murakami S, Nakashima R, Yamashita E, et al. Crystal structure of bacterial multidrug efflux transporter AcrB [J]. Nature, 2002, 419 (6907): 587.
    [18] Yu E W, McDermott G, Zgurskaya H I, et al. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump [J]. Science, 2003, 300 (5621): 976.
    [19] Touze T, Eswaran J, Bokma E. Interactions underlying as sembly of the Escherichia coli AcrAB-TolC multidrug efflux system [J]. Mol Microbiol, 2004, 53(2): 697-706.
    [20] Murakami S, Nakashima R, Yamashita E, et al. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism [J]. Nature, 2006, 443 (7108): 173.
    [21] Seeger M A, Schiefner A, Eicher T, et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism [J]. Science, 2006, 313 (5791): 1295.
    [22] Schuldiner S. Structural biology: the ins and outs of drug transport [J]. Nature, 2006, 443 (7108): 156.
    [23]李显志,凌保东. 2006年细菌对抗菌药物耐药机制研究进展回顾[J].中国抗生素杂志, 2007, 32(4): 193-202.
    [24]张小林,汪复,朱德妹.多重耐药大肠杆菌中的主动外排机制[J].中华传染病杂志, 1999, 17(2): 85-87.
    [25] Piddock L J V. Multidrug-resistance efflux pumps not just for resistance [J]. Nat Rev Microbiol, 2006, 4(8): 629.
    [26] Nikaido H. Porins and specific diffusion channels in bacterial outer membrane [J].J Biol Chem, 1994, 269(6): 3905-3908.
    [27] Nikaido H. Prevention of drug access to bacterial targets:permeability barriers and active efflux [J]. Science, 1994, 264(5157): 382-388.
    [28]张小林,汪复,朱德妹.多重耐药性大肠杆菌的外膜屏障机制[J].中华传染病杂志, 1998, 16(4): 195-196.
    [29]Costerton J W, Stewart P S, Greenberg E P, et al. Bacterial biofilms: a common cause of persistent infections [J]. Science, 1999, 284(5418): 1318-1322.
    [30] Costerton J W. Introduction to biofilm [J]. 1nt J Antimicrob Agents, 1999, 11(3-4): 217-221.
    [31]贾艳华,李凤娟,刘建华,等.鸡源大肠杆菌生物被膜的耐药性分析[J].华北农学报, 2008, 23(2) : 191-197.
    [32] O’Connell H A, Kottkamp G S, Eppelbaum J L, et al. Influences of biofilm structure and antibiotic resistance mechanisms on indirect pathogenicity in a model polymicrobial biofilm [J]. Appl Environ Microbiol, 2006, 72(7): 5013-5019.
    [33] Stewart P S, Costerton J W. Antibiotic resistance of bacteria in biofilms [J]. Lancet, 2001,358(9276): 135-138.
    [34] Lewis K. Riddle of biofilm resistance [J]. Antimicrob Agents Chemother, 2001, 45(4): 999-1007.
    [35] Mah T F C, O’Toole G A, Mechanisms of biofilm resistance to antimicrobial agents [J]. Trends Microbiol, 2001, 9(1): 34-39.
    [36] Bagge N, Ciofu O, Skovgaard L T, et al. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomalβ-lactamase [J]. APMIS, 2000, 108(9): 589-600.
    [37]王睿,裴斐,柴栋,等.抗藻酸盐血清与加替沙星联合对型铜绿假单胞菌生物被膜形态的影响[J].中国医学杂志, 2002, 82(18): 1276-1278.
    [38] Anthony W S. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? [J]. Adv Drug Deliv Rev, 2005, 57(10): 1539-1550.
    [39] Grobe K J, Zahller J, Stewart P S. Role of dose concentration in biocide efficacy against Pseudomonas aerginosa biofilms [J]. J Ind Microbiol Biotechnol, 2002, 29(1): 10-15.
    [40] Ito A, Taniuchi A, May T, et al. Increased antibiotic resistance of Escherichia coli in mature biofilms [J]. Appl Environ Microbiol, 2009, 75(12): 4093-100.
    [41] Borriello G, Werner E, Roe F, et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa biofilms [J]. Antimicrob Agents Chemother, 2004, 48(7): 2659-2664.
    [42] Waters V L. Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance [J]. Fiontiers in Bioscience, 1999, 4(5): 433-456.
