酪蛋白肽及其苦味肽功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪蛋白肽具有多种生物活性而备受关注,但苦味问题是制约其广泛应用的一个瓶颈。酪蛋白肽的苦味主要是由其所含的一些疏水性氨基酸的肽(苦味肽)导致,目前大多脱苦方法是将苦味肽去除或降解。但一些苦味肽也是生物活性肽,故在研究脱苦方法的同时,更应考虑到其合理利用。本文以Alcalase酶解酪蛋白肽中的苦味肽为主要研究对象,对其疏水性、分子量分布、氨基酸组成及序列等方面进行了研究,同时对水相、醇相酪蛋白肽的功能特性进行了比较。在此基础上,采用复配酶分步水解工艺制备出低苦味、高水解度的短肽,对其经过膜分离的不同分子量肽段组分的功能特性进行了研究,以明确各个不同分子量酪蛋白肽组分的主要活性及功能特性,为寻求苦味肽有效、合理的脱除方法及合理应用不同分子量酪蛋白肽提供理论依据。
     首先筛选适宜蛋白酶及酶解工艺的优化,即分别用庞博木瓜蛋白酶、庞博中性蛋白酶、Neutrase、Alcalase、Protamex和胰蛋白酶水解酪朊酸钠,Alcalase酪蛋白肽的三氯乙酸可溶性氮含量和水解度最高且苦味较低。在对Alcalase水解过程中加酶量、底物浓度、pH、反应温度和反应时间的单因素研究基础上,通过均匀试验设计建立了酪蛋白肽水解度与其中四种影响因素的回归模型。最终确定Alcalase酶解酪朊酸钠的参数最优组合为:水解时间199min,加酶量4240U/g pro.,pH值10.38,温度50℃。在此条件下,实际得到酪蛋白肽的水解度为24.27%,三氯乙酸可溶性氮含量为79.85%,平均肽链长度为4.12,平均分子量为471.23,苦味值为2.53。
     对异丁醇萃取酪蛋白肽中苦味肽的方法进行了优化,并分析了不同水解度苦味肽的组成。采用Alcalase在加酶量4240U/g pro.、pH 10.38、温度50℃条件下,制备水解度为10%、15%和20%的酪蛋白肽。对不同条件下异丁醇萃取苦味肽的研究表明,酪蛋白肽浓度为20%、异丁醇添加量为50%、pH自然条件下,能有效萃取出酪蛋白肽中的苦味肽。在此条件下制备了三种水解度的苦味肽CNH-A-10、CNH-A-15和CNH-A-20。对其分子量分布的研究发现,它们是一些分子量分布较广但以小分子为主的肽和少量游离氨基酸的混合物。对其氨基酸组成的研究表明:与源蛋白相比,苦味肽中含有更多的组氨酸、酪氨酸、缬氨酸、甲硫氨酸、苯丙氨酸、亮氨酸和脯氨酸等,必需氨基酸、疏水性氨基酸、芳香族氨基酸和支链氨基酸的含量均有所增加;苦味肽的游离氨基酸不足总氨基酸的1%,其中脯氨酸、亮氨酸和苯丙氨酸的含量较高,而甲硫氨酸、赖氨酸等含量较低,必需氨基酸和疏水性氨基酸含量占有较大比例,碱性氨基酸和芳香族氨基酸的含量相对较少。
     采用生物质谱技术对CNH-A-10和CNH-A-20进行了基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)和反相高效液相色谱与电喷雾电离飞行时间质谱联用(RP-HPLC-ESI-MS)分析。由于样品组分复杂且受各种因素的影响,前者结果不理想。后者由于先分离后分析,得到了较丰富的肽的氨基酸序列信息。RP-HPLC-ESI-MS测定的苦味肽肽段统计结果表明:苦味肽基本上是由一些氨基酸残基数低于20个、分子量小于3000Da的小肽组成,随着水解的进行,其疏水性氨基酸不断从肽链的中间位置暴露到肽链两端,甚至游离出来,使苦味降低。
     对酪蛋白肽、醇相肽和水相肽进行了功能特性的比较研究。在Alcalase最适酶解条件下制备了酪蛋白肽,再用异丁醇萃取得到了水相肽、醇相肽。三样品的RP-HPLC分析表明:酪蛋白肽是亲水性与疏水性肽段组成的混合物,水相肽中大部分为亲水性强的组分,而醇相肽中主要为疏水性强的组分。对三样品的理化特性研究表明:在pH2~11的广泛范围内溶解性都较好,乳化性、乳化稳定性、起泡性和泡沫稳定性极显著低于酪朊酸钠(p<0.01)。对三样品的生理活性研究表明:酪蛋白肽对超氧阴离子自由基(O2-)、DPPH?自由基和羟自由基(?OH)均有一定程度的清除作用,在亚油酸体系中也具有抗氧化活力,水相肽对超氧阴离子自由基(O2-)和羟自由基(?OH)的清除率较高,而醇相肽对DPPH自由基的清除及其在亚油酸体系中抗氧化能力较强;三样品对假单胞菌、金黄色葡萄球菌、大肠杆菌、藤黄微球菌和枯草芽孢杆菌都有不同程度的抑制作用,水相肽与醇相肽相比,前者对假单胞菌、金黄色葡萄球菌、大肠杆菌和藤黄微球菌的抑制作用较强,而后者对枯草芽孢杆菌的抑制作用较强;酪蛋白肽及其水相肽、醇相肽血管紧张素转换酶(ACE)抑制活性均在80%以上,其中水相肽的抑制率最高;由于具有阿片活性的酪啡肽β-Casomorphin-5和β-Casomorphin-7为平均疏水度较高的小肽,因此大部分存在于醇相萃取的组分中,而水相中含量较少。
     在单酶水解基础上确立了蛋白酶复配分步水解的工艺,以降低酶解物的苦味值和提高蛋白的水解度。首先用Alcalase对酪朊酸钠水解,然后从庞博木瓜蛋白酶、庞博中性蛋白、Neutrase和Protamex中选取一种酶对Alcalase酶解物进一步水解。木瓜蛋白酶水解物的TCA-SNI和DH最高且苦味最低,故选择木瓜蛋白酶。据木瓜蛋白酶水解的单因素及均匀试验的研究结果确定TCA-SNI最高时的优化组合条件为:加酶量2461U/g pro.,pH 5.94,温度57.4℃。以上条件下获得的酪蛋白短肽三氯乙酸可溶性氮含量为87.75%,水解度为27.31%,平均肽链长度为3.66,平均分子量为420.6,苦味值为1.01。
     应用膜分离技术将酪蛋白短肽分离成不同分子量范围的组分,并研究了各组分的功能特性。先用截留分子量分别为3500Da和1000Da的膜将酪蛋白短肽分离成分子量大于3500Da(A)、小于3500Da大于1000Da(B)和小于1000Da(C)的三个部分。RP-HPLC分析表明,A、B为亲水性和疏水性肽的混合物,C在液相色谱上保留时间较短,主要为亲水性的小肽。A、B、C的苦味值均在2以下。A有较好的溶解性,乳化性及乳化稳定性高于酪朊酸钠,而起泡性和泡沫稳定性稍低于酪朊酸钠。B、C均有良好的溶解性,乳化性及乳化稳定性、起泡性及泡沫稳定性都极显著低于酪朊酸钠和A(p<0.01)。生理活性研究表明:A、B、C对超氧阴离子自由基(O2-)、DPPH?自由基和羟自由基(?OH)均有一定程度的清除作用,在亚油酸体系中也具有抗氧化活力,其大小依次为B、C、A;A、B、C对假单胞菌、金黄色葡萄球菌、大肠杆菌、藤黄微球菌和枯草芽孢杆菌都有不同程度的抑制作用,其中对假单胞菌、金黄色葡萄球菌和藤黄微球菌的抑制效果较好;A、B、C对ACE均有一定程度的抑制作用,随着分子量的减小,ACE抑制活性呈增大趋势,其中C对ACE的抑制活性最高,为96.01%;A、B、C的β-Casomorphin-5和β-Casomorphin-7含量都较低。
Casein peptide has attracted much attention because of its bioactivities. But bitter taste is one of the most serious problems which limited the wide use of casein peptide. Bitter peptides, containing hydrophobic amino acids, lead to the bitter taste of casein peptide. There are some debittering methods of removing or decomposing the bitter peptides. But some bitter peptides also have bioactivities. So it is necessary to take account of the bitter peptides while removing them. In this paper, bitter peptides from Sodium caseinate (NaCN) hydrolysised by Alcalase were studied on hydrophobicity, molecular weight distribution, amino acid composition and sequence. Simultaneously, the functional properties of casein peptide, bitterless peptides (aqueous phase peptides) and bitter peptides (secondary butyl alcohol phase peptides) were compared. Based on it, casein short peptide with low bitter taste and high degree of hydrolysis was produced by compound enzymes and then the functional properties of different molecular weight distribution were studied. The studies above provide theory foundation for bitter peptide effective and reasonable application.
