动水条件下破损岩体边坡变形破坏机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上滑坡灾害较为严重的国家之一,滑坡稳定性问题一直是世界水利工程中的一个重要问题,在辽宁省阜新市海州露天矿抽水蓄能水电站规划建设实施过程中,滑坡成了该工程建设必须面临的重大工程地质问题之一。水在滑坡稳定性问题中是最难确定和定量研究的因素,所以水成为了滑坡发生发展中最活跃和最普遍的因素。
     辽宁省阜新市海州露天矿抽水蓄能水电站拟建水库蓄水后,引起滑坡出现较大变形的主要原因是因为水库水位的频繁涨落,水库水位的变动会引起水库周边地下水位的涨落,水位涨落将很大程度上改变环境渗流场。库岸边坡失稳破坏或造成滑坡,将直接威胁到拟建海州抽水蓄能水电站的安全,影响水电站的正常运行并造成严重的经济损失和社会影响。
     因此,必须对海州露天矿拟建水库库区边坡体在现状条件、不同蓄水位及库水位涨落情况下的库岸边坡稳定性进行深入分析研究,这对保证阜新海州露天矿的抽水蓄能水电站的平稳运行起着重要的作用。根据国内外文献资料,对岩土边坡稳定性计算和分析文献的基础上,以主要研究海州露天矿的地质环境条件、针对进一步研究海州矿E20边坡形成的地质环境条件及二塘沟水库左坝头岩石块体地质环境条件、变形破坏特征和滑坡稳定性影响因素的基础上,建立了边坡稳定性分析的本构流-固耦合模型,采用摩尔库伦屈服准则,运用FLAC3D岩土工程软件作为计算分析工具。主要结论如下:
     1)研究了辽宁省阜新市海州露天矿的水文地质、工程地质等环境条件、具体调查了辽宁省阜新市海州露天矿的半个世纪开采历史,初步分析海州矿在建设过程中,历年发生过地质灾害情况,具体统计计算分析各种对边坡稳定性影响因素,提出了水是构成对海州露天矿边坡稳定性影响的关键因素。对滑坡的稳定性和变形破坏影响因素的进一步研究,在此基础上,以具体的E20边坡为研究对象,分析研究E20边坡地质环境条件,采用工程类比,并和其他工程地质力学,分析研究结果表明:边坡以滑动破坏形式为主,局部由多组结构面结合形成的栔形不稳定块体崩塌现象很少出现。
     2)阐述了破损岩体的渗流场与应力场流-固耦合理论,并在此基础上推导了渗流场与应力场的耦合微分方程及Biot三维固结微分方程,充分考虑双场耦合作用,推导出以位移增量和孔隙水压力增量为方程域变量的饱和-非饱和岩土体耦合固结控制方程。
     3)通过对拟建水库库岸E20边坡破损岩体不同水位工况下滑坡流-固耦合数值模拟分析,数值计算结果表明:E20边坡在自然状态下安全系数为Fs=1.58,处于稳定状态,但是库水位上升到160m时,安全系数为Fs=0.7,安全系数明显降低,边坡岩土内塑性区分布范围较大,并且塑性区已贯通,因此,库水位上升到160m时E20边坡发生整体性滑坡的可能性大。抽水蓄能水电站抽水时库水位从110m降落到70m,E20边坡的安全系数为0.91,处于不稳定状态。塑性区分布范围较小,塑性区已贯通,很可能发生局部滑坡。不同工况的数值计算结果表明:抽水蓄能水电站拟建水库库水位的涨落对于海州E20边坡稳定性影响较大。
     4)为了提高模拟计算精度,本文采用强度折减有限元法和极限平衡法在E20边坡体上研究稳定性计算分析,计算分析结果表明:对应工况条件下数值模拟计算结果与极限平衡法(GEO-SLOPE)计算得到结果相近,强度折减有限元法(数值模拟)计算结果显示出的最危险滑动面位置与极限平衡法计算分析结果相似,坡体内地下水和库水的相互补给后的模拟计算孔隙水压力等值线分布云图与极限平衡计算出来的结果很相似。这表明采用强度折减有限元法对海州露天矿抽水蓄能水电站水库E20边坡进行流-固数值模拟分析比较适合,因此,可采取正确的参数并进行实际工程设计。
     5)海州露天矿拟建抽水蓄能水电站水库运行时,水库蓄水时水位达到160m的情况和水电站抽水时库水位从110m降落到70m的两种工况下进行加固处理前后的数值计算结果对比分析,结果表明:库水位的变化对E20边坡稳定性影响很大。但是E20边坡锚固处理后边坡的安全系数明显增大。因此,对E20边坡进行锚固处理是很有效的加固措施。
     6)二塘沟水库左坝头岩石块体稳定性数值模拟分析结果表明:自然状态下左坝头岩石块体处于临界稳定状态,但是暴雨工况下安全系数小于1,处于不稳定状态。该岩石块体进行削坡改造减重后模拟计算结果表明,二塘沟水库左坝肩边坡的安全系数明显增大。
Landslide stability problem has been one of important problems in hydraulic engineering,Chinais one of the world's landslide disaster is very serious in the country. The planning and constructionof the hydropower station in Liaoning province Fuxin city Hai zhou pumped storage pit pumping,landslide constitutes one of the major engineering geological problems in the engineeringconstruction must face. Water is the result of the most active and common factors of landslidedevelopment, is also the most difficult to determine the factors and quantitative research.