    [43]黄瑞,秦爱兰,闻玉梅.耐药质粒pRST98在不同种属肠道杆菌间的接合及表达[J].中华微生物学和免疫学杂志, 2000, 20(4): 323-326.
    [44] Bonnet R. Growing group of extended-spectrumβ-lactamases: the CTX-M enzymes [J]. Antimicrob Agents Chemother, 2004, 48(1): 1-14.
    [45]方晔,李向阳,杨锦红,等.亚抑菌浓度头孢西丁对耐药质粒接合转移的影响[J].中国微生态学杂志, 2008, 20(3): 243-245.
    [46] Stokes H W, Tomaras C, Parsons Y, et al. The partial 3′-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin [J]. Plasmid, 1993, 30 (1): 39-50.
    [47] Toleman M A, Bennett P M, Walsh T R. ISCR elements: novel gene-capturing systems of the 21st century? [J]. Microbiol Mol Biol Rev, 2006, 70 (2): 296-316.
    [48] Quiroga M P, Andres P, Petroni A, et al. Complex class 1 integrons with diverse variable regions, including aac(6′)-Ib-cr, and a novel allele, qnrB10, associated with ISCR1 in clinical enterobacterial isolates from Argentina [J]. Antimicrob Agents Chemother, 2007, 51(12): 4466-4470.
    [49] Li H, Walsh T R, Toleman M A. Molecular analysis of the blaOXA-45-surrounding sequences, reveals acquisition of this gene by Pseudomonas aeruginosa via a novel ISCR element ISCR5 [J].Antimicrob Agents Chemother, 2009, 53(3): 1248-1251.
    [50] Bae I K, Lee Y N, Lee W G, et al. Novel complex class 1 integron bearing an ISCR1 element in an Escherichia coli isolate carrying the blaCTX-M-14 gene. Antimicrob Agents Chemother, 2007, 51 (8): 3017-3019.
    [51]邓玉婷,曾振灵,刘健华,等.插入序列共同区元件:细菌中新出现的一种基因捕获系统[J].微生物学报, 2009, 49(8): 987-993.
    [52] Périchon B, Bogaerts P, Lambert T, et al. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux [J]. Antimicrob Agents Chemother, 2008, 52 (7): 2581-2592.
    [53] Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate [J]. Antimicrob Agents Chemother, 2007, 51(9): 3354-3360.
    [54] Chen Y T, Liao T L , Liu Y M, et al. Mobilization of qnrB2 and ISCR1 in plasmids [J]. Antimicrob Agents Chemother, 2009, 53(3): 1235-1237.
    [55] Stokes H W, Hall R M. A novel family of potentially mobile DNA elememts encoding site-specific gene integration functions: integrons [J]. Mol Microbiol, 1989, 3(12): 1669-1683.
    [56] Hall R M, Brookes D E, Stokes H W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point [J]. Mol Microbiol, 1991, 5(8): 1941-1959.
    [57] Rosser S J, Young H K. Identification and characterization of class 1 integrons in bacteria from an aquatic environment [J]. J Antimicrob Chemother, 1999, 44(1): 11-18.
    [58] Vasilakopoulou A, Psichogiou M, Tzouvelekis L, et al. Prevalence and characterization of class 1 integrons in Escherichia coli of poultry and human origin [J]. Foodborne Pathog Dis, 2009, 6(10): 1211-1218.
    [59] Zhang X Y, Ding L J, Yue J. Occurrence and characteristics of class 1 and class 2 integrons in resistant Escherichia coli isolates from animals and farm workers in northeastern China [J]. Microb Drug Resistance, 2009, 15(3): 223-228.
    [60]朱小玲,沈建忠,刘玉庆.多重抗药大肠杆菌中Ⅰ型整合子的分布与抗药关系[J].中国人兽共患病学报, 2009, 25(2): 135-137.
    [61] Miranda J M, Vázquez B I, Fente C A, et al. Evolution of resistance in poultry intestinal Escherichia coli during three commonly used antimicrobial therapeutic treatments in poultry [J]. Poult Sci, 2008, 87(8): 1643-1648.
    [62] Han H S, Nam H Y, Koh Y J, et al. Molecular bases of high-level streptomycin resistance in Pseudomonas marginalis and Pseudomonas syringae pv. Actinidiae [J]. J Microbiol, 2003, 41: 16-21.
    [63] Guardabassi1 L, Schwarz S, Lloyd D H. Pet animals as reservoirs of antimicrobial-resistantbacteria [J]. J Antimicrob Chemother, 2004, 54(2): 321-332.