     Screening suitable proteases and optimum hydrolysis technologies were studied. NaCN was hydrolyzed by Pangbo Papain, Pangbo neutrase, Neutrase, Alcalase, Protamex and Trypsin. Alcalase had the highest TCA-SNI, DH and lower bitter taste. Based on the study of protease dosage, substrate concentration, pH, temperature and hydrolysis time, the regression models was established between the TCA-SNI and the four factors that affect the preparation of casein peptide by homogeneous design. The factors were optimized: time 199min, protease dosage 4240 U/g pro.,pH values 10.38, temperature 50℃. In these conditions, DH was 24.27%, TCA-SNI was 79.85%, PCL was 4.12, average molecular weight was 471.23, and bitter value was 2.53.
     The methods of bitter peptide extracted with secondary butyl alcohol (SBA) were studied and the compositions of different DH bitter peptide were analyzed. Casein peptides of DH 10%, 15%, 20% were produced respectively in the conditions of protease dosage 4240 U/g pro.,pH values 10.38, temperature 50℃by Alcalase. The study on different conditions of bitter peptide extracted with SBA showed bitter peptide can be well extracted in the conditions of casein peptide concentration 20%, SBA amount 50% and naturally pH. And then three kinds of DH bitter peptides (CNH-A-10、CNH-A-15 and CNH-A-20) were produced. Study on molecular weight distribution of three DH bitter peptides showed they were the compound of wide scope and short peptides and a small quantity of free amino acid. Compared with NaCN, bitter peptide had more hidtidine, tyrosine, valine, methionine, phenylalanine, leucine and praline. The content of essential, hydrophobic, aromatic and branched-chained amino acid was increased. Free amino acid in bitter peptide was less than 1% of the total amino acid amount. The content of Proline, leucine and phenylalanine was high while methionine and lysine was low. Essential, hydrophobic amino acid had a high content in free amino acid and basic, aromatic amino acid was low. CNH-A-10 and CNH-A-20 were analyzed by MALDI-TOF-MS and RP-HPLC-ESI-MS. Because the bitter peptide was a compound of all kinds of peptide and amino acid, the result analyzed by MALDI-TOF-MS was not good. While the result analyzed by RP-HPLC-ESI-MS was satisfied. Statistical results of bitter peptide sequence showed: Bitter peptide was the short peptide of less than 20 amino acid and molecular weight lower than 3000Da. With the hydrolysis, the position of hydrophobic amino acid constantly changed from middle to two ends and released to free amino acid, so the bitter taste became less.
     Functional properties were compared among casein peptide and two samples from SBA and aqueous phases respectively. NaCN was hydrolyzed by Alcalase in the optimized conditions and then extracted with SBA. Casein peptide (CNH), aqueous phase peptide (CNH-H) and SBA phase peptide (CNH-A) were studied. The analysis of RP-HPLC showed: CNH was the compound of hydrophilic and hydrophobic peptides. Most of the hydrophilic peptides were in CNH-H and hydrophobic peptides were in CNH-A. The three samples all had a good solubility between the pH 2~11. Emulsifying activity, emulsifying stability, foaming forming and foaming stability were greatly lower than NaCN (p<0.01). CNH had antioxidative activity. CNH-H had a high eliminating activity on O2- and ?OH. CNH-A had a high eliminating activity on DPPH? and antioxidative effect in linoleic acid. The three samples also had antibacterial activity. CNH-H had a strong antibacterial effect on Pseudomonas, Staphylococcus aureus, Escherichia Coli and Micrococcus luteus. CNH-A had a strong antibacterial effect on Bacillus subtilis. The three samples all had ACEI activity, among them, CNH-H was the highest. Becauseβ-Casomorphin-5、7 had high average hydrophobic value, they were greatly in CNH-A and less in CNH-H.
     In order to reduce the bitter taste and improve the DH of hydrolysates, the technology of compound enzymes hydrolysis was used. Pangbo Papain, Pangbo neutrase, Neutrase and Protamex were tested to go on hydrolysis the Alcalase hydrolysates. Pangbo Papain was selected because of its hydrolysates had the highest TCA-SNI, DH and the lowest bitter taste. Then the single factors and homogeneous design were tested and the optimum conditions were obtained: protease dosage 2461 U/g pro.,pH values 5.94, temperature 57.4℃. In these conditions, TCA-SNI was 89.75%, DH was 27.31%, PCL was 3.66, average molecular weight was 420.6, and bitter value was 1.01. Three parts of hydrolysates were separated by different molecular weight distribution membranes and the functional properties were studied too. Casein peptide was separated by the 3500 kD and 1000 kD) to acquire three parts: larger than 3000Da (A), between 3500Da and 1000Da (B), lower than 1000Da (C). Analyzed by RP-HPLC, A and B were both composed of hydrophilic and hydrophobic peptides while C had shorter retention time and had more hydrophilic peptides. The bitter value of three samples was below 2. A had good solubility; EC and ES were higher than NaCN; FC and FS were lower than NaCN. B, C had good solubility, EC, ES, FC and FS were greatly lower than NaCN (p<0.01). Biology activity tests showed: The antioxidant activity was B> C> A. Compared with the highest activity of Alcalase hydrolysates, B had a higher elimination rate on O2-, DPPH? and antioxidative effect in linoleic acid, while it reduced 4.04% on eliminating ?OH. Different molecular weight of casein short peptide had antibacterial effect on Pseudomonas, Staphylococcus aureus, Escherichia Coli, Micrococcus luteus and Bacillus subtilis, especially well for Pseudomonas, Staphylococcus aureus, Micrococcus luteus. Generally speaking, the antibacterial activity was B> A> C. Three samples all had ACEI activity. With the decrease of molecular weight, the activity of ACEI increased. C had the best activity of 96.01%. There were lessβ-Casomorphin-5 andβ-Caso morphin-7 in casein short peptide.
引文
1. 陈成, 刘文玉, 杨青. 大豆蛋白活性肽的生物学功能及其应用. 黑龙江农业科学, 2004, 3: 40~42.