     Liaoning province Fuxin city Hai zhou open-pit mine pumped storage hydroelectric powerstation to be built after reservoir impounding, lifting and periodic fluctuation of reservoir waterlevel and groundwater level, will change the slope of environmental geological conditions,including changes in rock, soil physical and mechanical properties of hydrostatic pressure andosmotic force and periodic variation caused by large deformation, landslide. The landslide occurredin large deformation or failure, will be a direct threat to the safety of hydropower plant, causingserious economic, social influence the normal operation of power station and. Therefore, it isnecessary to study on the stability of landslide body in current conditions and different water level,water level fluctuation conditions, to ensure Fuxin Hai zhou open-pit mine pumped storage plays animportant role in smooth operation of hydropower station. Based on the literature at home andabroad of rock and soil slope stability analysis and calculation on the basis of the literature, themain research Hai zhou open-pit mine geological environment condition, deformation in furtherresearch on Hai zhou mine E20slope formed geological conditions and Ertang valley reservoir leftabutment rock block geological environmental conditions, the main factors affecting thecharacteristic and failure landslide stability analysis of slope stability, established the constitutiveseepage-stress coupling model,the Mohr-Coulomb yield criterion, the use of FLAC3Dgeotechnicalengineering software as calculation and analysis tools. The main conclusions are as follows:
     1) Studied in Hai zhou open-pit mine hydrogeology and engineering geology were Liao Ningprovince city of Fuxin,environmental conditions,the investigation of the Liaoning province Fuxincity Hai zhou open-pit mine half a century history of mining in Hai Zhou coal mine, a preliminaryanalysis of the construction process, the happened geological disasters, calculation and analysis ofinfluencing factors on the stability of slope concrete statistics,the key factors affecting the water onthe stability of the slope in Hai Zhou open-pit mine. The E20slope concrete as the research object,aiming at further research on typical slope deformation of E20slope geological environmentalconditions, the main factors affecting the failure characteristics and stability of landslide, throughthe engineering analogy and engineering geological mechanics and other means, to E20landslidepotential failure mode and the local unstable rock mass analysis results show that, with sliding slope the main failure form, locally by groups of structural plane is formed by the combination ofQi shape unstable block collapse phenomenon rarely occur.