    [64]杨玲丽,陈杖榴,刘健华等.动物、环境及饲养员多重耐药大肠杆菌的PFGE分型研究[J].中国农业科学, 2005, 39(12): 2597-2602.
    [65] Kilonzo-Nthenge A, Nahashon S N, Chen F, et al. Prevalence and antimicrobial resistance of pathogenic bacteria in chicken and guinea fow [J]. Poultry Science, 2008, 87(9): 1841-1848.
    [66] Smet A, Martel A, Persoons D, et al. Comparative analysis of extended-spectrum-β-lactamase- carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a sharedβ-lactam resistance gene pool? [J]. J Antimicrob Chemother, 2009, 63(6): 1286-1288.
    [67] Johnson J R, Kuskowski M A, Menard M, et al. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status [J], J Infect Dis, 2006, 194(1): 71-78.
    [68] Lavilla1 S, González-López J J, MiróE, et al. Dissemination of extended-spectrumβ-lactamase- producing bacteria: the food-borne outbreak lesson [J], J Antimicrob Chemother, 2008, 61(6): 1244-1251.
    [69] Asai T, Murakami K, Ozawa M, et al. Relationships between multidrug-resistant Salmonella enterica serovar schwarzengrund and both broiler chickens and retail chicken meats in Japan [J]. Jpn. J Infect Dis, 2009, 62(3): 198-200.
    [70] Phillips I, Casewell M, Cox T, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data [J]. J Antimicrob Chemother, 2003, 53(1): 28-52.
    [71] Bohnert J A, Kern W V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps [J]. Antimicrob Agents Chemother, 2005, 49(2): 849.
    [72] Mei Y, Qian F, Wei D, et al. Reversal of cancer multidrug resistance by green tea polyphenols [J]. J Pharm Pharmacol, 2004, 56 (10): 1307-1314.
    [73] Wang C, Zhang J X, Shen X L, et al. Reversal of P-glycoprotein-mediated multidrug resistance by alisol B 23-acetate [J]. Biochem Pharmacol, 2004, 68 (5): 843-855.
    [74]刘渠,白松涛. G+球菌及G-杆菌质粒消除方法的研究[J].中国卫生检验杂志, 1998, 8(5): 275-278.
    [75] Tewari S, Rnajteke P W, Garg S K. Effect of disinfectants on stability and transmissibility of R-plasmid in E. coli isolated from drinking water in India [J]. India J Exp Biol, 2003, 41(3): 225-228.
    [76] Wolfart K, Spengler G, Kawasw M, et al. Synergistic interaction between proton pump inhibitors and resistance modifiers: promoting effects of antibiotics and plasmid curing [J]. In Vivo(Athens, Greece), 2006, 20(3): 367-372.
    [77]陈群,王胜春.黄芩和黄连对大肠杆菌R质粒消除作用的实验研究[J].广东医学院学报, 1998, 16: 1-3.
    [78]王东,王瑛,刘又宁.氟喹诺酮类药物对流感嗜血杆菌体外生物被膜形成的影响[J].中国感染与化疗杂志, 2009, 9(1): 22-26.
    [79] Yanagihara K, Tomono K, Imamura Y, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model [J]. J Antimicrob Chemother, 2002, 49(5): 867-870.
    [80]刘皈阳,张梅,王睿,等.大环内酯类抗菌药物对加替沙星透过细菌生物被膜的影响[J].中华医院感染学杂志, 2005, 15(7): 725-727.
    [81]方向群,刘又宁.亚胺培南联合阿奇霉素治疗铜绿假单胞菌生物被膜感染的实验研究[J].中华医院感染学杂志, 2007, 17(3): 254-257.
    [82] Monden K, Ando E, Iida M, et al. Role of fosfomycin in a synergistic combination with ofloxacin against Pseudomonas aeruginosa growing in a biofilm [J]. J Infect Chemother, 2002, 8(3): 218
    [83]范燕,王睿,安毛毛,等.磷霉素与氨基糖苷类药物联用对体外铜绿假单胞菌生物被膜形态学的影响[J].中国药物应用与监测, 2007, 4(5): 18-20.
    [84]孔晋亮,陈一强,闫萍,等.黄芩水煎液对铜绿假单胞菌生物被膜清除作用的体外研究[J].中华结核和呼吸杂志, 2006, 29(5): 347-348.
    [85] Paterson D L, Bonomo R A. Extended-spectrum beta-lactamases: a clinical update [J]. Clin Microbiol Rev, 2005, 18(4): 657-686.
