汽车点火系统电磁干扰的仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车内的干扰电磁场,主要来自发动机点火系统、发电机系统以及电动机和各种继电器触点的开闭等,而其中最强的电磁干扰源是点火系统。一方面,由于点火系统工作过程中所产生的电磁干扰的强度高,频率范围广。另一方面,随着汽车电子技术的不断发展,车载电子设备的不断增多,工作电平不断降低。这使得点火系统对车载设备的电磁危害大幅增加。所以,对汽车点火系统的电磁兼容性进行研究就具有极为重要的理论意义和工程价值。本论文在重庆市自然科学基金重点项目“汽车电气系统电磁兼容性研究”(NO. CSTC, 2006BA6015)的支持下,重点对汽车点火系统在工作过程中形成的电磁干扰进行了仿真和实验研究。主要内容如下:
     ①基于“场—路”结合法对点火系统的传导电磁骚扰进行了仿真研究。根据点火系统各组件的电磁特性建立其等效电路模型,并运用电磁场数值法对各组件的物理模型进行计算以获得其等效电路模型所需的电参数。在此基础之上,联立各组件的等效电路模型构成了点火系统传导电磁骚扰的仿真模型。仿真和实验结果的对比,验证了方法的正确性。
     ②基于FDTD法对点火系统的辐射电磁骚扰进行了仿真研究。以初级线缆和次级高压导线上的瞬变电压所形成的辐射电磁场为主要干扰源,通过建立适于电磁仿真的发动机点火系统和汽车整车的三维CAD实体模型,运用FDTD法对台架上点火系统的辐射电磁场,以及点火系统引起的整车辐射电磁场进行了仿真计算。仿真和实验结果的比较,证明了方法的正确性。
     ③建立了点火系统与车内设备互连线缆间串扰问题的简化模型,提出了运用人工神经网络对串扰模型进行预测的方法。选择对串扰响应有影响的电磁骚扰参数作为输入预测因子,用基于误差反向传播的BP网络构造输入预测因子与串扰响应输出之间的映射关系,用电磁场数值法计算获得的训练样本集对构造好的BP网络进行训练,以获得串扰的BP预测模型。将串扰的BP预测结果和测试样本进行了比较,表明了该方法的有效性。并提出了相应的布线原则以抑制车内设备线缆间的串扰。
     ④研究了汽车点火系统的辐射电磁场通过孔缝和线缆耦合对车内设备形成干扰的仿真方法。首先,运用孔缝衍射、场对线激励和含分布源传输线理论,获得了辐射场通过孔缝耦合形成对设备干扰的数学预测模型。然后,提出了一种求解辐射场通过场线耦合形成对设备干扰的等效替代模型。最后,仿真分析了辐射场的入射角度、设备孔缝的大小及连接线缆的长度对耦合干扰电压的影响。
     ⑤对汽车点火系统电磁骚扰的抑制措施进行了理论分析,并针对部分抑制措施进行了实验测试。理论分析和测试结果表明,采用电阻型火花塞、线绕电阻型高压导线、加铁氧体及采用滤波可以有效降低点火系统的电磁骚扰。
Electromagnetic interference (EMI) fields inside the automobile result from many sources such as petrolic engine ignition system, generator system, electromotor, and all kinds of relay switching. The primary EMI source is the engine ignition system. On one hand, the EMI produced by the petrolic ignition system is high intensity and has a broad-band spectrum. On the other hand, with the rapid development of automotive electronic technology, electronic components and modules are widely used in automobile nowadays, and the working voltages of electronic devices gradually decrease, it makes these devices more vulnerable to EMI. Therefore it is of great theoretical significance and practical value to investigate the electromagnetic compatibility (EMC) of petrolic ignition system. Supported by the Natural Science Foundation Project of Chongqing, China (NO. CSTC, 2006BA6015), the experiment and simulation method for the EMI of automotive ignition system is thoroughly investigated in this dissertation. The main contents are listed below:
     ①Based on Field-Circuit combination method, the conducted electromagnetic disturbance of igniton system is simulated. According to each of the ignition system component’s electromagnetic properties to establish the equivalent circuits model for each component, and using electromagnetic numerical methods to calculate the physical model to obtain the electrical parameter for each circuit model, and then based on each circuit model to build the conducted electromagnetic disturbance model for the entire ignition system. Simulation and test results verify the correctness of the simulation.