    2. 陈美珍, 余杰, 郭慧敏. 大豆分离蛋白酶解物清除自由基作用的研究. 食品科学, 2002, 23 (1): 43~46.
    3. 陈山, 杨晓泉, 郭祀远, 等. 大豆肽超滤分离纯化过程的研究. 食品与发酵工业, 2003, 29 (1): 49~52.
    4. 冯红霞, 陆兆新, 尤华. 苦味肽的形成及脱苦方法的研究. 食品科学, 2002, 23 (5): 51~54.
    5. 冯凌凌, 熊犍, 李琳, 等. pH 值对 SPC 功能性和结构的影响. 食品科学, 2006, 27 (5) : 129~133.
    6. 何慧, 王进, 裴凡, 等. 蛋白质水解物与苦味的构效关系及脱苦研究. 食品科学, 2006, 27 (10) : 571~574.
    7. 侯小桢, 刘欣, 赵力超, 等. 木瓜蛋白酶水解毛虾的工艺研究. 食品科技, 2006, 9, 144~147.
    8. 胡建平, 吴琦. 抑菌活性蛋白 (肽) 作为食品防腐剂的研究进展. 食品研究与开发, 2008, 29 (1) :168~172.
    9. 胡文琴, 王恬. 酪蛋白酶解物体外抗氧化作用的研究. 食品科学, 2004, 25 (4) : 158~162.
    10. 贾冬英等. 胶原蛋白多肽功能特性的研究, 食品科学, 2001, 22 (6) : 21~24.
    11. 姜瞻梅, 田波, 霍贵成. 超滤法分离酪蛋白酶解物中的 ACE 抑制肽. 食品与发酵工业, 2006, 32 (10) : 59~61.
    12. 蒋传葵. 工具酶的活力测定. 上海:上海科学技术出版社, 1982: 104~168.
    13. 蒋菁莉, 任发政, 蔡华伟. 牛乳酪蛋白降血压肽的超滤分离. 食品科学, 2006, 27 (7) : 124~128.
    14. 雷前仁. 水解动物蛋白及其在食品工业中的应用. 食品工业, 2000, 3: 6~7.
    15. 李海芹, 李兴民. 酪蛋白酶解产物中抗菌肽的初步研究. 中国乳品工业, 2006, 34 (2) : 25~26, 39.
    16. 李全阳, 夏文水, 张国农. 牛乳酪蛋白源活性肽制备及结构研究现状. 中国乳品工业, 2002, 30 (5) : 8~11.
    17. 李世成, 杨则宜. 活性肽及其在运动中的应用. 中国运动医学杂志, 2003, 22 (3) : 175~176.
    18. 李卫, 宁正祥, 李斌. 应用于食品工业的活性肽及其生产方法. 中国食品添加剂, 2005, 2:
    72~75.
    19. 励建荣, 封平. 功能肽的研究进展. 食品科学, 2004, 25 (11) :415~419.
    20. 刘大川, 钟方旭. 大豆肽的功能特性研究. 中国油脂, 1998, 23 (3): 8~10.
    21. 刘瑞. 酶解多肽一级序列分析与反应过程建模及结构变化初探[硕士学位论文]. 天津: 天津大学, 2005.
    22. 刘通讯, 林勉, 杨兰. 鸡酶解液中苦味肽的提取及微生物法脱苦的研究. 食品科学, 1999, 10:10~12.
    23. 刘威, 段海清, 张兆山. 阿片受体的研究进展. 生物技术通讯, 2003, 14 (3) : 231~234.
    24. 刘妍妍, 张丽萍. 牛乳酪蛋白源降血压肽的分离及其分子量分布研究. 中国乳品工业, 2006, 34 (5) : 26~27, 34.
    25. 刘玉德, 曹雁平. 生物蛋白肽的开发研究展望. 食品科学, 2002, 23 (8) :319~320.
    26. 刘志强, 刘擘, 曾云龙. 酶法有限水解对花生蛋白功能特性的影响. 食品科学, 2004, 25 (1): 69~72.
    27. 龙彪, 彭志英, 陈中, 等. 采用木瓜蛋白酶制备乌鸡蛋白肽的研究. 食品工业科技, 2005, 26 (6) :135~138.
    28. 卢蓉蓉, 张国农, 林金资. 酪蛋白酸钠流变特性的研究. 食品工业科技, 2001, 22 (6) : 19~20.
    29. 卢晓风, 杨星勇, 程惊秋, 等. 昆虫抗菌肽及其研究进展. 药学学报, 1999, 34 (2) : 156~160.
    30. 鲁晓翔, 陈新华, 唐津忠. 酶法改性玉米蛋白功能特性的研究, 食品科学, 2000, 21 (12): 13~15.
    31. 庞广昌, 潘葳, 陈庆森. 不同蛋白酶水解酪蛋白类大分子底物的规律研究. 食品科学, 2004, 25 (3) : 36~43.
    32. 蒲宇, 王芝祥. 蛋白质层析用离子交换和疏水作用层析介质的发展概况. 生物工程学报, 2004, 20 (6) : 975~982.
    33. 乔伟, 周安国, 王之盛. 酸水解制备饲料小肽的初步研究. 饲料工业, 2006, 27 (13): 10~12.
    34. 桑志红, 杨松成. 电喷雾电离质谱及其在蛋白质化学研究中的应用. 国外医学药学分册, 2000, 27 (1) : 38~42.
    35. 沈蓓英. 大豆蛋白抗氧性肽的研究. 中国油脂, 1996, 21 (6) :21~24.
    36. 石彦国, 马永强, 赵毅. 大豆蛋白水解物物化特性的研究. 中国粮油学报, 2001, 16 (1) : 59~62.
    37. Sindayikengera S. , 夏文水. Enzymatic hydrolysis of casein by two different proteases and their effect on functional properties of resulting protein hydrolysates. 食品科学, 2006, 27 (3) : 65~71.
    38. 孙浩, 蔡兴旺. 碱性蛋白酶对酪蛋白水解的最适宜条件. 大连轻工业学院学报, 2003, 22 (1) : 25~27.
    39. 孙冀平, 李艳娜, 沈蓓英. 掩盖-脱苦的实用新方法研究. 粮食与油脂, 1999, (3) : 24~25.
    40. 孙欣, 王璋, 王莉, 等. 轻度酶解对大豆蛋白凝胶性和疏水性的影响. 食品科学, 2005, 26 (12) :37~40.
    41. 唐传核, 彭志英. 功能性食品基料蛋白质及多肽开发现状. 粮食与油脂, 2001, 1: 39~41.
    42. 唐传核, 彭志英. 大豆蛋白水解物的苦肽以及脱除方法进展. 中国油脂, 2000, 25 (6) : 167~172.
    43. 田玮, 刘凤美, 王振阁. 乳源生物活性肽类研究进展. 河南畜牧兽医, 2003, 24 (6) : 10~12.
    44. 汪家政, 范明. 蛋白质技术手册. 科学出版社, 2002.
    45. 汪建斌, 邓勇. Alcalase 碱性蛋白酶对大豆分离蛋白水解作用的研究. 食品工业科技, 2002, 23 (1) : 61~63.
    46. 汪玉松, 邹思湘. 乳生物化学. 吉林, 吉林大学出版社, 1995, 12: 17.
    47. 王岗, 黄玉琴, 焦翠霞, 等. 乳中生物活性肽的研究进展. 内蒙古畜牧科学, 2002. 1: 16~19.