    [86] Champs C D, Sirot D, Chanal C, et al. A 1998 survey of extended-spectrumβ-lactamases in Enterobacteriaceae in France [J]. Antimicrob Agents Chemother, 2000, 44(11): 3177-3179.
    [87] Winokur P L, Canton R, Casellas J M, et al. Variations in the prevalence of strains expressing an extended-spectrumβ-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region [J]. Clin Infect Dis, 2001, 32(Suppl.2): S94-S103.
    [88] Yu Y S, Ji S J, Chen Y G, et al. Resistance of strains producing extended-spectrumβ-lactamases and genotype distribution in China [J]. J Infection, 2007, 54(1): 53-57.
    [89] Sridhar R P N, Basavarajappa K G, Leela Krishna G. Detection of extended spectrum beta-lactamase from clinical isolates in Davangere [J]. Indian J Pathol Microbiol, 2008, 51(4): 497-499.
    [90] Tian G B, Wang H N, Zou L K, et al. Detection of CTX-M-15, CTX-M-22, and SHV-2 extended-spectrumβ-Lactamases (ESBLs) in Escherichia coli fecal-sample isolates from pig farms in China [J]. Foodborne Pathog Dis, 2009, 6(3): 297-304.
    [91] Ambler R P, Coulson A F, Frere J M, et al. A standard numbering scheme for the class A beta-lactamases [J]. Biochem J, 1991, 276(Pt 1): 269-270.
    [92] Bush K, Jacoby G A, Medeiros A A. A functional classification scheme for beta-lactamases and its correlation with molecular structure [J]. Antimicrob Agents Chemother, 1995, 39(6): 1211-1233.
    [93] Liu J H, Wei S Y, Ma J Y, et al. Detection and characterisation of CTX-M and CMY-2β-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China [J]. Int J Antimicrob Agents, 2007, 29(5): 576-581.
    [94] Kiratisin P, Apisarnthanarak A, Laesripa C, et al. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic [J]. Antimicrob Agents Chemother, 2008, 52(8): 2818-2824.
    [95] Chmelnitsky I, Carmeli Y, Leavitt A, et al. CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel [J]. Antimicrob Agents Chemother, 2005, 49(11): 4745-4750.
    [96] Yu W L, Chuang Y C, Walther-Rasmussen J. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control [J]. J Microbiol Immunol Infect, 2006, 39(4): 264-277.
    [97] Fang H, Ataker F, Hedin G, et al. Molecular epidemiology of extended-spectrumβ-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to2006 [J]. J Clin Microb, 2008, 46(2): 707-712.
    [98] Alessandra C, Aurora G F, Paola V, et al. Molecular epidemiology of Escherichia coli producing extended-spectrumβ-Lactamases isolated in Rome, Italy [J]. J Clin Microb, 2008, 46(1): 103-108
    [99] Chouchani C, Berlemont R, Masmoudi A, et al. A novel extended-spectrum TEM-typeβ-lactamase, TEM-138, from Salmonella enterica serovar infants [J]. Antimicrob Agents Chemother, 2006, 50(9): 3183-3185.
    [100] Fiett J, Palucha A, Miaczynska B, et al. A novel complex mutantβ-lactamase, TEM-68, identified in a Klebsiella pneumoniae isolate from an outbreak of extended-spectrumβ-lactamase producing Klebsiellae [J]. Antimicrob Agents Chemother, 2000, 44(6): 1499-1505.
    [101] Robin F, Delmas J, Archambaud M, et al. CMT-type beta-lactamase TEM-125, an emerging problem for extended-spectrum beta-lactamase detection [J]. Antimicrob Agents Chemother, 2006, 50(7): 2403-2408.
    [102]熊自忠,朱德妹,汪复,等.产超广谱β内酰胺酶大肠埃希菌中SHV型β-内酰胺酶的分子生物学研究[J],中国抗感染化疗杂志, 2003, 3(4): 194-198.
    [103] Rossolini G M, D’Andrea M M, Mugnaioli C. The spread of CTX-M-type extended-spectrumβ-lactamases [J]. Clin Microbiol Infect, 2008, 14 (Suppl.1): 33-41.
    [104] Cartelle M, del Mar Tomas M, Molina F, et al. High-level-resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution [J]. Antimicrob Agents Chemother, 2004, 48(6): 2308-2313.