     ②The radiation electromagnetic disturbance of ignition system is simulated based on the finite difference time domain (FDTD) method. A three-dimensional model of the ignition system and the whole vehicle suitable for electromagnetic simulation is built using CAD techniques. Considering the transient interference current on the primary and ignition wire as the dominant radiation source and using the FDTD method, the radiation electromagnetic disturbance of the ignition system on platform, and inside the vehicle are calculated. Simulation and test results verify the correctness of the simulation.
     ③The prediction of crosstalk coupling among interconnection wires is proposed using artificial neural networks. The input prediction features consist of those EMI parameters that have the influence on the crosstalk coupling. Using the back propagation (BP) training algorithm, the relationship between the input prediction features and the output crosstalk coupling response of the interconnection wires can be constructed. The learning sample set is obtained by the FDTD method. The effectiveness of the proposed method is verified by comparing the prediction values of the BP network and the test sample values. Finally, a wiring arrangement method is proposed for suppressing the crosstalk coupling inside the automobile.
     ④The simulation method of the radiation EMI fields penetrating through the apertures and connection cables that interfered the electronic equipment is investigated. Based on the theory of aperture diffraction, field excitation to cable and transmission line theory with distributing source, the mathematical prediction model of the radiation EMI fields through the equipment aperture is described. Moreover, an equivalent substitution model for field to wire coupling of the radiation EMI fields coupling to the equipment external cable is presented. Finally, simulation was conducted on the impact of the incidence angle, the aperture size, and the cable length of the radiation EMI on the coupling interference voltage.
     ⑤Electromagnetic disturbance suppressing methods of automotive ignition system are theoretical researched and some suppressing methods are also measured. Theoretical analysis and experimental results show that selection of resistor-type spark plug and ignition wire , add the ferrite and filter could reduce the electromagnetic disturbance of ignition system.
引文
[1]邹逢兴,张湘平等.电磁兼容技术[M].北京:国防工业出版社, 2005.
    [2]国家标准GB/T4365-2003.电工术语电磁兼容.
    [3] Andersen P. An overview of automotive EMC standards[C]. IEEE International Symposium on Electromagnetic Compatibility, 2006, 3(8): 14-18.
    [4] Maxam G L. Hsu H P, Wood P W. Radiated ignition noise due to the individual cylinders of an automobile engine [J]. IEEE Trans on Vehicular Technology, 1976, 25(5):33-38.
    [5] Vipul Patel, Mark Steffka. Vehicular spark ignition systems radiated emissions and reception performance [J]. IEEE Trans on Electromagnetic Compatibility, 2005 (5):19-23.
    [6] Chen Chingchi. Predicting Vehicle-Level EMC Performance Utilizing On-Bench Component Characterization Results [C]. IEEE International Symposium on Electromagnetic Compatibility, 1999, 2(8):765-769
    [7] Ruddle A R, Ferrieres X. Experimental validation of time-domain electromagnetic models for field coupling into the interior of a vehicle from a nearby broadband Antenna [J]. IEE Proc.-Sci. Meas. Technol, 2004, 151(11):430-433.
    [8] Englmaier A, Scholl B. EMC Modelling Strategy for Automotive Applications[C].29th European Microwave Conference, 1999, 2(10):317-320.
    [9] Shepherd R A. New Techniques for Suppression of Automobile Ignition Noise [J]. IEEE Trans on Vehicular Technology, 1976, 25(2):2-12.
    [10]宋祖勋,张学平.活塞发动机火花电磁干扰抑制方法研究[J].西北工业大学学报, 2003,21(1):1-5.
    [11]谢俊文.汽车暖风电动机的无线电骚扰抑制技术[J].汽车电器,2006,21(11):52-59.
    [12] Liao W J, Baertlein B A, Gilmore W, et al. The role of grounding in automotive EMC [C]. IEEE International Symposium on Electromagnetic Compatibility, 1999 2(8): 745-750.
    [13] Oranc H S. Ignition Noise Measurements in the VHF/UHF Bands [J]. IEEE Trans on Electromagnetic Compatibility, 1975, 17(5):54-64.
    [14] Yoshiaki Tarusawa, Sadayuki Nishiki, Toshio Nojima. Fine Positioning Three-Dimensional Electric-Field Measurements in Automotive Environments [J]. IEEE Trans on Vehicular Technology, 2007, 56(3): 1295-1306.
