空气悬架控制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气悬架系统是目前汽车悬架中最先进的汽车悬架系统之一。它可以减少整车的振动噪声,降低车轮的动载荷,提高乘坐舒适性,保护路面。近年来,在高等级客车,载重货车和高等级轿车上的应用越来越广。但是空气悬架中的主动控制悬架系统的研究目前还在试验阶段,技术不成熟。本文对空气悬架控制器进行了研究。针对空气悬架系统的关键技术:控制器的控制算法,相应执行机构,电控单元(ECU),相关传感器和试验台进行了分析和设计。取得了一些阶段性的成果。
     在控制算法方面,首次提出综合参考模型自适应法。该算法将控制算法分为两个部分,离线部分和在线部分。离线算法的核心是基于线性二次高斯(Linear Quadratic Gaussian,LQG)算法。在线性系统的基础上,综合舒适性和操纵性要求构造二次型指标,求出最优反馈,构成最优控制系统。在线部分的核心基于李亚普洛夫参考模型自适应算法。参考模型为离线算法得出的最优系统,在不同的工作点,采用不同的参考模型。利用自适应算法的特点,可消除悬架系统时变和线性化的影响。同时,由于自适应算法满足李亚普洛夫稳定要求,可使系统保持稳定。本算法具有算法简单,物理意义明确的优点。
     在主动空气悬架的执行机构方面,首次提出了可调电磁减振器和不可调液压减振器串联的设计方案。该设计具有电磁控制系统容易调节,响应快速的特点。同时利用液压减振器消耗部分能量,可以减少电磁减振器的体积和制造难度,提高系统的可靠性。利用自主研制的测试系统,完成了电磁减振器的性能参数的测试。
     对于悬架系统的检测单元,设计了空气悬架加速度传感器驱动电路。根据空气悬架系统对位移传感器的要求,设计了差动变压器式悬架位移传感器,利用自主研制的位移测试系统,测试了位移传感器的参数。
     在控制器架构方面,首次提出了基于主控制器和执行控制器的分级结构,通过将控制器赋予不同的功能,使悬架的安全性,可靠性得到提高。
     在控制器研究中,悬架试验台是重要的研究条件。本文对试验台进行了设计。并对悬架试验台中的液压伺服系统进行了优化设计。对电控系统进行了分析和设计。
     在以上研究的基础上,提出了空气悬架控制的综合控制策略。分析了汽车的不同运行状态,对空气悬架的不同要求。提出了在分级控制器架构中,实现综合控制策略的总体方案。
Air suspension system is the most advanced one among the existing vehicle suspension systems. It can reduce noise of whole vehicle caused by vibration, decrease the dynamic load of wheels, improve the ride comfort and protect the road surface. In recent years, it has an extensive application in high-level buses, heavy trucks and limousines. However, the research into active control suspension system of air suspension is still in experimental stage and is technologically immature. This dissertation has made research into air suspension controller and also analysized and designed the control algorithm of controller, relevant actuator, electronic control unit (ECU), related transducer and test platform.
     The optimal adaptive algorithm has origirally been proposed for the control algorithm. Such an algorithm divided the control algorithm into two parts: offline part and online part. The core of offline algorithm is based on LQG algorithm. On the base of linear system, it has integrated the requirements for comfortability and handling to establish the quadratic performance index, so as to obtain the optimal feedback, and to form the optimal controlling system. While the core of online part is based on Lyapunov Reference Model Adaptive Algorithm. The reference model is the optimal system obtained by the offline algorithm, which can eliminate the impacts of time variation and linearization of suspension system at different work location by using different reference models and utilizing the features of adapive algorithm. Meanwhile, as the adaptive algorithm meets the requirement of Lyapunov stability, it can stablize the system. Such an algorithm is featured by conciceness and clear physical meanings.
     A design scheme for cascaded connection of adjustable electromagnetic vibration absorber and fixed hydraulic vibration absorber have been brought into the actuator of active air suspension. The design provides easy adjustment and rapid response for electromagnetic control system. Meanwhile, owing to the consideration of structure, the hydraulic vibration absorber can be used to consume partial power, whereby to reduce the volume and difficulty in manufacture of electromagnetic vibration absorber and to improve the reliability of the system. It also tests the performance of electromagnetic vibration absorber by home-made testing system.