    [105] Eckert C, Gautier V, Saladin-Allard M, et al. Dissemination of CTX-M-Typeβ-lactamases among clinical isolates of Enterobacteriaceae in Paris, France [J]. Antimicrob Agents Chemother, 2004,48(4): 1249-1255.
    [106] Kim J, Lim Y M, Jeong Y S, et al. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrumβ-lactamases in Enterobacteriaceae clinical isolates in Korea [J]. Antimicrob Agents Chemother, 2005, 49(4): 1572-1575.
    [107] LewisⅡJ S , Herrera M, Wickes B, et al. First report of the emergence of CTX-M-type extended-spectrumβ-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. Health Care System [J]. Antimicrob Agents Chemother, 2007, 51(11): 4015-4021.
    [108] Chanawong A, M'Zali F H, Heritage J, et al. Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People’s Republic of China [J]. Antimicrob Agents Chemother, 2002, 46(3): 630-637.
    [109]肖庆忠,苏丹虹,江洁华,等.广州地区革兰阴性杆菌CTX-M和OXA型广谱β-内酰胺酶基因分型研究[J].中华医院感染学杂志, 2005, 15(12): 1321-1327.
    [110]陈腊梅,张运丽,刘文恩,等.革兰阴性杆菌产CTX-M型超广谱β-内酰胺酶调查研究(首次发现产blaCTX-M-14的斯氏普罗威登斯菌)[J].中国感染控制杂志, 2008, 7(4): 242-245.
    [111] Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far [J]. J Antimicrob Chemother, 2006, 57(1): 1-3.
    [112]丁震,孙耕耘,李家斌.合肥市产超广谱β-内酰胺酶菌株中OXA型ESBLs基因分布[J].中华医院感染学杂志, 2005, 15(2): 124-126.
    [113]陈淑贞,石蓉林,姚芬,等.肺炎克雷伯菌产ESBLs基因型分析[J].中国感染与化疗杂志, 2006, 6(4): 236-239.
    [114]周明莉,阎志勇,郭小兵.大肠埃希菌中OXA型超广谱β-内酰胺酶基因分布[J].河南职工学院学报, 2008, 20(3): 217-218.
    [115] Walther-Rasmussen J, H?iby N. OXA-type carbapenemases [J]. J Antimicrob Chemother, 2006, 57(3): 373-383.
    [116] Danel F, Frere J M, Livermore D M. Evidence of dimerisation among class D beta-laetanmses: kinetics of OXA-14 beta-lactamase [J]. Biochem Biophys Acta, 2001, 1546(1): 132-135.
    [117] Naas T, Nordmann P. OXA-type beta-lactamase [J]. Curr Pharm Des, 1999, 5: 865-879.
    [118] Rowe-Magnus D A, Guerout A M, Mazel D. Bacteria resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol, 2002, 43 (6): 1657-1669.
    [119] Hsua S C, Chiu T H, Pang J C, et al. Characterisation of antimicrobial resistance patterns and class 1 integrons among Escherichia coli and Salmonella enterica serovar Choleraesuis strains isolated from humans and swine in Taiwan [J]. Int J Antimicrob Agents, 2006, 27(5): 383-391.
    [120] Hall R M, Brown H J, Brookes D E, et al. Integrons found in different locations have identical 5' ends but variable 3' ends [J]. J Bacteriol, 1994, 176(20): 6286-6294.
    [121]吴聪明,陈杖榴,曾振灵.猪场大肠杆菌Ι型整合子及其基因盒的分子流行病学研究[J].畜牧兽医学报, 2005, 36(9): 931-936.
    [122]王桂琴,吴聪明,曹兴元,等.奶牛乳房炎大肠杆菌整合子与耐药表型的相关性研究[J].畜牧兽医学报, 2007, 38 (12): 1345-1350.
    [123]苏健裕,石磊,杨连生.临床大肠埃希菌第Ⅰ类整合子检测及耐药基因盒分析[J].检验医学与临床, 2008, 5(7): 385-387.
    [124] Soufi L, Abbassi M S,1 Sáenz Y, et al. Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia [J]. Foodborne Pathog Dis, 2009, 6(9): 1-8.
    [125] Solberg O D, Ajiboye R M, Riley L W. Origin of class 1 and 2 integrons and gene cassettes in a population-based sample of uropathogenic Escherichia coli [J]. J Clin Microbiol, 2006, 44(4): 1347-1351.