    48. 王进波. 乳源蛋白质的活性肽及其生理作用. 中国乳品工业, 2000, 28 (4) : 47~49.
    49. 王隽, 梁岐. 复合酶生成酪蛋白磷酸肽的工艺研究. 食品研究与开发, 2004, 25 (2) : 59~62.
    50. 王立晖. 胃蛋白酶酶解酪蛋白制备酪啡肽的研究[硕士学位论文]. 成都: 西华大学, 2005, 5, 3~4.
    51. 王稳航, 刘安军. 酪蛋白酶解多肽-Fe2+的制备及性质研究. 食品工业科技, 2004, 25 (8) : 53~56.
    52. 吴建中. 大豆蛋白的酶法水解及产物抗氧化活性的研究[博士学位论文]. 广东: 华南理工大学, 2003.
    53. 吴新良. 动物水解蛋白及其在方便面中的应用. 中国食品添加剂, 2000, 1: 63~65.
    54. 杨闯. 生物活性肽在营养保健中的应用. 食品科学, 2003, 24 (11) : 153~154.
    55. 杨萍, 邓尚贵, 吴玉廉, 等. 木瓜蛋白酶在制取青鳞鱼可溶性蛋白中的应用. 湛江海洋大学学报, 2002, 22 (3) : 38~41.
    56. 姚朔影, 李超能, 谢浩良, 等. 抗菌肽杀菌机理与杀菌特性研究. 中国食品添加剂, 2003, 4: 36~37.
    57. 叶建州, 白兴荣, 马伟光. 丝胶及其水解物的生物活性和药理作用研究进展. 云南中医学院学报, 2005, 28 (1) : 64~67.
    58. 乙引, 张显强, 唐金刚, 等. 木瓜蛋白酶的纯化和研究. 贵州师范大学学报 (自然科学版) , 2002, 20 (1) : 11~14.
    59. 殷军, 华欲飞, 陆健健, 等. 大豆蛋白乳化性能比较及机理探讨. 中国油脂, 2005, 30 (5) :35~38.
    60. 余艳菘. 酪蛋白磷酸肽对牙釉质龋再矿化作用的初步研究, 实用医学杂志, 2002, (18) 10: 1054-105.
    61. 张根生等. 鸡蛋蛋白水解多肽饮料的研究. 食品科技, 2002, 2: 44-45.
    62. 张国安. 生物质谱新技术及其在疾病蛋白质组研究中的应用[博士学位论文]. 南京: 复旦大学, 2003, 4: 12.
    63. 张和平, 张列兵. 现代乳品工业手册. 北京: 中国轻工业出版社, 2005, 8: 118.
    64. 张建忠, 郦一心. 酪蛋白和酪蛋白制品的开发. 中国乳品工业, 1998, 26 (6): 31~32.
    65. 张学忠, 王寰宇, 陈松明. 大豆新加工技术原理与应用. 北京: 科学技术文献出版社, 1999, 181~200.
    66. 张宇昊. 花生短肽制备及其功能活性研究[博士学位论文]. 北京: 中国农业科学院, 2007, 6: 13.
    67. 张源淑, 张春珍, 陈伟华, 等. 酪蛋白酶解产生阿片活性物质的条件确立. 宁夏农学院学报, 1999, 20 (2) : 28~31.
    68. 张源淑, 邹思湘. 反相高效液相色谱法分析结构相似酪啡肽. 食品科学, 2005, 26 (2) : 172~ 174.
    69. 张源淑, 邹思湘. 乳源阿片肽活性物质对动物消化、代谢的影响. 中国饲料, 2001, 13: 14~15, 21.
    70. 张源淑. 酪啡肽的鉴定及其对仔猪消化道功能的影响研究[博士学位论文]. 南京: 南京农业大学, 2004, 6: 58~59.
    71. 张珍英, 邓慧敏, 黎军, 等. MALDI-TOF-MS 测定多肽和蛋白质混合物的可行性研究. 中山大学学报 (自然科学版), 2002, 41 (6): 122~124.
    72. 赵国华, 陈宗道, 王光慈. 改性对玉米蛋白质功能性质和结构的影响 (Ⅰ) 酶解. 中国粮油学报, 2000, 15 (3) : 28~31.
    73. 赵国华, 陈宗道. 蛋白质水解物苦味研究进展. 粮油与油脂, 2000, 1: 28~30.
    74. 赵利, 王璋, 许时婴. Alcalase 水解酪蛋白特性的研究. 中国乳品工业, 2005, 4: 15~19.
    75. 赵锐, 顾谦群, 管华诗. 多肽物质分离与分析方法研究进展. 中国海洋药物, 2000, 3: 48~53.
    76. 周业飞, 孙镇平, 杭柏林. 外源性生物活性肽的营养与生理作用. 动物医学进展, 2003, 24 (6): 58~60.
    77. 邹远东. 引起世界关注的肽的生理特性.当代经济,2004,9: 39.
    78. Adamson N J., Reynolds E C. . Characterization of casein phosphopeptides prepared using alcalase: determination of enzyme specificity. Enzyme and Microbial Technology, 1996, 19: 202~209.
    79. Addeo F., Chianes L., Salzano A P., et al. . Characterization of the 12% trichloroacetic acid insoluble oligopeptides of Parmigiano-Reggiano cheese. Journal of Dairy Research, 1992, 59, 401~411.
    80. Adler-Nissen J. . Control of the proteolytic raction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical. Technology and Biotechnology, 1984, 34B: 215~222.
    81. Adler-Nissen J. . Enzymic Hydrolysis of Food Proteins, London, Elsevier Applied Science Publishers, 1986: 57~107.
    82. Alsina J., Albericio F. . Solid-phase synthesis of C-terminal modified peptides. Biopolymers Peptide Science Section, 2003, 71 (4): 454~477.
    83. Aoki H., Taneyamao O., Orlmo N., et al. . Effect of lipophilization of soy protein on its emulsion stabilizing properties. Journal of Food Science, 1981, 46: 1192~11195.
    84. Asselin J., Amiot J., Gauthier S F., et al. . Immunogenicity and allergenicity of whey protein hydrolysates. Journal of Food Science, 1988, 53, 1208~1211.
    85. Aubes D I., Capdevielle J J., Seris J L., et al. . Bitter peptide from hemoglobin hydrolysates: isolation and characterization. Federation of European Biochemical Societies, 1995, 364:115~119.
    86. Avena B R D J., Krochta J M., et al. . Optimization of edible coating formulations on zucchini to reduce water loss. Journal of Food Engineering, 1994, 21 (2), 197~214.
    87. Badal C S., Kiyoshi H. . Debittering of protein hydrolyzates. Biotechnology Advance, 2001, 19: 355~370.
    88. Baranyi M., Thomas U., Pellegrini A. . Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk. Journal of Dairy Research, 2003, 70. 189~197.
    89. Bennt L., Wheatcroft R., Smithers G A. . Review of allergic and intolerant ractions to dairy protein experienced by non-infant consumers. Australian Journal of Dairy Technology, 2001, (56): 126.
    90. Bera M B., Mukherjee R K. . Solubility, emulsifying and foaming properties of rice bran protein concentrates. Food Science, 1989, 54 (1): 142~145.
    91. Bernardi Don L S., Pilosof A M R., Bartholomal G B. . Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists’ Society, 1991, 68 (2):102~105.
    92. Berthou J. . Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. Federation of European Biochemical Societies, 1987, 218 (1): 55~58.