     Drive circuit used for acceleration transducer has been designed for testing unit of suspension system. This dissertation has designed a differential transformer type of displacement transducer and its drive circuit, and enployed displacement testing system to test the performance of the displacement transducer.
     A hierarchical structure based on main controller and executive controller has firstly been put forwards to the controller frame, improving the suspension systen in safety and reliability by allocating different functions to controllers.
     The suspension test platform is an important condition in the controller reseach. In this dissertation, a test platform has been designed, and an optimum design has been performed for the hydraulic servo system in the suspension test platform, and the electronic control system has been analysized and designed.
     Basing on the above-mentioned research, this dissertation has presented the comprehensive strategy for the air suspension control, analysized the different requirements of different movement state of automobiles on air suspentions, and proposed the overall scheme for the realization of comprehensive control strategy in the frame of hierarchical controller.
引文
[1]盛英,赵建文,仇原鹰.空气弹簧参数对减振性能的影响[J].噪声与振动控制,2006,(03):22-25
    [2]钱德猛.汽车空气悬架系统的参数化建模、分析及设计理论和方法研究[D].合肥工业大学,2005
    [3]丁良旭,徐宗俊,郭钢.空气弹簧悬架汽车车体有限元边界条件的约束处理[J].汽车技术,2003,(06).
    [4]黄治国.空气悬架控制系统仿真及试验研究[D]吉林大学,2005
    [5]胡晓梅.半主动自适应控制系统及其在振动控制中的应用[D].河北工业大学,2004
    [6]王春民.简述客车电子控制空气悬挂系统[J].汽车电器,2003,(02)18-20
    [7]姚嘉伶,蔡伟义,陈宁.汽车半主动悬架系统发展状况[J].汽车工程,2006,(03)276-279
    [8]周永清,朱思洪.车辆空气悬架研究综述[J].汽车研究与开发,2003,(05)151-155
    [9]梅赛德斯-奔驰Airmatic DC空气悬挂技术,信息快报
    [10]郭微,钱德猛.汽车用膜式空气弹簧的非线性有限元分析[J].客车技术与研究,2006,(03)14-16
    [11]吴善跃,黄映云,朱石坚.空气弹簧冲击载荷特性的试验研究[J].振动与冲击,2006,(02)114-116
    [12]胡芳.空气悬架系统及主动控制的研究[D].合肥工业大学,2005
    [13]陈耀明.混合式空气悬架的设计[J].汽车技术,1994,(01)8-15
    [14]邵瑛.车辆主动悬架控制策略的仿真研究[D].南京农业大学,2003
    [15]许云明,张伟平.参数自调整模糊控制器在空调控制中的应用[J].制冷与空调(四川),2006,(02)72-75
    [16]崔晓利,陈龙,李德超.基于神经网络的半主动悬架自适应模糊控制研究[J].中国机械工程,2004,(02).178-181
    [17]缪赟,屈文忠,邱阳,张陵.汽车主动悬架系统的自适应模糊控制方法[J].汽车工程,2001,(01)9-112
    [18]陈龙,李德超,周孔亢.自适应模糊控制技术在半主动悬架控制中的应用[J].农业机械学报,2005,(04)5-8
    [19]刘佳,杜太行,何莉莉,徐东彬.汽车ABS中的模糊神经网络模型参考自适应控制策略[J].汽车电器,2006,(01)4-7
    [20]周永清.带附加空气室空气弹簧动态特性的实验研究[D].南京农业大学,2004
    [21]常同珍.带附加气室空气悬架系统动态特性及其控制的研究[D].武汉理工大学,2005
    [22]TunstelE,HockemeierS,JamshidiM.Fuzzy control of a hovercraft platform.EngAppl Artif Intel 11994;7(5):513C9
    [23]YunLiang.Principle and design of air cushion craft.National Defense Industry Press;1990.