    [15] Noble I E.Electromagnetic compatibility in the automotive environment [J]. IEE Proc.-Sci. Meas. Technol., 1994, 141 (4): 252-258.
    [16] Noble I E. EMC and the automotive industry [J]. Electronics & Communication Engineering Journal, 1992, 4(5): 263-258.
    [17]戴焯,周伟.汽车电系电磁干扰源[J].武汉汽车工业大学学报. 1999, 21(4):4-7.
    [18] Yamamoto S, Ozeki O. Properties of high-frequency conducted noise from automotive electrical accessories [J]. IEEE Trans on Electromagnetic Compatibility, 1983, 25(1):1-7.
    [19]黄勇,曾帆.电动汽车共模电流传导特性的研究[J].电工电能新技术, 2007, 26(3): 24-28.
    [20] Seibert G, Metzner D, Klotz F. Behavioral modelling of ICs for investigations of conducted emissions in automotive systems [C] 17th International Zurich Symposium on Electromagnetic Compatibility, 2006, 27 (2)3:356-358
    [21] Hara O M, Colebrooke J. Automotive EMC test harnesses: standard lengths and their effect on conducted emissions IEEE International Symposium on Electromagnetic Compatibility [C], 2003, 11(5):233-236
    [22] Makaran J E, Lovetri J. Prediction of conducted RFI emissions in BLDC motors for automotive applications[C]. IEEE International Symposium on Electromagnetic Compatibility, 2001, 1(8):21-25.
    [23] Loeckx J, Gielen G. Efficient identification of major contributions to EMI-induced rectification effects in analog automotive circuits[C]. 17th International Zurich Symposium on Electromagnetic Compatibility, 2006, 27(2):148-151.
    [24]王健,高勇.汽车电子转向器电磁传导敏感度测试技术研究[J]西安理工大学学报,2007, 23(2):168-171.
    [25] Ivanov V, Plagens M. Measurement of conducted transients on automotive sensors[C]. IEEE International Symposium on Electromagnetic Compatibility, 2000, 1 (8):431-436.
    [26] Piazza Di, Ragusa A. A model of electromagnetic radiated emissions for dual voltage automotive electrical systems[C]. IEEE International Symposium on industrial Electronics, 2004, 1(5):317-322.
    [27] Sun Shishuang, Drewniak J, Pommerenke D. Common-mode radiation resulting from handassembled cable bundles on automotive platforms[C]. IEEE International Symposium on Electromagnetic Compatibility, 2006, 2(8): 298-303.
    [28]汪泉弟,刘春艳,俞集辉.汽车火花点火系统电磁干扰的抑制方法[J].重庆大学学报(自然科学版),2007,30(7):46-49.
    [29]李旭,俞集辉,汪泉弟,李永明.基于CAD技术实现汽车电磁兼容的建模和仿真[J].重庆大学学报(自然科学版),2007,30(12):21-24.
    [30] Frei S, Jobava R G, Topchishvili D. Complex approaches for the calculation of EMC problemsof large systems [C]. IEEE International Symposium on Electromagnetic Compatibility, 2004, 3(8):826-831.
    [31] Jobava R G, Bogdanov F G, Gheonjian A L. Analysis of influence of vehicle bodyshell on the characteristics of wire antennas using a new MoM-based EM/EMC solver [C]. IEEE International Symposium on Antennas and Propagation, 2003, 4(6):831-835.
    [32] Topchishvili D, Jobava R, Bogdanov F. A hybrid MTL/MoM approach for investigation of radiation problems in EMC [C]. Proceedings of the 9th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2004, 10: 65-68.
    [33] Liu Geping, Chen Chingchi, Tu Yuhua, et al. Anticipating full vehicle radiated EMI from module-level testing in automobiles [C]. IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, 2002, 2(8): 982-986.
    [34] Liu Geping, Pommerenke D J, Drewniak J L, et al. Anticipating vehicle-level EMI using a multi-step approach [C]. IEEE International Symposium on Electromagnetic Compatibility, 2003, 1(8): 419-424.
    [35] Anzaldi G, Riu P J, Silva F, et al. Finite difference time domain low cost modeling for automotive environments [C]. IEEE International Symposium on Electromagnetic Compatibility, 2004, 3(8): 775-780.
    [36] Ferrieres X, Parmantier J P, Bertuol S, et al. Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem [J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 624-634.