    93. Brantl V, Teschemacher T, Henschen A., et al. . Novel opioid peptides derived from casein (  -Casomorphin) I: Isolation from bovine casein. Peptone. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 1979, 360: 1211~1216.
    94. Byun H G., Kim S K. . Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan Pollack skin. Journal of Biochemistry and Molecular Biology, 2002, 35: 239~243.
    95. Carlsson A, Bennich H. . Attacin, an antibacterial protein from Hyalophora cecropia, inhibit synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect and Immunity, 1991, 59:3040~3045.
    96. Chakrabarti R. . A method of debittering fish protein hydrolysate. Journal of Food Science Technology, 1983, 20: 154~156.
    97. Chatzaki E., Makrigiannakis A., Margioris A N., et al. . The Fas/Fasl apoptotic pathway is involved in kappa-opioid-induced apoptosis of human endometrial stromal cells. Mol Hum Reprod, 2001, 7 (9): 867~874.
    98. Chen H M., Muramoto K., Yamauchi F. . Structural analysis of antioxidative peptides from soybean   -conglycinin. Journal of Agriculture of Food Chemistry, 1995, 43, 574~578.
    99. Chen H M., Muramoto K., Yamauchi F., et al. . Antioxidative properties of histidine containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture of Food Chemistry, 1998, 46, 49~53.
    100.Chiang W D., Tsou M J., Tsai Z Y. et al. . Angiotensin I converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chemistry, 2006, 98: 725~732.
    101.Chio C W., Kim S C., Hwang S S., et al. . Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 2002, 163:1161~1168.
    102.Christensen J E., Dudley E G., Pederson J A., et al. . Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 1999: 217~246.
    103.Clare D A., Swaisgood H E. . Bioactive milk peptides: A prospectus. Journal of Dairy Science, 2000, 83, 9:1187~1195.
    104.Cogan U., Moshe M., Mokady S. . Debittering and nutritional upgrading of enzymic casein hydrolyzates. Journal of Science Food Agriculture, 1981, 32: 459~466.
    105.Collins A. . Antioxidant intervention as a route to cancer prevention. European Journal of Cancer, 2005, 41, 1923~1930.
    106.Cudic M., Otvos J L. . Intracellular targets of antibacterial peptides. Curr Drug Targets, 2002, 3 (2):101~106.
    107.Cuénolée P., Sophie P., Ismail F. . Allergenicity of acidic peptides from bovine   -lactoglobulin is reduced by hydrolysis with Bifidobacterium lactis NCC362 enzymes. International Dairy Journal, 2005, 15: 439~448.
    108.Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annual Review of Physiology, 2004, 66, 361~384.
    109.Daniel J W., Kathrina R., Richard J. . Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 2008, 41: 43~52.
    110.David E., Stevenson D J., et al. . Protease-catalysed condensation of peptides as a potential means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates. Enzyme Microbial Technology, 1998, 22: 100~110.
    111.De Kok P MT., Rosing E A E. . Reactivity of pepides in the Maillard reaction. In: Parliamet TN, Morello H, McGorrin RJ, editors. Thermally generated flavors: Maillard, microwave and extrusion process. ACS Symposium Series 543. Washington DC. American Chemical Society, Press, 1994:172~181.
    112.Decker E A. , Wendy K M., Pindel E V., et al. . Interactions between carnosine and the different redox states of myoglobin. Journal of Food Science, 1995, 60: 1201~1204.
    113.Elena M., Aklile B D., Dave A L. . Soy protein pressure-induced gels. Food Hydrocolloids, 2002, 16, 625~632.
    114.Eloyd R A., Lewis C A. . Hydroxyl free radical formation from hydrogen peroxide by ferrous ironnucleotide complexes. Biochemistry, 1983, 11: 2645~2652.
    115.Ena J M., Vanberesteine C H. . Whey protein antienicity reduction by fungal proteinases and a pepsin/ pancreatic combination, Journal of Food Science, 1995, 60 (1): 104~116.
    116.Engel S L., Schaeffer T R., Waugh M H., et al. . Effects of the nonapeptide SQ 20881 on blood pressrur of rats with experimental renovascular hypertension. Proceedings of the Society for Experimental Biology Meddicine, 1973, 143: 483~487.
    117.Fehlbaum P. Bulet P. Chernysh S. et al. . Structure- activity analysis of thanatin, a 21- residue inducible insect defense peptide with sequence homology to frog skin antimicrobia1 peptides. Proceedings of the National Academy of Scienced of the USA, 1996, 93: 1221.
    118.Ferraretto A, Gravaghi C. Fiorilli A., et al. . Casein-derived bioactive phosphopepides: role of phosphoylation and primary structure in promoting calcium uptake by HT-29 tumor cells, Federation of European Biochemical Societies, 2003, 551: 92~98.
    119.FitzGerald R J., O’Cuinn G. . Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 2006, 24: 234~237.
    120.Flanagan J., FitzGerald R J. . Functionality of Bacillus proteinase hydrolysates of sodium caseinate. International Dairy Journal, 2002a, 12 (9): 737~748.
    121.Flanagan J., FitzGerald R J. . Phsicochemical and nitrogen solubility properties of Bacillusproteinase hydrolysates of sodium caseinate incubated with transglutaminase pre-and post- hydrolysis. Journal of Agicultural and Food Chemistry, 2002b, 50 (19), 5429~5436.
    122.Flat A M., Migliore S D., Jolles P. . Biologically active peptides from milk protein with emphasis on two examples concerning antithrombotic and immunomodulating activities. Journal of Dairy Science, 1993, 76: 300~310.
    123.Giuseppe F., Emanuela A., Troy D. . Quantification of Gluten Exorphin A5 in cerebrospinal fluid by liquid chromatography- mass spectrometry. Journal of Chromatography B, 2006, 833: 204~209.
    124.Glee K M. . Dietary enzymic hydrolysates of protein with reduced bitterness. Journal of Food Technology, 1974, 9: 21~29.
    125.Glee K M. . Improvements in or pelating to the production of pe-digested forms of protein. British patent, 1973, 133~936.
    126.Gobbetti M., Minervini F., Rizzello C G. . Angiotensin I converting-enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology, 2004, 57, 172~188.
    127.Guigoz Y., Solms J. Bitter peptides, occurrence and structure. Chemical Senses and Flavor, 1976, 2:71~84.
    128.Hannu K., Anne P. . Bioactive peptides: Production and functionality. International Dairy Journal, 2006, 16: 945~960.
    129.Helbig N B., Ho L., Christy G E., et al. . Debittering of skim milk hydrolysates by adsorption for incorporation into acidic bevervages. Journal of Food Science, 1980, 45:331~335.
    130.Henschen A., Lottspeich F., Brantl V. et al. . Novel Opioid derived from casein (  -casomerphins) Ⅱ structure of active components from bovine casein peptone. Hoppe Seylers Z Physical Chemistry,1979, 360, 1217~1224.
    131.Hill R D. . Bitter peptides from hydrolysed casein coprecipitate. Australian Journal of Dairy Technology, 1974, 29:32~38.
    132.Hill R D., Lahov E., Givol D. . A rennin-sensitive bond in alpha and beta casein. Journal of Dairy Research, 1974, 41, 147~153.
    133.Hiroshi, . Calcium and phosphorus availability from casein phosphopeptides in male growing rats. Nutrition Research, 1995, 15 (11): 1657~1667.
    134.Hoelzl C., Bichler J., Ferk F., et al. . Methods for the detection of antioxidants which prevent age related disease: A critical review with with particular emphasis on human intervention studies. Journal of Physiology and Pharmacology, 2005, 56, 49~64.