    [24]AmyotJR,FowlerHS.An experiment on active control of air cushion heave dynamics.CanAeronaut SpaceJ 1984;30(3):240C8
    [25]OkawaK,YutaS.Motion control for vehicle with unknown operating properties-on-line data acquisition and motion lanning.ProcIEEE IntConfRobotAutom(ICRAf103)2003(3):3409C1
    [26]李厚民,朱若燕,周金枝,毛为民.囊式空气弹簧隔振器动态特性影响因素分析[J].湖北工业大学学报,2006,(03)63-65
    [27]尹万建;单频激励下空气弹簧悬架的振动特性研究,中国力学学会2005,1549
    [28]杨永柏.汽车主动悬架控制策略与仿真研究[D].中南林学院,2003
    [29]陈无畏,沈云鹤,张启群.汽车主动悬架的最优控制及计算机仿真[J].振动与冲击,1996,(04).53-58
    [30]喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制[J].汽车工程,1998,(04).193-200
    [31]汤靖,高翔.基于最优控制的四自由度汽车主动悬架控制器[J].农业机械学报,2005,(04)9-12
    [32]伍长安.空气悬挂的原理及其应用[J].汽车实用技术,2004,(04)
    [33]刘宏伟,雷海蓉,陈燕虹,杨钫.空气悬架系统模糊控制仿真分析[J].汽车技术,2003,(07).1-4
    [34]鲍可进,袁晓云,陈龙.车辆半主动悬架控制器的设计与研究[J].农业机械学报,2005,(12)9-12
    [35]管成,朱善安.车辆主动悬架路面自适应控制系统[J].农业机械学报,2005,(07)20-24
    [36]刘新亮,张建武,陈兆能.汽车主动悬架的自校正控制[J].汽车工程,1998,(03).165-170
    [37]陈龙,崔晓利,李德超.车辆悬架的半主动自适应模糊控制方法研究[J].兵工学报,2003,(04)544-547
    [38]王磊.汽车主动悬架控制策略的研究[D].浙江工业大学,2003
    [39]郑玲,邓兆祥,李以农.汽车半主动悬架的模型参考自适应控制[J].中国公路学报,2005,(02).99-102
    [40]方敏,王峻,陈无畏.汽车半主动悬架的自适应LQG控制[J].汽车工程,1997,(04).200-205
    [41]余强,马建.主动悬架系统对汽车加速性能改善分析[J].汽车技术,2005,(03)20-22
    [42]曹民.主动悬架的参数估计自校正控制[J].汽车工程,2001,(03)177-180
    [43]张志谊,傅志方,华宏星.悬架的半主动控制[J].上海交通大学学报,1999,(03)350-353
    [44]孟爱红,王良曦,丛华.汽车主动悬架系统建模及其控制策略研究[J].汽车工程,2003,(05).474-476
    [45]孙建民,王芝秋,张新玉.车辆主动悬架系统的LMS自适应控制[J].汽车工程,2003,(04).360-363
    [46]孙建民,杨清梅,陈玉强.LMS自适应主动控制汽车悬架系统试验研究[J].中国机械工程,2003,(24)2153-2155
    [47]何青玮,林青,虞兰,张国贤.MATLAB在汽车半主动悬架仿真中的应用[J].机床与液压,2002,(03)34-36
    [48]沈申生.差动变压器式位移传感器检测系统研究[J].传感器与微系统,2006,(03)41-43
    [49]黄小刚,滕霖,刘元度.差动变压器式位移传感器专家设计系统的研究[J].航空精密制造技术,2008,(03)19-21
    [50]郜立焕,生凯章,祁玉宁,王佃武.车辆悬架系统用磁流变阻尼器的研究[J].液压与气动,2005,(11)35-36
    [51]崔晓利,车辆悬架的半主动自适应模糊控制方法研究[J]先进制造与控制,2003,(08),125-128
    [52]兰波,喻凡.车辆主动悬架LQG控制器的设计与仿真分析[J].农业机械学报,2004,(01)13-17
    [53]吴正权.颠覆传统的未来型电磁减振器[J].摩托车信息,2007,(14)26-29
    [54]艾兆虎.电磁减振器结构原理简介[J].摩托车技术,2007,(08)57-60
    [55]邱吉冰,赵伟.电流小信号隔离采集板的设计与实现[J].自动化仪表,2007,(04)61-63
    [56]刘少军,郭淑娟.高速ON/OFF电磁阀在汽车主动控制悬架系统中的应用[J].中南工业大学学报(自然科学版),1996,(03)331-334
    [57]林吉海;何为;张占龙;基于CAN总线的温度检测节点设计,重庆工商大学学报2008(06)262-264
    [58]蔡际令,金若君.基于DSP控制的开关磁阻电机可逆传动系统[J].浙江大学学报(工学版),2006,(06)1020-1026
    [59]孙建民,柳贡民.基于LMS自适应滤波的汽车主动悬架研究[J].振动与冲击,2004,(04)139-142
    [60]王志勇,樊文欣.基于MATLAB的车辆半主动控制的仿真研究[J].机械管理开发,2006,(02)31-32
    [61]韩文涛,李磊,朱彤.基于线性最优控制理论的汽车主动悬架控制方法研究[J].机械科学与技术,2003,(S2)55-59
    [62]尹万建,杨绍普,申永军,郭京波.空气弹簧悬架的振动模型和刚度特性研究[J].北京交通大学学报,2006,(01)71-74
    [63]凌锡亮.汽车悬架控制系统的研究[J].农业装备与车辆工程,2006,(02)8-10
    [64]吴正权.电磁减振器结构原理简介[J].摩托车技术,2007,(08),56-59
    [65]沈永亮.NJ2045汽车可调阻尼减振器的研制[D].吉林大学,2005
    [66]孙鹏远.基于LMI优化的主动悬架多目标控制研究[D].吉林大学,2004