    [37] Neumayer R, Stelzer A. Continuous simulation of system-level automotive EMC problems[C]. IEEE International Symposium on Electromagnetic Compatibility, 2003, 1(8): 409-413.
    [38] Jobava R, Karkashadze D, Frei S. Equivalent circuit approach in solution of low frequency automotive EMC problems [C]. Proceedings of 8th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2003, 9: 22-27.
    [39] Smith W T, Paul C R, Savage J S, et al. Crosstalk modeling for automotive harnesses [C]. IEEE International Symposium on Electromagnetic Compatibility, 1994, 8: 447-452.
    [40] Weber S, Guttowski S, Hoene E, et al. EMI coupling from automotive traction systems [C]. IEEE International Symposium on Electromagnetic Compatibility, 2003, 1(5): 591-594.
    [41] Yu Shaofeng, Li Wei, Zhang Bo, et al. Analysis of cable parameters on the real chassis by measurement [C]. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 2006, 2:73-76.
    [42] Frei S, Jobava R G, Karkashadze D, et al. Calculation of low frequency EMC problems in large systems with a quasi static approach [C]. IEEE International Symposium on ElectromagneticCompatibility, Santa Clara, CA, 2004, 3(8): 798-803.
    [43] Sun S, Liu G, Pommerenke D J, et al. Anticipating EMI and on-board interference in automotive platforms [C]. IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, 2004, 3(8): 792-797
    [44] Lawton S, Ward D D, Cloude S R, et al. Hybrid time domain modeling for automotive Electromagnetic Compatibility [C]. Second International Conference on Computation in Electromagnetics, London, 1994, 4: 275-278.
    [45] Ruddle A, Ward D, Williams A. Objective validation of automotive EMC models [C]. IEEE International Symposium on Electromagnetic Compatibility, Denver, 1998, 1(8): 475-479.
    [46] Ruddle A , Williams A, Ward D, et al. Objective validation techniniques for automotive EMC engineering[C]. IEE Seminar on Electromagnetic Compatibility for Automotive Electronics, 1999, 9:71-76.
    [47] Hara M O, Colebrooke J. Automotive EMC test harnesses: standard lengths and their effect on conducted emissions [C]. IEEE International Symposium on Electromagnetic Compatibility, Istanbul, Turkey, 2003, 1(5): 233-236.
    [48] Burghart T, Rossmanith H, Schubert G. Evaluating the RF emissions of automotive cable harness [C]. IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, 2004, 3(8):787-791.
    [49] Abe T, Tsubota K, Takano T. Evaluation results of high speed modem for EMI reduction automotive use [C]. Proceedings of the Intelligent Vehicles Symposium, 1994, 10: 155-159.
    [50] Silva M, Quilez J. EMI from an automotive CAN bus [C]. IEEE International Symposium on Electromagnetic Compatibility, Seattle, 1999, 1(8):512-516.
    [51] Korber B, Sperling D. EMC test method for coupling into and decoupling from the wiring harness of automotive components in the VHF band [C]. International Symposium on ElectromagneticCompatibility, Santa Clara, CA, 2004, 3(8):946-951.
    [52] Chen Chingchi. Predicting vehicle-level radiated EMI emissions using module-level conducted EMIs and harness radiation efficiencies [C]. IEEE InternationalSymposium on Electromagnetic Compatibility, Montreal, 2001, 2(8):1146-1151.
    [53] Zitzmann M L, Grillmair R, Clees T, et al. Hybrid solver strategies in automotive EMC simulation [C]. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 2006, 2:340-343.
    [54] Salio S, Canavero F, Lefebvre J, etal. Statisticaldescription of signal propagation on random bundles of wires [C]. Proceedings of the International Symposium on Electromagnetic Compatibility, Zurich, Switzerland, 1999, 2: 499-504.
    [55] Sun Shishuang, James Drewniak, David Pommerenke. Common-Mode Radiation Resulting from Hand-Assembled Cable Bundles on Automotive Platforms [C]. IEEE International Symposium on Electromagnetic Compatibility, Portland, Oregon, 2006, 8:14-18.
    [56] Rakouth H, Comstock L. Characteristics of AC grounding in an automotive ECU [C]. IEEE international symposium on electromagnetic compatibility, Montreal, 2001, 2(8):1233-1235.
    [57]王建伟.汽车电子零部件EMC测试的供电问题[J].安全与电磁兼容. 2008,1:75-78.