    135.Holt C. Wahlgren N W. et al. . Ability of a beta-casein phosphopeptides to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters, Biocemical Journal, 1996, 314 (3): 1035.
    136.Huang X., Kakuda W Y C. . Hydrocolloids in Emulsions: Particle Size Distribution and Interfacial Activity.Food Hydrocolloids, 2001 (15): 533~542.
    137.Hyung J S., Song H B., Dong O N. . Debittering of corn gluten hydrolysate with active carbon. Journal of Science Food Agricuture, 2000, 80: 614~618.
    138.Ichizo S., Akira F., Hiroshima U., et al. . Bitter taste of synthetic C-terminal tetradecapeptide of Bovine   -casein, H-Pro-Val-Leu-Gly-Pro-Val-Ary-Gly-Pro-Phe-Prro-Ile-Val-Oh, and its related peptides. Agriculture Biology Chemistry, 1985, 49 (9): 2587~2596.
    139.Ichizo S., Yasuharu N., Katsushige K., et al. . Variation in bitterness potency when introducing Gly-Gly residue into bitter peptides. Agriculture Biology Chemistry, 1990, 51 (8): 2103~2110.
    140.Ishibashi N. . Bitterness of leucine-containing peptides. Agriculture Biology Chemistry, 1987, 51 (9): 2382~2394.
    141.Ishibashi N. Kouge K., Shinoda I., et al. . A mechanism for bitter taste sensibility in peptides. Agriculture Biology Chemistry, 1988, 52, 3: 819~827.
    142.Ishibashi N., Sadamori K, Yamamoto O., et al. . Bitterness of phenylalanine and tyrosine containing peptides. Agriculture Biology Chemistry, 1987, 51: 3309~3313.
    143.Iván L E., José á G., Lourdes A., et al. . Identification of antibacterial peptides from ovine  s2- casein. International Dairy Journal in press, 2006, 16 (9): 1072~1080.
    144.Je J J., Park P J., Kim S K. . Antioxidant activity of a peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 2005, 38: 45~50.
    145.Jianwei S., Richard A, Smith et al. . Characterization of protein kinase A phosphorylation: multi-technique approach to phosphate mapping. Analytical Biochemistry, 2004, 324: 204- 218.
    146.Jolles P., Henschen A. . Comparison between the clotting of blood and milk. Trends of biochemistry Science, 1982 (7):325.
    147.Karas M., Hillenkamp F. . Laser desorption ionization of protein with molecular masses exceeding 10000 Daltons. Analytical Chemistry, 1988, 60: 2299~2301.
    148.Kato H. Suzuki T. . Bradykinin-potentiating peptides from the venom of Akistrodon halys blomhoffii: isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry, 1971, 10: 972~980.
    149.Kil S J., Froetschel M A. . Involvement of opioid peptides from casein on reticular motility and digesta passage in steers. Journal of Dairy Science, 1994, 77:111~123.
    150.Kilara A., Panyam D. . Peptides from milk proteins and their properties. Food Science and Nutrition, 2003, 43, 607~633.
    151.Kim Y E., Yoon S., Yu D Y., et al. . Novel angiotensin-I-converting enzyme inhibitory peptides derived from recombinant human  s1-casein expressed in Escherichia coli. Journal of Dairy Research, 1999a, 66, 431~439.
    152.Kim Y K., Yoon S., Yu D Y., et al. . Novel angiotension-I-converting enzyme inhibitory peptide from human  s1-casein. Biotechnol Lett, 1999b, 21: 575~578.
    153.Kitts D D. . Bioactive substances in food: identification and potential uses. Canadian Journal of Physiology and Pharmacology, 1994, 72: 423~434.
    154.Kuba M., Tana C., Tawata S. . Production of angiotensinⅠconverting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry, 2005, 40:2191~2196.
    155.Lalasidis G., Sjoberg L. . Two new methods of debittering protein hydrolyzates and a fraction of hydrolyzates with exceptionally high content of essential amino acids. Journal of Agricultural Food Chemistry, 1978, 26: 742~749.
    156.Lamettis A. S., Rasmussen P. Froliaer H., et al. . Proteolysis of bovine   -lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity. Eruopean Journal Biochemistry, 2002, 269: 1362~1372.
    157.Leclerc P L., Gauthier S F., Bachelard H., et al. . Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. International Dairy Journal, 2002, 12: 995~1004.
    158.Lee K D., Lo G G., Warthesen J J. . Removal bitterness from the bitter peptides extracted form Cheddar cheese with peptidases from Lactocuccus lactis ssp. Cremoris SK11. Journal of Dairy Science, 1996, 79: 1521~1528.
    159.Lieske B., Konrad G. . Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. International Dairy Journal, 1996, 6, 13~31.
    160.Lopez-Fandino R., Otte J., Camp J V. . Physiological, chemical and technological aspects of ilk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal, 2006, 16, 1277~1293.
    161.Lovsin K I., Zelenik B M., Abram V. . Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reverses-phase high-performance liquid chromatography. Journal of chromatography A, 1995, 704:113~120.
    162.Ludtke S J., Heller W T., Harroun T A., et al. . Membrane pores induced by magainins. Biochemistry, 1996, 35 (43): 13723~13727.
    163.L?pez E I., G?mez-Ruiz J A., Amigo L., et al. . Identification of antibacerial peptides from ovine  s2-casein. International Dairy Journal, 2006, 16, 1072~1080.
    164.L?pez-Exp?sito I., Minervini F., Amigo L. . Identification of antibacterial peptides from bovine κ-casein. Journal of Food Protection, 2006, 69 (12): 2992~2997.
    165.Mahmoud H I. . Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 1992, 57 (5): 1223~1229.
    166.Malkoski M., Dashper S G., Brien-Simpson N M., et al. . Kappacin, a novel antibacterial peptide from bovine milk. Antimicrobial Agents and Chemotherapy, 2001, 45:2309~2315.
    167.Marklund S., Marklund G. . Involvement of the superoxide anion radical in the autouxidation of pyrogallal and a convenient assay for superoxide dismutase. European Journal Biochemistry, 1974, 47: 469~477.
    168.Marta M., Amaya A. . Antihypertensive peptides derived from egg proteins. Nutrition Journal, 2006, 136 (6):1457~1460.
    169.Matoba T. Hayashi R., Hata T. . Isolation of bitter peptides in trypic hydrolysates of casein and their chemical structures. Agricultural Biotechnology Chemistry, 1970, 34: 1235~1243.
    170.Matoba T., Hata T. . Relationship between bitterness of peptides and their chemical structures. Agricultural Biotechnology Chemistry, 1992, 3:1423~1431.
    171.McCann K B., Shiell B J., Michalski W P., et a. . Isolation and characterization of a novel antibacterial peptide from bobine  s1-casein. International Dairy Journal, 2006, 16, 316~323.
    172.McCann K B., Shiell B J., Michalski W P., et al. . Isolation and characterization of antibacterial peptides derived from the f (164-207) region of bovine s2-casein. International Dairy Journal, 2005, 15:133~143.
    173.Meisel H. . Bioactive peptides from milk proteins: Aperspective for consumers and producers. Australian Journal of Dairy Technology, 2001, 56, 83~92.
    174.Meisel H. . Multifunctional peptides encrypted in milk proteins. BioFactors, 2004, 21, 55~61.