    [67]杨钫.基于PID控制空气悬架系统的仿真与试验研究[D].吉林大学,2004
    [68]符浩翔.汽车悬架与四轮转向系统的综合控制研究[D].重庆大学,2005
    [69]安斯光.电动汽车CAN总线系统的设计[D].浙江大学,2006
    [70]鲍卫宁.基于ADAMS软件的轿车悬架动态模拟与仿真[D].武汉理工大学,2002.
    [71]涂华刚.基于闭环力反馈的液压半主动悬架研究[D].浙江大学,2002
    [72]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D].南京航空航天大学,2002
    [73]王万英.汽车悬架减振器电液伺服试验台的研制[D].西华大学,2006
    [74]张培培.汽车悬架系统的动力学分析与仿真试验[D].长安大学,2005
    [75]WongJY.Theory of ground vehicle.John Wiley&Sons;2001.
    [76]BekkerMG.Introductiontoterrain-vehiclesystem.The University of Michigan Press;1969.
    [77]ChenBingcong.Mechanics of terrain-vehicle systems.China Agricultural Machinery Press;1981.
    [78]LuoZhe,YuFan,ChenBingcong.Design of anovelsemi-tracked air-cushion vehicle.IntJ Vehicle Des 2003;31(1):112C23
    [79]WongJY.Performance of the air-cushion-surface-contacting hybrid Vehicle for overland operation.ProcInstMechEng1972;186(50/72):613C24
    [80]LuoZhe,ChenJing,YuFan,ChenBingcong.Study of load distribution for a semi-trackair-cushion vehicle.SAETechnical Paper 1999-01-2788.
    [81]AmyotJR.A proportional control experimenton air cushion heave stabilization.Can Aeronaut Space J1985;31(1):315C24
    [82]Besinger,F.H.,Cebon,D.andCole,D.J.,1995,Force control of a semi-active damper.VehicleSystemDynamics,24(9),695C723
    [83]Stein,G.J.andBallo,I.,1991,Active vibration control stem for the drivers seat for off-road vehicles Vehicle System Dynamics,20(2),57C78
    [84]Ballo,I.,1993,Active vibration control systems for driver seat of earth-moving vehicles Archive sof Acoustics,18(3),183C195
    [85]Ballo,I.,1997,Improved model of active pneumatic vibroizolating system.Paper presentedat the Proceedings of the Conference Mechatronics and Robotics,Czech Institute of Technology,Brno,pp.125C130
    [86]Ballo,I.,2001,Properties of air spring a saf or cegenerator in active vibration control systems.Vehicle System Dynamics,35(1),67¨C72
    [87]Robson,J.D.,1979,Road surface description and vehicle response.International Journal of Vehicle Design,1(1),25C35
    [88]Ballo,I.,1995,Power requirement of active vibration control.Vehicle System Dynamics,24(9),683¨C691
    [89]Gajarsky,M.,1984,Some properties of electropneumatic active vibration control systems(inslovak).Strojn¨ackcasopis,35(1¨C2),51¨C6
    [90]Cho,D.andHedrick,J.K.,1985,Pneumatic actuators for vehicle active suspension applications.ASME Journal of Dynamic Systems,Measurement and Control,107,67¨C72
    [91]Karnopp,D.C.,1983,Active damping in road vehicle suspension systems.VehicleSystemDynamics,12,291¨C316
    [92]Kornhauser,A.A.,and Smith,J.L.,Jr.,The elects of heat transfer on gas spring performance,Trans.ASMEJ.EnergyRes.Technol.Vol.115,No.2,pp.70}75(1993).