    [58] Ala G, Di Piazza M C, Tine G, et al. Numerical simulation of radiated EMI in 42 V electrical automotive architectures [J]. IEEE Transactions on Magnetics, 2006, 42(4): 879-882.
    [59] Nasiri A. Different topologies of active EMI/ripple filters for automotive DC/DC converters [C]. IEEE Conference on Vehicle Power and Propulsion, 2005, 9:7-9.
    [60] Chen S, Nehl T W. Towards EMI prediction of a PM motor drive for automotive applications [C]. 8th Annual Applied Power Electronics Conference and Exposition, 2003, 1(2): 14-22.
    [61] Hoene E, Guttowski S. Rf-properties of automotive traction batteries [C]. IEEE International Symposium on Electromagnetic Compatibility, Istanbul, Turkey, 2003, 1(5): 425-428.
    [62] Loeckx J, Gielen G. Efficient identification of major contributions to EMI-induced rectification effects in analog automotive circuits[C]. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 2006, 2:148-151.
    [63] Noble I E. EMC of automotive digital control system [C].IEE Colloquium on EMC in High Integrity Digital Systems, London, 1991, 5: 91-94.
    [64] Ranganathan S, Beetner D G, Wiese R. An expert system architecture to detect system-level automotive EMC problems [C]. IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, 2002, 2(8): 976-981.
    [65] Todd Hubing. EMC Expert Systems for Evaluating Automotive Designs [C]. IEEE International Symposium on Electromagnetic Compatibility, Portland, Oregon, 2006, 8:14-18.
    [66] Shepherd R A. New Techniques for Suppression of Automobile Ignition Noise [J]. IEEE Trans on Vehicular Technology, 1974, 3 (8):72-85.
    [67] Shepherd R A, Gadd J C. gnition Noise of Foreign and Domestic Vehicles in Use in the United States [J]. IEEE Trans on Vehicular Technology, 1980, 3 (8):338-346.
    [68] Spaulding A D. Voice Communication System Performance in the Presence of Automotive Ignition Noise [J]. IEEE Trans on Electromagnetic Compatibility, 1982, 3 (8):344-348.
    [69] Canavero F. Numerical simulation for early EMC design of cars [C]. 4th conference on electromagnetic compatibility, Brugge, Beligum, 2000, 9:32-39.
    [70] Hussein M, Sebak A. Application of the Finite-Difference Time-Domain Method to theAnalysis of Mobile Antennas [J]. IEEE Trans on Vehicular Technology, 1996, 45 (3):417-426.
    [71] Laurent Paletta, Jean-Philippe Parmantier. Susceptibility Analysis of Wiring in a Complex System Combining a 3-D Solver and a Transmission-Line Network Simulation [J]. IEEE Trans on Electromagnetic Compatibility, 2002, 44 (2):309-317.
    [72]余召锋,于颖,徐鸣谦等.国内外汽车电磁兼容研究发展状况[J].客车技术与研究, 2007,2:8-10.
    [73] Rubinstein A, Rachidi F, Rubinstein M. On wire-grid representation of solid metallic surfaces [J]. IEEE Trans on Electromagnetic Compatibility, 2005, 47(2):192-195.
    [74] Ruddle A R. GEMCAR: guidelines for EMC modelling for automotive requirements [C]. GEMCAR Workshop held at EMC Zurich, Switzerland, Tutorials, 2003, 2:225-233.
    [75]徐立.我国汽车电磁兼容发展状况[J].安全与电磁兼容, 2003,1:25-37.
    [76]姜述刚,袁大宏.汽车电磁兼容性综述[J].汽车技术, 1996,8:1-6.
    [77]章一舫.建立我国汽车电磁兼容性研究体系的探讨[J].上海汽车,1998,1:31-32.
    [78]刘新亮.汽车电器的电磁兼容[J].汽车电器,1996,2001,6:1-5.
    [79]陈昌巨.汽车电系传导干扰模拟研究[J].武汉汽车工业大学,2003,25(5):55-57.
    [80] LI Xu, YU Ji-hui, WANG Quan-di, LI Yong-ming. Noise Spark Current cause by Capacitive Discharge in an Automotive Secondary Ignition System [C]. IEEE international symposium on Microwave, Antenna, Propagation and EMC Technologies, 2007, 8:1319-1322.