    175.Meisel H., Friser H. . Chemical characterization of bioactive peptides from in vivo digests of casein, Journal of Dairy Research, 1989, 56: 343~349.
    176.Mellema M., Heesakkers J W M., van Opheusden J H J., et al. . Structure and scaling behavior of aging rennet-induced casein gels examined by confocal microscopy and permeametry. Langmuir, 2000, 16, 6847~6854.
    177.Michael F., Hans-Werner L. . Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 1998, 826:109~134.
    178.Minervini F., Algaron F., Rizzello C G., et al. . Angiotensin- I-Converting-Enzyme-Inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 Proteinase-hydrolyzed caseins of milk from six species. Applied and Environmental Microbiology, 2003, 69 (9): 5297~5305.
    179.Morato A F., Carreira R L., Junqueira R G., et al. . Optimization of casein hydrolysis for obtaining high contents of small peptides: use of subtilisin and trypsin. Journal of Food Composition and Analysis, 2000, 13: 843~857.
    180.Muirhead E E., Brooks B. Arora K K. . Prevention of malignant hypertension by the synthetic peptide SQ 20,881. Laboratory Investigation, 1974, 30: 129~135.
    181.Murai A., Tsujimoto Y., Matsui H., et al. . An Aneurinibacillus sp. Strain AM-1 produces a praline-specific aminopeptidase useful for collagen degradation. Journal of Applied Microbiology, 2004, 96: 810~818.
    182.Muro T., Yamaguchi T., Tominage Y. . Removal of bitter peptides by the perotease from Streptomyces cellulosae. Kagaku to Kogyo, 1992, 66: 97~100.
    183.Murray T K., Baker B E. . Studies on protein hydrolysis I-preliminary observations on the taste of enzymic protein-hydrolysates. Journal of Science Food Agriculture, 1952, 3: 470~475.
    184.Muruyama S., Mhachi H., Awaya J., et al. . Angiotensin I–converting enzyme inhibitory activity of the C-terminal hexapeptide of  s1-casein. Agricultural and Biological Chemistry, 1987b; 51:2557~2561.
    185.Muruyama S., Mitachi H., Tanaka H., et al. . Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein. Agricutral and Biology Chemistry, 1987a, 51:1581~1586.
    186.Muruyama S., Nakagomi K., Tomizuka N., et al. . Angiotensin I–converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the uterus and the ileum of rats. Agricutural and Biology Chemistry, 1985, 49:1405~1409.
    187.Muruyama S., Suzuki H. . A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agricutural and Biology Chemistry, 1982, 46: 1393~1394.
    188.Nakai S J. . Structure-function relationships of food proteins with an emphasis on the importance of protein hydrophobicity. Journal of Agricultural Food Chemistry, 1983, 31, 676~683.
    189.Nakatani M., Nakata T., Kouge K., et al. . Studies on bitter peptides from casein hydrolyzate: XIV. Bitter taste of synthetic analogs of octapeptide Agr-Gly-Pro-Phe-Pro-Ile-Ile-Val, corresponding to the C-terminal protion of   -casein. Bulletin of the Chemical Society. Japan, 1994, 67: 438~444.
    190.Ney K H. . Aminosanre-zusammensetzung von proteinen nud die bitterkeit ihrer peptide. Z Lebensm-Untersuch Forsch, 1972, 149, 321~323.
    191.Ney K H. . Bitterness of peptides: amino acid composition and chain length. In: Bondreau J C, editor. Food Taste Chemistry. Washingto (DC): American Chemical Society, 1979: 149~173.
    192.Nicolas P., Mor A. . Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annual Review of Microbiology, 1995, 49, 277~304.
    193.Nielsen P M., Petersen D., Dambmann. C. . Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 2001, 66 (5): 642~646.
    194.Noguchi M., Yamashita M., Arai S., et al. . Bitter-masking activity of a glutamic acid-rich oligopeptide fraction. Journal of Food Science, 1975, 40:367~369.
    195.Ondetti M A. Williams N J. Sabo E F. et al. . Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochemistry, 1971, 10: 4033~4039.
    196.Ono T., Ohatawa T., Takagi Y. . Complex of casein phosphopeptides and calcium phosphate prepared from casein micells by tryptic digeston, Bioscience Biotechnology Biochemistry, 1994, 58 (8): 1376~1380.
    197.Oshima G., Shimabukuro H., Nagasawa K. . Peptide inhibitors of angiotensin I converting enzyme In digests of gelatin by bacterial collagenase. Biochimica and Biophysica Acta, 1979, 566:128~37.
    198.Otagiri K. Yasuharu N., Ichizo S., et al. . Studies on a model of bitter peptides including arginine, proline and phenylalanine residues Ⅰ bitter taste of di- and tripeptides, and bitterness increase of the model peptides by extension of the peptides chain. Agriculture Biology Chemistry, 1985, 49(4):1019~1026.
    199.Pearce K N., Kinsella J E. . Emulsifying properties of proteins: evaluation of a trubidimetric technique. Journal of Agricultral Food Chemistry, 1978, 26 (3): 716~723.
    200.Pedersen B. . Removing bitterness from protein hydrolysates.Food Technology, 1994, 10: 96~98.
    201.Pena R E A., Xiong Y L. . Antioxidative activity of whey protein hydrolysates in a liposomal system. Journal of Dairy Science, 2001, 84, 2577~2583.
    202.Pihlanto-Leppala A., Rokka T., Korhonen H. . Angiotensin converting enzyme inhibitory peptides derived from bovine milk p roteins. International Dairy Journal, 1998, 8: 325~331.
    203.Piot J M., Zhao Q., Guillochon, D., et al. . Isolation and characterization of two opioid peptides from a bovine hemoglobin peptidic hydrolysate. Biochemical and Biophysical Research Communications, 1992, 189, 101~110.
    204.Quaglia. . Influence of the degree of hydrolysis on the solubility of the protein hydrolysatis from Sardine. Journal of Science Food Agriculture, 1987, 38: 271~276.
    205.Ramarathna K., Bart C W, Investigation of the ability of a purified protease from Pseudomonas fluorescens RO98 to hydrolyze bitter peptides from cheese. Internaional Dairy Journal, 2000, 10: 75~79.
    206.Reynolds E C., Black C L., Cai F., et al. . Advances in Enamel Remineralization: Casein Phosphopeptide Amorphous Calcium Phosphate. Journal of Clinical Dentistry, 1999, 10: 86~88.
    207.Reynolds E C., Riley P F., Adamson N J. . A selective precipitation purification procedure for multiple phosphoseryl-containing peptides and methods for their identification, Analytical Biochemistry, 1994, 217, 277~284.
    208.Rival S G., Fornaroli S., Boeriu C G. . Caseins and casein hydrolysate.Ⅰ. Lipoxygenase inhibitory properties. Journal of Agriculture Food Chemistry, 2001, 49: 287.
    209.Roland J F., Mattis D L., Kiang S., et al. . Hydrophobic chromatography: debittering protein hydrolysate. Journal of Food Science, 1978, 43 (5): 1491~1493.
    210.Roozen J P., Pilnik W. . Ultrafiltration controlled enzymatic degradation of soy protein. Process Biochemistry, 1973, 8.24~25.
    211.Ryh?nen E L., Pihlanto L., A., Pahkala E. . A new type of ripened; low-fat cheese with bioactive properties. International Dairy Journal, 2001, 11, 441~447.
    212.Saito T., Nakamura T., Kitazawa H., et al. . Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. Journal of Dairy Science, 2000, 83, 1434~1440.