    [93]Wormley,D.N.,Garg,D.P.,and Richardson,H.H.,A comparative study of nonlinear and linear performance of vehicle air cushion suspensions using bond graphmodels,Trans.ASMEJ.Dyn.SystemsMeasurementControl,Vol.94,No.3,pp.189}197(1972).
    [94]Oda,N.,andNishimura,S.,Dynamic characteristics of airsuspension and its design(inJapanese),Trans.JapanSoc.Mech.Eng.,Vol.35,No.273,pp.996}1002(1969).
    [95]A.W.Burton,Analysis,modelling and control of an advanced automotive self-levelling suspension system;IEE Proc.-Control Theory Appl.,1995,130-139
    [96]GIUSEPPE QUAGLIA,Air Suspension Dimensionless Analysis and Design Procedure;University of Oxford,(2007)pp,443-474
    [97]A.T.PAPAGIANNAKIS,A wavelet interpretation of vehicle-pavement interaction,[University of Oxford]January 2008,245-252
    [98]I.BALLO,Comparison of the properties of active and semiactive suspension,[University of Oxford]January 2008,1065-1073
    [99]Katsuya Toyofuku,Study on dynamic characteristic analysis of air spring with auxiliary chamber,JSAE Review 20(1999) 349-355
    [100]赵韩,钱德猛,魏映.基于ADAMS的车辆空气悬架转向机构的运动学仿真[J].机械科学与技术,2005,(04).
    [101]钱德猛,赵韩,梁林.多体运动学理论在空气悬架运动分析中的应用[J].合肥工业大学学报(自然科学版),2005,(01).
    [102]赵韩,钱德猛,魏映.汽车空气悬架弹簧支架的动力学仿真与有限元分析一体化疲劳寿命计算[J].中国机械工程,2005,(13).
    [103]常同珍.带附加气室空气悬架系统动态特性及其控制的研究[D]武汉理工大学,2005.
    [104]王宏杰.基于模糊控制的半主动空气悬架系统的仿真与试验研究[D]吉林大学,2005
    [105]郭二生.空气悬架大客车操纵稳定性和行驶平顺性仿真与试验研究[D]吉林大学,2005
    [106]程悦.电控空气悬架系统的匹配设计[D]吉林大学,2005
    [107]周永清.带附加空气室空气弹簧动态特性的实验研究[D]南京农业大学,2004
    [108]金登男.虚拟仪器的新型组建技术[J].仪表技术,2000,(03)
    [109]刘传清.虚拟仪器自动测试系统软件设计[J].襄樊学院学报,2003,(05)
    [110]张宇峰.减振器中主动控制的实现[J].机电工程技术,2002,(06).
    [111]陈新海,李言峻等.自适应控制及应用[M].西安.西北工业大学出版社.1998
    [112]kal.Johan.Astrom.Bjorn.Adaptive Control[M].北京.科学出版社.2003
    [113]李言俊,张科.自适应控制理论及应用[M].西安.西北工业大学出版社.2005
    [114]谢新民等.自适应控制系统[M].北京.清华大学出版社.2002
    [115]刘长年.液压伺服控制系统[M].北京.科学出版社.1985.
    [116]刘长年.液压伺服系统优化设计理论[M].北京.冶金工业出版社.1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700