     2) The damaged rock mass seepage field and stress field of the fluid-solid coupling theory arederived based on the seepage field and stress coupled differential equations and Biotthree-dimensional consolidation differential equation of force field, considering the doublecoupling, derived with increment of displacement and pore pressure increment as Fang Chengyuvariable saturated-unsaturated rock soil coupled consolidation equations.
     3) In order to improve simulation accuracy, this paper mainly by the strength reduction finiteelement method and limit equilibrium method for calculation of slope stability analysis in the E20study, the calculation results show that: the calculation results obtained similar results with thelimit equilibrium method simulation of corresponding working condition, the simulation resultsshow that the most dangerous sliding surface position and the limit equilibrium method to calculatethe results of the analysis are similar,mutual supply the slope groundwater and reservoir water afterthe simulation calculation of pore water pressure isoline distribution and limit equilibriumcalculation results are very similar. This indicates that the strength reduction finite element methodof pumped storage for fluid-solid numerical simulation analysis is more suitable for E20slope ofhydropower station reservoir, therefore, of Hai Zhou open-pit coal mine can be taken to correctthe parameters and practical engineering design.
     4) Hai zhou open-pit coal mine proposed pumped storage hydropower station reservoir operation,when the reservoir water level of160m and hydropower station landing when pumping water from110m to110m under the working condition of two kinds of reinforcement before and afteranalyzing the results of numerical calculation, the results show that the water level change of E20slope stability influence is very big. But E20slope anchorage safety coefficient of slope increasedobviously after treatment. So that it is effective to anchor the E20slope reinforcement measures.
     5) Ertang valley reservoir Numerical left abutment rock block stability analysis results showthat: the critical stable state at the left abutment rock mass under the natural state, but the stormconditions safety coefficient is less than1, in an unstable state. Simulation of the rock blocks werecut slope of the weight loss after the calculation results show that, Ertang valley reservoir leftabutment slope stability increases obviously.
引文
[1] Committee on Reservoir Slope Stability.Reservoir Landslides: Investigation andManagement[R].Paris:International Commission on Large Dams (ICOLD),2002.
    [2]金德镰,王耕夫.拓溪水库糖岩光滑坡-中国典型滑坡[M].北京:科学出版社,1988,301-307.
    [3]江凯.龙滩水库蓄水条件下的八渡滑坡稳定性研究[D].成都理工大学,2007.5.
    [4]彭良泉,王钊.对边坡稳定性分析中危险水力学条件的研究[J].人民长江,2003,34(5):39-41.
    [5]刘新喜.库水位下降对滑坡稳定性的影响及工程应用研究[D].中国地质大学,2003.4.
    [6] Breth, H.1967.The dynamics of a landslide produced by filling a reservoir[A].Proc9thCongr.ICOLD Q.32:37-45.
    [7] Hendron,A.J.,Patton,F.D.The Vaiont slide-a geotechnical analysis based on newgeologicobservations of the failure surface[R].Washington D.C.:US Army Corps of Engineers,1985.
    [8]邓建辉,Chan,D.H.,Martin,C.D.等一例由蓄水诱发的库岸边坡变形[J].中国地质灾害与防治学报,2002,13(1):21-24.
    [9]邓建辉,马水山,张保军等.清江隔河岩水库茅坪滑坡复活机理初探[J].岩石力学与工程学报,2003,22(10):1730-1737.
    [10]刘广润,徐开祥.三峡水库岸沿岸移民区地质灾害防治研究[J].工程地质学报,2003,11(1):85-88.
    [11]中华人民共和国国家标准.水利水电工程地质勘测规范(GB50287-99)[S].北京:中计划出版社,1999.
    [12] Riemer,W.Landslides and reservoirs(keynote paper)[A].In:Proceedings of the6th InternationalSymposium on Landslides[C].Christchurch:1992,1373-2004.
    [13]魏进兵.水位涨落诱发水库滑坡的机制研究[D].中国科学院研究生院(武汉岩土力学研究所),2006.5.