    [126] Whiet P A, McIver C J, Rawlinson W D. Integrons and gene cassettes in the Enterobacteriaceae [J]. Antimicrob Agents Chemother, 2001, 45(9): 2658-2661.
    [127] Hansson K, Sundstrom L, Pelletier A, Roy P H. IntI2 integron integrase in Tn7 [J]. J Bacteriol, 2002, 184(6): 1712-1721.
    [128] Opintan J A, Newman M J, Nsiah-Poodoh O A, et al. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element [J]. J Antimicrob Chemother, 2008, 62(5): 929-933.
    [129] Ramírez M S, Quiroga C, Centrón D. Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii [J]. Antimicrob Agents Chemother, 2005, 49(12): 5179-5181.
    [130] Márquez C, Labbate M, Ingold A J, et al. Recovery of a functional class 2 integron from an Escherichia coli strain mediating a urinary tract infection [J]. Antimicrob Agents Chemother, 2008, 52(11): 4153-4154.
    [131] Fluit A C, Schmitz F J. Resistance integrons and super-integrons [J]. Clin Microbiol Infect, 2004, 10(4): 272-288.
    [132] Correia M, Boavida F, Grosso F, et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae [J]. Antimicrob Agents Chemother, 2003, 47(9): 2838-2843.
    [133] Xu H, Davies J L, Miao V. Molecular Characterization of class 3 integrons from Delftia spp.[J]. J Bacterial, 2007, 189(17): 6276-6283.
    [134] Heidelberg J F, Eisen J A, Neison W C, et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae [J]. Nature, 2000, 406(6795): 477-483.
    [135] Vaisvila R, Morgan R D, Posfai J. Discovery and distribution of super-integrons among Pseudomonads [J]. Mol Microbiol, 2001, 42(3): 587-601.
    [136] Stokes H W, O'Goman D B, Recchia G D, et al. Structure and function of 59-base element recomibination sites associated with mobile gene cassettes [J]. Mol Micribiol, 1997, 26 (4): 731-745.
    [137] Barlow R S, Pemberton J M, Desmarchelier P M, et al. Isolation and characterization of integron-containing bacteria without antibiotic selection [J]. Antimicrob Agents Chemother, 2004, 48(3): 838-842.
    [138] Rao S, Maddox C W, Hoien-Dalen P, et al. Antibiotic resistance in Salmonella Isolates from swine production systems [J]. J Clin Microbiol, 2008, 46(3): 916-920.
    [139] Krauland M G, Marsh J W, Paterson D L, et al. Intrgron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates [J]. Emerg Infect Dis, 2009, 15(3): 388-396.
    [140] Brízioa A, Concei T, Pimentela M, et al. High-level expression of IMP-5 carbapenemase owing to point mutation in the-35 promoter region of class 1 integron among Pseudomonas aeruginosa clinical isolates [J]. Int J Antimicrob Agents, 2006, 27 (1): 27-31.
    [141] CLSI (2008). Performance standards for antimicrobial susceptibility testing, 18th informational supplement, M100-S18. Wayne, PA: Clinical and Laboratory Standards Institute.
    [142]明德松,庄建良,苏智军.全耐药鲍曼不动杆菌检出β-内酰胺酶ADC耐药基因[J].世界感染杂志, 2007, 7(1): 32-34.
    [143] Seifert H, Stefanik D, Wisplinghoff H. Comparative in vitro activities of tigecycline and 11 other antimicrobial agents against 215 epidemiologically defined multidrug-resistant Acinetobacter baumannil isolates [J]. J Antimicrob Chemother, 2006, 58(5): 1099-1100.
    [144]王瑶,徐英春. 2004-2005年中国CHINET鲍曼不动杆菌耐药性分析[J].中国感染与化疗杂志, 2007, 7(4): 279-282.
    [145]顾天钊,陆承平,陈怀青.鲍氏不动杆菌—鳜鱼暴发性死亡的新病原[J].微生物学通报, 1997, 24(2): 104-106.
    [146] Esaki H, Morioka A, Ishihara K, et al. Antimicrobial susceptibility of Salmonella isolated from cattle, swine and poultry (2001-2002): report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program [J].J Antimicrob Chemother, 2004, 53(1): 266-270.
    [147]马孟根,王红宁,余勇,等.猪源致病性沙门氏菌耐药基因的分析[J].畜牧兽医学报, 2006, 37 (1): 65-70.
    [148]李成忠,王红宁,黄勇,等.多重耐药鸡致病性沙门氏菌I类整合子的检测研究[J].中国畜牧兽医, 2007, 34(1): 119-123.