    [81]俞集辉,马晓雷.车载天线电磁特性及耦合度的仿真研究[J].系统仿真学报,2008,20(6):1315-1318.
    [82]陈渝光.汽车电器与电子设备[M].北京:机械工业出版社,1999,1.
    [83] Kang In-ho, Fujiwara O. Analytical approach to the spark resistance formula caused by electrostatic discharge [J]. Electronics Letters, 1997, 33(7): 1203-1204.
    [84] K S Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media [J]. IEEE Trans. Antennas and Propagation, 1966, 14(3):302-307.
    [85] Berenger J P. A perfectly Matched Layer For the Absorption of Electromagnetic Waves [J]. Comput Phys, 1994, 114(2):185-200.
    [86]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社, 2002.
    [87] Korada R Umashankar, Allen Taflove. Calcuation Calculation and Experimental Validation of Induced Currents on Coupled Wires in an Arbitrary Shaped Cavity [J]. IEEE Trans. Antennas and Propagation, 1987, 35(11):1248-1257.
    [88]蔡仁刚,戴慈庄,肖登健.电磁场对航空电子设备干扰的预测研究[J].北京航空航天大学学报,1995,21(4):141-146.
    [89] Clark A, Larsen E. Aircraft electromagnetic compatibility. USA: Boeing commercial airplanecompany, June, 1987, 6.
    [90]李莉,李卫兵,王学刚.二并行传输线间的串扰分析[J].电波科学学报, 2001, 16 (2):271-274.
    [91]吕飞燕,沙斐. PCB上串扰的耦合机理和优化分析模型[J].电子与信息学报, 2005, 27 (7):1167-117.
    [92] Sighal K, Vlach J. Computation of time domain response by numerical inversion of the laplace transform [J]. J. of the Franklin Institute, 1975, 299 (2): 109-126.
    [93] Fotis G P, Ekonomou L, Maris T I, et al. Development of an artificial neural network software tool for the assessment of the electromagnetic field radiating by electrostatic discharges [J]. IET Sci. Meas. Technol., 2007, 1 (5):261-269.
    [94] Miti G K, Moses A J. Neural network-based software tool for predicting magnetic performance of strip-wound magnetic cores at medium to high frequency [C]. IEE Proc., Sci. Meas. Technol., 2004, 151(3):181-187.
    [95] Chen Y J, Chen Y M, Wang C B, et al. Developing a multi-layer reference design retrieval technology forknowledge management in engineering design [J]. Expert Syst. Appl., 2005, 29(4):839-866.
    [96] Rajasekaran S, Amalraj R. Predictions of design parameters incivil engineering problems using SLNN with a single hidden RBF neuron [J].Comput. Struct., 2002, 80(31):2495-2505.
    [97] Maghami P G, SparksD W. Design of neural networks for fast convergence and accuracy: dynamics and control [J].IEEE Trans. Neural Netw., 2000, 11 (1):113-123.
    [98]李旭,俞集辉,汪泉弟,李永明.电磁场对导线贯通屏蔽箱体内电路干扰的建模和仿真[J].系统仿真学报,2007,19(17):3891-3894.
    [99]傅君眉,冯恩信.高等电磁理论[M].西安:西安交通大学出版社,2000,12.
    [100] D'Amore M, Sarto M S, Scarlatti A. Modeling of magnetic-field coupling with cable bundle harnesses [J]. IEEE Transactions on Electromagnetic Compatibility, 2003, 45(8): 520-530.
    [101] Agrawal A K, Price H J. Experimental Characterization of Partially Degenerate Three Conductor Transmission Lines in the Time Domain [J]. IEEE Trans on Electromagnetic Compatibility, 1981, 23(8): 133-138.
    [102] Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field [J]. IEEE Trans on Electromagnetic Compatibility, 1980, 22(2): 119-129.
    [103] Taylor C D, Satterwhite R S, Harrison C W. The response of a terminated two-wire transmission line excited by a nonuniform electromagnic field [J]. IEEE Trans Antennas Propagat, 1965, 13:987-989.
    [104]何响鸣,刘光斌,胡延安,姜立强.孔缝对导弹电子设备机箱电磁屏蔽效能的影响[J]. 宇航学报,2006,27(3):262-267.
    [105] Liang C H, Cheng D K. Electromagnetic fields coupling into caving with slot aperture under resonant conditions [J]. IEEE Trans. Antennas and Propagation, 1982, 30 (4): 664-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700