细菌碱性木聚糖酶菌种筛选、产酶条件与酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从某造纸厂排水沟旁边的碱性土壤中,采集到要进行产酶菌种分离的土样,用RBB-Xylan选择培养基进行初筛,根据不同菌株所形成的透明圈的有无,决定需要复筛的菌株,经产酶基本培养基复筛后,筛选到一株碱性木聚糖酶高产菌株HNX01,其在基本产酶培养基中的产酶能力为80.39 IU/ml,根据其形态特征、运动性、培养特征及部分生理生化反应,初步鉴定该菌为芽孢杆菌(Bacillus.sp)。
    经单因子试验和正交设计试验,得出HNX01产酶的最佳条件为:玉米芯4%、麸皮2%、NH4Cl 0.6%、NaNO3 0.2%、K2HPO41%、土温80 0.2%、FeCl3 2mmol/L、pH8.0、接种量为3%、250ml三角瓶装液量为50ml 。37℃、220r/min下用此培养基培养HNX01 24小时,木聚糖酶酶活力达高峰值198.41IU/ml,是未经优化的产酶基本培养基产酶能力的2.5倍。
    HNX01所产木聚糖酶最适作用pH值为8.0,酶具有较宽的pH值耐受性,尤其是在pH7.0以上的碱性范围稳定性更好,在pH6.0~10.6
    之间木聚糖酶酶活力都在80%以上;最适作用温度为50℃,酶在20℃~50℃下基本稳定, 50℃处理60分钟仍然具有70%以上的酶活力。金属离子除Zn2+对酶有轻微的激活作用外,其它对酶活力都存在不同程度的抑制作用,其中Cu2+对木聚糖酶酶活力的抑制最强烈。
According to RBB-xylan-hydrolyzed halos method , A bacterial strain which can produce extra-cellular alkaline xylanase, was isolated from alkaline soil near the drain ditch of a paper-producing factory .The strain was named as HNX01.The activity of xylanase produced by HNX01 was 89.39 IU/ml. According to its morphological characterization, physiological and biochemical experiments, HNX01 should belong to Bacillus.sp.
    After single factor tests and orthogonal array ,the optimal medium consisted of 4% corn power, 2% wheat bran, 0.6% NH4Cl, 0.2% NaNO3, 1% K2HPO4, 0.2% tween-80, 2mmol/L FeCl3.The initial pH of medium was 8.0.The percent of inoculation was 3%.The volume was 50ml in 250ml flask.After shaken at 220rpm and cultured in this optimal medium for about 24 hours at 37℃ , the xylanase activity is 198.41 IU/ml, which is 2.5 times of original medium.
    The xylanase from HNX01 displayed an optimal temperature at 50℃ and optimal pH at 8.0,a pH stability range from 5.0 to 10.6 and thermal stability up to 50℃.After incubated for 60 minute at 50℃,it still had 70% activity. In the metal ions investigated, only Zn2+ promoted effects on Xylanase, other ions all inhabited its activity more or less. Especially, Cu2+ inhabited almost all the activity. Fe3+ inhabited 50% activity in the enzyme reaction.
引文
[1] Q.K. Beg,M. Kapoor,L. Mahajan et al. Microbiol Xylanase and their industrial application: a review. App Microbio Biotechnol (2001)56:326~338
    [2] Whistler RL, Richards EL Hemicelluloses(1970). In: Pigman W,Horton D (eds) The carbohydrates. Academic Press, NewYork, pp 447–469
    [3 ] Sunna A, Antranikian G Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol (1997) 17:39–67
    [4 ] Chanda SK, Hirst EL, Jones JKN, Percival EGVThe constitution of xylan from esparto grass (Stipa tenacissima). J Chem Soc (1950) 50:1287–1289
    [5 ] Eda S, Ohnishi A, Kato K Xylan isolated from the stalks of Nicotiana tabacum. Agric Biol Chem (1976) 40:359–364
    [6 ] Montgomery R, Smith F, Srivastava HCStructure of cornhull hemicellulose. I. Partial hydrolysis and identification of 2-0-(?-D-glucopyranosyluronic acid)-D-xylopyranose. J Am
    Chem Soc (1956) 78:2837–2839
    [7 ] Dekker RFH, Richards GN Hemicellulases, their occurrence, purification, properties and mode of action. Adv CarbohydrChem Biochem (1976)32:277–352
    [8 ] Barry VC, Dillon TOccurrence of xylans in marine algae. Nature (1940) 146:620
    [9 ] Uffen RLXylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol (1997) 19:1–6
    [10] Dekker R F H.ACS Symp. SER., 1989, 399:619~629
    [11] Dekker R F H. et al. Adv . Carbohydr. Chem. Biochem., 1976,3:277~252
    [12] Wood W A et al .Methods in Enzymeology. San Diego: Academic Press Inc., 1988.160:511~725
    [13] Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzayuirre Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol(1995) 41:71–79
    [14] Biely P Microbial xylanolytic systems. Trends Biotechnol(1985):286–290
    [15] Elegir G, Szakacs G, Jeffries TW Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12–2. Appl Environ Microbiol (1994) 60:2609–2615
    [16] Biely P, Mackenzie CR, Puls J, Schneider H Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology (1986)4:731–733