    [149]潘渭涓,陈祥,王晓泉,等. 1993-2008年禽源大肠杆菌和沙门菌对喹诺酮类药物耐药性分析[J].中国人兽共患病学报, 2009, 25(7): 630-635.
    [150]孙秋艳,刘红芹,胡晓娜,等.鸡奇异变形杆菌的分离、鉴定及流行病学调查[J].家畜生态学报, 2006, 27(6): 115-119.
    [151]孙亚伟,付秀玲,李胜利,等.双纸片协同法检测ESBLs的实验条件探讨[J].中国兽药杂志, 2007, 41(1): 26-29.
    [152]熊自忠,朱德妹,汪复,等.肺炎克雷伯氏菌K99-1029中的ESBLs基因型分析[J].中国抗生素杂志, 2003, 28(2): 96-100.
    [153]包秀花,许淑珍.检测产超广谱β-内酰胺酶细菌方法的探讨[J].中国实验诊断学, 2004, 8(6): 665-666.
    [154] Tenover F C, Mohammed M J ,Gorton T S, et al. Detection and Reoporting of Organisms producing Extended-spectrumβ-Lactamases: Survey of laboratories in Connecticut [J]. J Clin Microb, 1999, 37(12): 4065-4067.
    [155] Pfaller M A, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrumβ-lactamases [J]. Clin Infect Dis, 2006, 42(Suppl 4): 153-163.
    [156]胡功政,张春辉,梁军,等.猪鸡致病菌β-内酰胺酶、超广谱β-内酰胺酶检测与药敏试验[J].中国农业科学, 2005, 38(2): 399-404.
    [157] Ramphal R, Ambrose P G. Extended-spectrumβ-lactamases and clinical outcomes: current data [J]. Clin Infect Dis, 2006, 42(Suppl 4): 164-172.
    [158] Yum J H, Kim S, Lee H, et a1. Emergence and wide dissemination of CTX-M-type ESBLs, and CMY-2 and DHA-1-type AmpC-lactamases in Korean respiratory isolates of Klebsiella pneumoniae [J]. J Korean Med Sci, 2005, 20(6): 961-965.
    [159]胡功政,匡秀华,苑丽,等.产ESBLs鸡肠杆菌科细菌对21种抗菌药的敏感性检测[J].中国人兽共患病学报, 2006, 22(9): 884-887.
    [160]付秀玲,吴华,陈红英,等.禽致病菌ESBLs和AmpC酶的检测及药敏分析[J].华中农业大学学报, 2007, 26(2): 217-222.
    [161] Jacob S, Shiri N V, lnna C, et al. Extended-spectrum beta-lactamases among Enterobacteriaceae isolates obtained in Tel Aviv, Israe1 [J]. Antimicrob Agents Chemother, 2005, 49(3): 1150-1156.
    [162]王瑶,徐英春,杨启文,等. 19家医院大肠埃希菌和肺炎克雷伯菌中TEM型β-内酰胺酶的研究[J].临床检验杂志, 2008, 26(2): 85-89.
    [163]胡功政,孙亚伟,陈红英,等.鸡志贺氏菌产超广谱β-内酰胺酶(ESBLs)的分子进化[J].中国农业科学, 2008, 41(2): 593-598.
    [164] Bonnet R, De Champs C, Sirot D, et al. Diversity of TEM mutants in Proteus mirabilis [J]. Antimicrob Agents Chemother, 1999, 43(11): 2671-2677.
    [165] Bauernfeind A, Grimm H, Schweighart S. A new plasmid cefotaximase in a clinical isolate of Escherichia coli [J]. Infection, 1990, 18(5): 294-298.
    [166] Livermore D M, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe [J]. J Antimicrob Chemother, 2007, 59(2): 165-174.
    [167] Cantón R, Coque T M. The CTX-M beta-lactamase pandemic [J]. Curr Opin Microbiol, 2006, 9(5): 466-475.
    [168] Ho P L, Wong R C, Chow K H, et al. CTX-M type beta-lactamases among fetal Escherichia coli and Klebsiella pneumoniae isolates in non-hospitalized children and adults [J]. J Microbiol Immunol Infect, 2008, 41(5): 428-432.
    [169] Song W, Lee H, Lee K, et al. CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrumβ-lactamase in clinical isolates of Escherichia coli from Korea [J]. J Med Microbiol, 2009, 58(Pt 2): 261-266.