    [14]王思敬,马凤山,杜永康.水库地区的水岩作用及其地质环境影响[J].工程地质学报,1996,4(3):1-9.
    [15]王士天,刘汉超,张悼元等.大型水域水岩相互作用及其环境效应研究.地质灾害与环境保护[J].1997,8(1):69-89.
    [16] Fredlund,D.G.,Xing,A.,Huang S.Predicting the permeability function for unsaturated soilsusing the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:533-546.
    [17] Van Genuchten, M.Th.A closed-form equationof unsaturated soils[J].Soil Sci.Soc.AM.J.1980for Predicting the Hydraulic conductivity,44:892-898.
    [18]陈湘桂.现场渗透试验确定岩土渗透系数效果分析[J].安徽水利科技,2003(4):62-64.
    [19]伍靖伟,杨金忠.圭夫仪与双套环测定土壤饱和渗透系数的试验比较[J].灌溉排水学报,2003,22(2):44-47.
    [20]孙钧黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992,11(3):221-229.
    [21]李立新,王建党,李造鼎.神经网络模型在非线性位移反分析中的应用[J].岩土力学,1997,18(2):62-66.
    [22]伍靖伟,杨金忠.圭夫仪与双套环测定土壤饱和渗透系数的试验比较[J].灌溉排水学报,2003,22(2):44-47.
    [23] Hodge, R.A.L., Freeze, R.A.Groundwater flow systems and slope stability[J].CanadianGeotechnical Journal,1977,14:466-476.
    [24] Iversion,R.M.,Major,J.J.Groundwater seepage vectors and the potential for failure and debrisflow mobilization[J].Water Resources Research,1986hillslope22(11):1543-1548.
    [25] Nieto,A.S.,Brarany,I.Catastrophic rain-induced landslides in Rio de Janier,Brazil:Mechanisms and contributing factors[J].Geological ociety of America Abstracts withPrograms,1988,20(7):PA144.
    [26] Krahn, J., Fredlund, D.G, Klassen, M.J.Effects of soil suction on slope stability atNorthHi11[J]. Canadian Geotechnical Journal,1989,26:269278.
    [27] Alonso,E.,Gens,E.,Lloret, A.&Delahaye,C.Effect of rain infiltration on the stabilityofslopes[A].In:Proceedings of the International Conference on Unsaurated Soils(C),Paris,1995.241-249.
    [28] Sun,Y,Nishigaki,M.,Kohno,I. A study on stability analysis of shallow layer slope due toraining permeation[A]. In: Proceedings of the International Conference on UnsauratedSoils[C], Paris,1995.31-320.
    [29]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学,1997,18(2):8-12.
    [30]陈善雄,陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学,2001,22(4):447-450.
    [31] Ng,C.W.W.,Shi,Q.subjected to transient A numerical investigation of the stability ofunsaturated soil slopes seepage[J]. Computers and Geotechnics,1998,22(1):1-28.
    [32] Harp,E.L.,Wells,II,W.G,Sarmiento,J.E. Pore Pressure responses during failure in soils[J].Bulletin of Geological Society ofAmerica,1990,102:428438.
    [33]朱冬林,任光明,聂德新等.库水位变化下对滑坡稳定性影响的预测[J].水文地质工程地质,2002(5):6-9.
    [34]殷跃平.三峡库区地下水渗透压力对滑坡稳定性影响研究[J].中国地质灾害与防治学报,2003,14(3):1-8.
    [35]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的确定[J].岩石力学与工程学报,2004,23(18):3203-3210.
    [36]刘新喜,夏友元,张显书等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444.
    [37]廖红建,盛谦,高石夯等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3457.
    [38]刘才华,陈从新,冯夏庭.库水位上升诱发边坡失稳机理研究[J].岩土力学,2005,26(5):769-773.