    [17] Wong KKY, Tan LUL, Saddler JN Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev(1988) 52:305–317
    
    [18] Shao W, DeBlois S, Wiegel J (1995) A high molecular weight, cell-associated xylanase isolated from exponentially growingThermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:937–940
    [19] Hall J , Durrant A J, Mol Microbiol, 1989, 3:1211~1219
    [20] Grosalbes M J, Perez J A ,Gonzalez R . Bacteriol, 1991, 173:7705~7710
    [21]Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of ?-1,4-xylanase in microorganisms: functions and applications.Microbiol Rev 52:305–317
    [22] Okazaki W, Akiba T, Horikoshi K, Akahoshi R (1985) Purification and characterization of xylanases from alkalophilic thermophilic Bacillus spp. Agric Biol Chem 49:2033–2039
    [23]Esteban R, Villanueva JR, Villa TG (1982) ?-D-xylanases of Bacillus circulans WL-12. Can J Microbiol 28:733–739
    [24] Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730
    [25] Blanco A, Vidal T, Colon JF, Pastor FIJ (1995) Purification and properties of xylanase a from alkali-tolerant Bacillus sp. StrainBP-23. Appl Environ Microbiol 61:4468–4470
    [26] Lopez-Fernandez C, Rodriguez J, Ball AS, Lopa-Patino JL, Periz-Lebic MI, Arias ME (1998) Application of the affinity binding of xylanases to oat-spelt xylan in the purification of endoxylanase CM-2 from Streptomyces chattanoogensis CECT 3336. Appl Microbiol Biotechnol 50:284–287
    [27] Morales P, Madrarro A, Flors A, Sendra JM, Gonzalez JAP (1995) Purification and characterization of a xylanase and arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17:424–429
    [28] Ratankhanokchai K, Kyu KL, Tantichareon M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilicBacillus sp. strain K-1. Appl Environ Microbiol 65:694–697
    [29] Gupta N, Vohra RM, Hoondal GS (1992) A thermostable extracellular xylanase from alkalophilic Bacillus sp. NG-27. Biotechnol Lett 14:1045–1046
    [30] Bataillon M, Cardinali APN, Duchiron F (1998) Production of xylanases from a newly isolated alkalophilic thermophilic Bacillus sp. Biotechnol Lett 20:1067–1071
    [31] Gessesse A, Mamo G (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp.AR-135. J Ind Microbiol Biotechnol 20:210–214
    [32] Dey D, Hinge J, Shendye A, Rao M (1992) Purification and properties of extracellular endo-xylanases from alkalophilic thermophilic Bacillus sp. Can J Microbiol 38:436–442
    [33] Khanna S, Gauri P (1993) Regulation, purification and properties of xylanase from
    
    
    Cellulomonas fimi. Enzyme Microb Technol 15:990–995
    [34] Chaudhary P, Deobagkar D (1997) Purification and characterization of xylanase from Cellulomonas sp. N.C.I.M. 2353. Biotechnol Appl Biochem 25:127–133
    [35] Gessesse A (1998) Purification and properties of two thermostable alkaline xylanases from an alkalophilic Bacillus sp. Appl Environ Microbiol 64:3533–3535
    [36] Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp.SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol 88:325–334
    [37] Winterhalter C, Liebel W (1995) Two extremely thermostable xylanases of the hyperthermo philic bacterium Thermotoga maritama MSB8. Appl Environ Microbiol 61:1810–1815
    [38] Shao W, DeBlois S, Wiegel J (1995) A high molecular weight, cell-associated xylanase isolated from exponentially growingThermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:937–940
    [39] Frederick MM, Kiang C, Frederick JR, Reilly PJ (1985) Purification and characterization of endo-xylanases from Aspergillusniger. I. Two isozymes active on xylan backbones near branch points. Biotechnol Bioeng 27:525–532
    [40] Ito K, Ogasawara H, Sugimoto T, Ishikawa T (1992) Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci Biotechnol Biochem 56:547–550
    [41] Fernandez-Epsinar MT, Ramon D, Pinaga F, Valles S (1992) Xylanase production by Aspergillus nidulans. FEMS MicrobiolLett 91:91–96