    213.Sathe S K. . Functional properties of drum-dried chickpea flours. Food Science, 1981, 46: 71~78.
    214.Satio K., Jin D H., Ogawa T., et al. . Antioxidant properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 2003, 51, 3668~3674.
    215.Schusdziarra V. . Effect of   - Casomorphins on somatostatin release in dogs. Endocrinology, 1983, 112 (6): 1948~1951.
    216.Shah N P. . Effects of milk-derived bioactive peptiodes: an overview. Journal of Nutrition, 2000, (84): 3~10.
    217.Shai Y. . Mechanism of the binding, insertional destabilization of phospholipids bilayer membranes by helical antimicrobial and cell nonselective membrane lytic peptides. Biochim Biophys Acta, 1999, 1462 (1-2): 55~70.
    218.Slattery H., Fitzgerald R J. . Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. Journal of Food Science, 1998, 63: 418~422.
    219.Smith D D., Saha S., Fang G., et al. . Modifications to the N-terminus but not the C-terminus ofcalcitonin gene-related peptide (8-37) produce antagonists with increased affinity. Journal of Medicinal Chemistry, 2003, 46 (12): 24~27.
    220.Sofia V. Silva F. Xavier M. . Caseins as source of bioactive peptides. International Dairy Journal, 2005, 15: 1~15.
    221.Stanly D W. . Non-bitter protein hydrolyzate. Canadian Institute of Food Science and Technology Journal, 1981, 14: 49~52.
    222.Stein I A., Svein J H., Vincent G H. . Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 2005, 40: 1957~1966.
    223.Suetsuna K, Nakano T. . Identification of an antihypertensive peptide from peptic digests of wakame (Undaria pinnatifida). Journal of Nutrition Biochemistry, 2000, 11: 450~454.
    224.Sugiura Y. . Control of bitter taste by acidic phospholipids in health food. Janpanese Paten. 08173093, 1996.
    225.Swaisgood H E. . Chemistry of caseins. In Advanced Dairy Chemistry- Vol 1: Proteins; Fox, P. F., Ed.; Elsevier Science Publishers: Essex, 1992; 63~110.
    226.Swaisgood H E. . Chemistry of milk proteins. In Developments in dairy chemistry-I. Proteins; Fox, P. F., Ed.; Applied Science Publishers: London, 1982, 1~59.
    227.Tamura M., Mori N., Miyoshi T., et al. . Pratical debittering using model peptides and related compounds. Agricultural and Biological Chemistry, 1990, 54: 41~51.
    228.Taylou S L. . Allergic and sensitivity to food components in nutritional toxicologyed, Orlando: Hatchcock, J. N. Academic press, 1987: 173~198.
    229.Teruyoshi M., Tadao H.. Relationship between of peptides and their chemical structures. Agricultural and Biological Chemistry, 1972, 36 (8): 1423~1431
    230.Teschemacher H. . Opioid receptor ligands derived from food proteins. Current Pharmaceutical Design, 2003, 9, 1331~1344.
    231.Tirelli A., Noni I de, Resmini P. . Bioactive peptides in milk products. Journal of Food Technology, 2000, 5 (1): 31~34.
    232.Toshikazu N., Satoshi Y., Michio F., Kiyoshi H. . Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidiomycete Grifola frondosa. Journal of Bioscience and Bioengineering, 2002, 93 (1): 60~63.
    233.Tsai J S., Lin T C., Chen J H., et al. . The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin Ⅰconverting enzyme. Process Biochemistry, 2006, 41 (11): 2276~2281.
    234.Umetsu H.. Debittering mechanism of bitter peptides from milk casein by wheat carboxy-Peptidase. Journal of Agriculture Food Chemistry, 1983, 31(1): 50~53.
    235.Van H E M., Escalona M., Deswert L F A. . Allergenic and antigenic activity of peptide fragments in a whey hydrolysate formula. Clinical and Experimental Allergy, 1998, 28:1131~1137.
    236.Vermeirssen V., Van C J., Verstraete W. . Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition, 2004, 92, 357~366.
    237.Vertes Z., Sandor A., Kovacs K A., et a1. . Epidermal growth factor influenced by opioid peptides in immature rat uterus. Journal of Endocrinol Invest, 2000, 23 (8): 502~508.
    238.Visser S., Slangen K J., Hup G. . Some bitter peptides from rennet-treated casein. A method for their purification, utilizing chromatographic separation on silica gel. Neth Milk Dairy Journal, 1975, 29:319~324.
    239.Volkert M A., Klein B P. . Protein sepersibility and emulsion characteristics of flour soy products. Journal of Food Science, 1979, 44:93~96.
    240.Walsh D J., Cleary D., McCarthy, et al. . Modification of the nitrogen solubility properties of soy protein isolated following proteolysis and transglutaminase crossin-linking. Food Research International, 2003, 36: 677~683.
    241.Wang H X, NG T B. . Pleureryn,a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochemical and Biophysical Research Communications, 2001, 289: 750~755.
    242.Wang J S., Zhao M M., Zhao Q Z., et, al. . Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry, 2007, 101: 1658~1662.
    243.Webb K E. . Recent developments in gastrointestinal absorption and tissue utilization fo peptides: A Review. Journal of Dairy Science, 1993, 76: 351~361.
    244.Wieprecht T., Apostolov O., Beyermann M., et al. . Membranebinding and pore formation of the antibacterial peptide PGL : thermodynamic and mechanistic aspects. Biochemistry, 2000, 39 (2): 442.
    245.Wróblewskab B., Karamc M. Amarowica R. . Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. International Journal of Food Science and Technology, 2004, 39: 839~850.
    246.Wu J P., Aluko R E., Muri A D. . Improved method for direct high-performance liquid chromatography assay of angiotension I-converting enzyme-catalyzed reaction. Journal of Chromatography A, 2002, 950: 125~130.
    247.Wu J. . Progress in research of biologically active peptides. Food and Machinery, 1998, 1: 6~8.
    248.Yamamoto N., Masafumi M., Toshiaki T. . Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. Journal of Dairy Science, 1999, 82: 1388~1393.
    249.Yeung A C., Glahn R P., Miller D D. . Dephosphorylation of sodium caseinate, enzymatically hydrolyzed casein and casein phosphopeptides by intestinal alkaline phosphatase: implications for iron bioavailability. Journal of Nutritional biochemistry, 2001, 12 (5): 292~299.
    250.Yeung A C., Glahn R P., Miller D D. . Effects of iron source on iron availability from casein and casein phosphopeptides. Journal of food science, 2002, 67 (3): 1271~1275.
    251.Yingzhang. . New antimicrobial plant peptides. FEMS Microbiology letters, 1997, 149 (1):59~69.
    252.Yoshikawa M., Suganuma M., Takahashi M., et al. . Enzymematic release of pro- ? -casomorphin-9 and   -casomorphin-9 from bovine   -casein. In: Brantl, V, Teschemacher, H,editors. -casomorphins and related peptides: recent developments. Weinheim: VCH, 1994: 38~42.
    253.Young J J., Yong K S., Kwon K S. . Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. European Food Research and Technology, 2005, 221: 157~162.
    254.Zhongjie M., Yamaguchi M. . Synergistic effect of genistein and casein phosphopeptides on bone components in young and elderly female rats. Journal of Health science, 2000, 46 (6): 474~479.
    255.Zucht H D., Raida M., Adermann K., et al. . Casocidin-I: a casein- s2 derived peptide exhibits antibacterial activity. Federation of European Biochemical Societies, 1995, 372:185~188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700