    [39] Lane,K. S. Stability of reservoir slopes[A]. In:Proc.8th Symp. on Rock Mechanics.1967,321-336.
    [40]文宝萍.滑坡预测预报研究现状与发展趋势[J].地学前缘,1996,3(1-2):86-92.
    [41] Ugai,K.,Leshchinsky, D. Three-dimensional limit equilibrium and finite element analyses acomparison of results[J].Soils and foundations,1995,35(4):1-7.
    [42]刘文平,郑颖人,刘元雪.边坡稳定性理论及其局限性[J].后勤工程学院学报,1999,18(5):529-533.
    [43]郑宏,李春光,李悼芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626-628.
    [44]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3383.
    [45]陈祖煌.土质边坡稳定分析:原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [46]何峰、王来贵.地表入渗对下海州矿边坡稳定性影响研究[J].中国煤田地质,2006.2.
    [47]李正中,王佩贤.露天矿边坡滑(移)动监测与数据处理及滑坡规律性初探[J].矿山测量,1999(2),23-26
    [48]何峰、王来贵、王振伟.海州露天矿滑坡灾害统计分析及信息库建立[J].地质灾害与环境保护,2006.06.28.
    [49]刘婷婷.露天矿周边井工开采与露天开采对边坡的安全影响分析研究[D].辽宁工程技术大学,2010.11.
    [50]孙秀玲.海州露天矿闭坑后水质灰色预测研究[D].辽宁工程技术大学,2008.11.
    [51]白羽.海州露天矿边坡残煤自燃诱发滑坡的数值模拟研究[D].辽宁工程技术大学,2009.12.
    [52]何峰、王来贵、王振伟.海州露天矿滑坡灾害统计分析及信息库建立[J].地质灾害与环境保护,2006.6.
    [53]冯美生、王来贵、于永江、何峰.滑坡灾害与地球固体潮的关系[J].辽宁工程技术大学,2005.12.
    [54]马乐.边坡稳定性数值模拟及锚索加固的研究[D].辽宁工程技术大学,2012.1.
    [55]邓华锋.库水变幅带水—岩作用机理和作用效应研究[D].武汉大学,2010.10.
    [56]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [57]周翠英,邓毅梅,谭祥韶.软岩在饱和过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报,2004,23(22):3813-3817.
    [58]周翠英,邓毅梅,谭祥韶.软岩在饱和过程中微观结构变化规律研究[J].中山大学学报(自然科学版),2003,42(4):98-102
    [59]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报,2005,24(8):1253-1288.
    [60]汤连生,张鹏程,王思敬.水一岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [61]汤连生,周萃英.渗透与水化学作用之受力岩体的破坏机理[J].中山大学学报(自然科学版),1996,35(6):95-100.
    [62]朱效嘉.软岩的水理性质[J].矿-业科学技术,1996,24(3):46-50.
    [63]苏永华,赵明华,刘晓明.软岩膨胀崩解试验及分形机理[J].岩土力学,2005,26(5):728-732.
    [64]赵明华,刘晓明,苏永华.含崩解软岩红层材料路用工程特性试验研究[J].岩土工程学报,2005,27(6):667-671.
    [65]郭永春,谢强,文江泉.含崩解软岩红层材料路用工程特性试验研究[J].岩土工程学报,2005,27(6):667-671.
    [66]梁冰,刘晓丽,薛强.低渗透地下环境中水一岩作用的渗流模型研究[J].岩石力学与工程学报,2004,23(5):745-750
    [67]谭罗荣.蚀变凝灰岩的微观特性与水稳定性的关系[J].岩土工程学报,1990,12(6):70-75.
    [68]刘晓明,赵明华,苏永华等.红层软岩崩解性的灰色关联分析[J].湖南大学学报(自然科学版),2006,33(4):16-20.
    [69]何丙辉,刘立志.遂宁组紫色页岩崩解过程及坡积物特征研究[J].西南大学学报(自然科学版),2007,29(l):48-52.