    [42] Raj KC, Chandra TS (1996) Purification and characterization of xylanase from alkalitolerant Aspergillus fischeri Fxn 1. FEMS Microbiol Lett 145:457–461
    [43] Kimura I, Sasahar, H, Tajima S (1995) Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae. J Ferment Bioeng 80:334–339
    [44] Ghosh M, Nanda G (1994) Purification and some properties of xylanase from Aspergillus sydowii MG 49. Appl Environ
    Microbiol 60:4620–4623
    [45] 陆健,曹钰,陈坚等,木聚糖酶的产生、性质和应用,酿酒,2001,28(6):30~34
    [46] Lin LL, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibriosolvens H17c. FEMS Microbiol Lett 84:197–204
    [47] Pohlschroder M, Leschine SB, Parola EC (1994) Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7. J Bacteriol 176:70–76
    [48] Balakrishnan H, Srinivasan MC, Rele MV (1997) Extracellular protease activities in relation to xylanase secretion in an alkalophilic Bacillus sp. Biotechnol Lett 18:599–601
    
    [49] Segura BGD, Durand R, Fevre M (1998) Multiplicity and expression of xylanases in the rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 164:47–53
    [50] Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368
    [51] Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456
    [52] Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000a) Production and characterization of thermostable xylanase and pectinasefrom a Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402
    [53] 刘新育,高产木聚糖酶的诱变选育及酶学性质研究,河南农业大学硕士学位论文,2003,p 9
    [54]Balakrishnan H, Srinivasan MC, Rele MV (1997) Extracellular protease activities in relation to xylanase secretion in an alkalophilic Bacillus sp. Biotechnol Lett 18:599–601
    [55] Balakrishnan H, Srinivasan MC, Rele MV, Chaudhari K, Chandwadkar AJ (2000) Effect of synthetic zeolites on Xylanase production from an alkalophilic Bacillus sp. Curr Sci79:95–97
    [56] Ow.S.and T.J.Bom,Proc.EUCEPA Conf.,Barcelona,Spain(1990)
    [57] Kim,T.-J.,S .Ow and T.J.Bom,Proc.TAPPI Pulping Conf., TAPPI Press,Atlanta,GA(1991)
    [58] Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290
    [59] Bernier R, Driguez H, Desrochers M (1983) Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli. Gene 26:59–65
    [60] Witehead F P,Hespell R B. FEMS Microbiol Lett,1990,66:61~66
    [61] P. P. Dwivedi · M. D. Gibbs D. J. Saul · P. L. Bergquist Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol (1996) 45:86–93
    [62] Donald K A G, Carle A,Gibbs M, D et al.Appl Microbiol Biotechnol.1994,42:309~312
    [63] J. Blanco · J. J. R. Coque Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-b-1,4-xylanaseof Thermomonospora albaUL JB1 with cellulose-binding ability Appl Microbiol Biotechnol (1997) 48: 208±21
    [64] Ko E P et al.Biochem.j.,1992,288:117~121
    [65] Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411-456
    [66] Camphell R L et al.PN,WO9424270,27,10,94 XR,(WPI No.)94-341852/42
    [67] Dupont C et al.211th Am Chem Soc National Meet,Division of Cellulose,Paper and Textile,1996;p 127
    
    [68] Moreau A , Shareck F ,Kluepfel D ,Morosoli R EnzymeMicrob .Technol.,1994,16(5):420-424
    [69]中山大学生化系生化微生物学教研室编:生化技术导论,北京,人民教育出版社。1981,p.64
    [70]陈红歌,黑曲霉木聚糖酶的纯化及性质研究,河南农业大学硕士论文,1999
    [71]Bailley M J,Biely P,Poutanen K.J Biotech,1992,23:257~270.
    [72]东秀珠,蔡妙英等编:常见细菌系统鉴定手册,北京,科学出版社,2001,p. 43~65
    [73] Purkarthofer H,Steiner W .Induction of endo-βxylanase in the fungus Thermpomyces lanuginosus.Enzyme Microb Technol.1995,17: 114~118
    [74]Biely P, Kratky Z, Vrsanska M ,Urmanticova D.Induction of endo-β-1,4 xylanase in the Yeast Cryptoccus albidus.Eur J Biochem.1980,108: 323~329
    [75]明道绪编:生物统计附试验设计,北京,中国出版社出版,2002,p.303~318
    [76]张龙翔,生化技术与试验方法,1997,p.357
    [77]中山大学生化系生化微生物学教研室编:生化技术导论,北京,人民教育出版社。1981,p.53
    [78]汪家政,范明,蛋白质技术手册,北京,2000,科学出版社。
    [79]Subramanian S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700