    [170] Pattarachai K, Anucha A, Chaitat L, et al. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic [J]. Antimicrob Agents Chemother, 2008, 52(8): 2818-2824.
    [171] Woodford N, Ward M E, Kaufmann M E, et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamses in the UK [J]. J Antimicrob Chemother, 2004, 54(4): 735-743.
    [172]季淑娟,顾怡明,谭文涛,等.中国部分地区大肠埃希菌和肺炎克雷伯菌超广谱β-内酰胺酶基因型研究.中华检验医学杂志, 2004, 27(9): 590-593.
    [173] Munday C J, Xiong J, Li C, et al. Dissemination of CTX-M type beta-lactamases in Enterobacteriaceae isolates in the People’s Republic of China [J]. Int J Antimicrob Agents, 2004, 23(2): 175-180.
    [174] Xiong Z Z, Zhu D M, Wang F, et al. CTX-M-14, CTX-M-24 and resistance in Escherichia coli and Klebsiella pneumoniae clinical isolates [J]. Chin Med J, 2006, 119(2): 160-164.
    [175]高伟,孙震,殷俊,等.安微省产CTX-M型超广谱β-内酰胺酶的肺炎克雷伯菌耐药性和基因型研究[J].中国抗生素杂志, 2009, 34(1): 48-51.
    [176] Doi Y, Adams-Haduch J M, Paterson D L. Escherichia coli isolate coproducing 16S rRNA methylase and CTX-M-type extended-spectrum beta-lactamase isolated from an outpatient in the United States [J]. Antimicrob Agents Chemother, 2008, 52 (3): 1204-1205.
    [177] Barlow M, Hall B G. Phylogenetic analysis shows that the OXAβ-lactamase genes have been on plasmids for millions of years [J]. J Mol Evol, 2002, 55(3): 314-321.
    [178] Pai H,Byeon J H, Yu S, et al. Salmonella enterica serovar typhistains isolated in korea containing a multidrug resistance classΙintegron [J]. Antimicrob Agents Chemother, 2003, 47 (6): 2006-2008.
    [179] Mroczkowska J E, Barlow M. Fitness trade-offs in blaTEM evolution [J]. Antimicrob Agents Chemother, 2008, 52(7): 2340-2345.
    [180] Blázquez J, Negri M C, Morosini M I, et al. A237T as a modulating mutation in naturally occurring extended-spectrum TEM-typeβ-lactamases [J]. Antimicrob Agents Chemother, 1998, 42(5): 1042-1044.
    [181] Barlow M, Fatollahi J, Salverda M. Evidence for recombination among the alleles encoding TEM and SHVβ-lactamases [J]. J Antimicrob Chemother, 2009, 63(2), 256-259.
    [182]陈炫,吕晓菊,范昕建,等.大肠埃希菌及肺炎克雷伯菌β-超广谱内酰胺酶基因的核苷酸序列测定及分子进化研究[J].四川大学学报(医学版), 2004, 35(4):470-472.
    [183] Barlow M, Reik R A, Jacobs S D, et al. High Rate of Mobilization for blaCTX-Ms [J]. Emerg Infect Dis, 2008, 14(3): 423-428.
    [184] Mroczkowska J E, Barlow M. Recombination and selection can remove blaTEM alleles from bacterial populations [J]. Antimicrob Agents Chemother, 2008, 52(9): 3408-3410.
    [185]郭庆兰,宋诗铎,祁伟,等.与ISEcp1-like插入序列相关的CTX-M型ESBLs基因传播机制研究[J].中国感染与化疗杂志, 2008, 8(2): 94-98.
    [186] Leverstein-van Hall M A, M Blok H E, T Donders A R, et al. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin [J]. J Infect Dis, 2003,187(2): 251-259.
    [187]赵红霞,李培锋,吴聪明,等.奶牛子宫内膜炎大肠杆菌耐药性及其与整合子关系的研究[J].畜牧兽医学报, 2009, 40(1): 142-144.
    [188] Machado E, Cantón R, Baquero F, et al. Integron content of extended-spectrum-β-lactamase -producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain [J]. Antimicrob Agents Chemother, 2005, 49(5): 1823-1829.
    [189]付英梅,张凤民,张文莉,等.产超广谱β-内酰胺酶大肠埃希菌和肺炎克雷伯菌Ⅰ类整合子及其与ESBLs基因关系的研究[J].中华医院感染学杂志,2007, 17(3): 241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700