    [70]苏永华,赵明华,刘晓明.软岩膨胀崩解试验及分形机理[J].岩土力学,2005,26(5):728-732.
    [71]张永安,李峰,陈军.红层泥岩水岩作用特征研究[J].工程地质学报,2008,16(l):22-26.
    [72]刘建,李鹏,乔丽苹.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550.
    [73]郭永春.红层岩土中水的物理化学效应及其工程应用研究[D].重庆:西南交通大学,2007,21-26.
    [74]耿乃光.水对岩石力学性质影响的试验研究[J].国际地震动态,1988,4(2):7-9.
    [75]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版),2000,39(5):126-128.
    [76]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [77] B.deB,FritZ.关于化学动力学控制的溶解和沉淀模式的理论探讨[J].华东地质学院学报,1993,16(2):120-12.
    [78]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [79] Dunning,J.D.and Miller,M.E.1984.Effeeteof Pore fluid chemistry on stable Sliding of Bereasandstone.Pegeoph,122(1984/1985):447-462.
    [80]苟晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护[J].华东地质学院,1994,17(4):389-394.
    [81]汤连生,王思敬.水-岩土化学作用与地质灾害防治,中国地质灾害与防治学报[J].1999,10(3):61-69.
    [82]丁抗.水-岩作用的地球化学动力学[J].地质地球化学,1989,6(2):29-38.
    [83]戚国庆.降雨诱发滑坡机理及其评价方法研究[D].成都理工大学,2004.7.
    [84]章广成.水位变化对滑坡稳定性的影响研究[D].北京:中国地质大学,2010.5.
    [85]汪斌.库水作用下滑坡流固耦合作用及变形研究[D].北京:中国地质大学,2007.4.
    [86]谭超.地下水对滑坡的力学作用研究[D].成都理工大学,2009.5.
    [87]谢剑明.降雨对滑坡灾害的作用规律研究[D].中国地质大学,2004.5
    [88]尚羽.基于水土相互作用边坡稳定性分析[D].江苏科技大学,2009.12.
    [89]吕海东.混凝土面板堆石坝渗流场与应力场的耦合分析[D].西安理工大学,2007.3.1.
    [90]汪斌.库水作用下滑坡流固耦合作用及变形研究[D].北京:中国地质大学,2007.4.
    [91] Biot,M.A.General theory of three-dimension-consolidation[J].Jour Appl Phys,1942,12:155-164.
    [92] Biot,M.A.Theory of elastieity and consolidation for a Porous anisotropic solid[J].Jour ApplPhys,1954,26:182-191.
    [93] Biot M.A.Theory of deformation of Porous viscoelastic anisotropic solid[J].JApplPhys,1956,27(5):203-215.
    [94]张伟.渗流场及其与应力场的耦合分析和工程应用[D].武汉大学,2004.5.
    [95]杨永恒.渗流场与应力场耦合分析及其在尾矿坝工程中的应用[D].西安理工大学,2006.3.
    [96]张延军、王恩志、王思敬.非饱和土中的流-固耦合研究[J].岩土力学,2004.6.
    [97] Sehreer B A, ZhanX.A fully coupled model for water flow and airflow in deformablePorousmedia[J].Water Resourees Researeh,1993,29(4):155-167.
    [98]陈宗基.Stlucture mechanies of clay[J].中国科学,1959,8(l):41-45.
    [99]陈育民.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [100]王安民.新疆鄯善县二塘沟水利枢纽工程地质勘察研究报告[R].新疆水利水电设计研究院,2008.
    [101]买合木提·巴拉提.强度折减有限元法在二塘沟水库边坡稳定性分析中应用[D].乌鲁木齐:新疆农业大学,2010.6.
    [102]买合木提·巴拉提,虎胆·吐马尔白.二塘沟水库坝址地质条件及左坝头岩石块体数值模拟分析[J].人民黄河,2013.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700