铬渣的细菌解毒工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速增长,我国铬化合物生产有了较快的发展,目前我国铬化合物的生产和消费量已成为世界上第一,但其生产过程中所排放的有毒废渣——铬渣毒性很大,严重污染生态环境和危害人体健康。全国每年新排放铬渣约60万t,历年累计堆存量近600万t,经过解毒处理或综合利用的不足17%。严重污染土壤1250多万t。而目前的主要治理方法均存在处理成本高、吃渣量小、引起二次污染等原因,不能彻底解决铬渣污染问题。
     近年来,生物法治理含铬废水因其投资小、运行费用低、无二次污染等优点,引起广泛注意并获得了较快的发展。但生物法治理铬渣的报道还甚为少见。
     针对此现状,课题组通过前期的研究,在铬渣堆埋场附近的淤泥中己获得一株耐高碱度、高Cr(Ⅵ)浓度的高效还原Cr(Ⅵ)的有效菌株Ch—1菌。该菌适应强碱性环境,能耐受pH为12的高碱度,其Cr(Ⅵ)耐受能力可达4 g/L以上,且能在高碱度高Cr(Ⅵ)浓度的情况下有效还原Cr(Ⅵ)。
     在此基础上,本文提出了铬渣生物解毒新思路:通过摇瓶实验初步确定铬渣细菌解毒的可行性,利用柱浸实验优化各工艺参数,最后进行了铬渣细菌解毒的半工业化试验。
     通过以上研究,获得如下研究成果:
     1.铬渣原渣中六价铬含量7.394 g/kg,其中水溶性六价铬含量为1.756g/kg,浸出毒性22.133ppm,均远超国家标准。铬渣细菌解毒能有效解决浸出液pH值、Cr(Ⅵ)浓度较高的问题。在解毒周期内由于细菌的还原作用,浸出液pH值能降低到9以下,浸出液Cr(Ⅵ)浓度解毒为0ppm。
     2.柱浸实验研究结果表明:温度、粒径、初始pH值均是细菌解毒铬渣过程重要的工艺影响因素,当温度为28℃,粒径为4~8mm,初始pH为10.0时,能取得较好的细菌解毒效果,渣中六价铬全量由最初的7.394 mg/kg降低到最终的0.585mg/kg,浸出率达到92.088%。
     3.中试实验研究结果证明了铬渣细菌解毒工业化的可行性,为铬渣的解毒开辟了新的途径。采用“铬渣造粒-细菌堆浸”工艺进行了铬渣堆的现场工艺条件优化试验,并运行了10吨/批规模的细菌解毒铬渣并选择性回收渣中金属铬的示范工程。经过7~10天的细菌解毒,铬渣解毒彻底,完全达到国家危险废物浸出毒性鉴别标准(GB5085-1996)。折合吨渣处理成本为200元。
Along with the rapid growth of the national economy, chromium compound in our country is developed rapid. At present, the production and consumption of chromium compound in our country is the highest inthe world. But the poisonous waste residue -chromium-containingslag which is discharged during the production of chromium compound is toxic . It contaminated the environment seriously and harm to the human health . Every year, about 600,000 tons chromium-containing slag is discharged in our country. The accumulative total of the last is 6,000,000 ton, but the quality which is deal with detoxification and comprehensive utilization is less than 17%. There are 12,500,000 tons soil is contaminated severely. Now the main processing method of the chromium-containing slag are all have the problem of high cost, low disposal amount and secondary pollution.
     The biological method deal with the chromium-containing waste water is attentioned broadly and developed rapidly in recent years due to the low investment and low function fees. But the report of the biological treatment of chromium-containing slag is scarcely.
     In the face of the research state, our research group obtained effective bacteria named Ch-1 which is isolated from sludge nearby the chromium slag site through several years work. The bacteria Ch -1 is suited to alkaline condition and the tolerance ability can reach pH=12 , the Cr( VI) tolerance concentration is above 4 g/L. At the same time, the Cr (VI) can be detoxificated under the high pH and high Cr (VI) concentration.
     On the basis of research, the new way to chromium-containing slag detoxification by microbe is coming into being: feasibility study is conducted through bottle experiment; then optimize the technical condition by column experiment; finally technical grade experiment is conducted.
     On the basis of above research, the innovative conclusions were obtained as follows.
     1. The Cr(VI) content in the chromium-containing slag is 7.394 g/kg , the water-solubility Cr(VI) content is 1.756 g/kg ,and the leaching toxicity is 22.133ppm which is all far beyond the national level. However, the problem of the leaching water can be solved out when the bio-detoxification is conducted. During the detoxification period, the pH of the leaching water can be reduced to 8-9 and the Cr(VI) concentration reduced to 0ppm.
     2. The result of the column experiment showed: temperature partical size and initial pH are important technical impact factor. The preferable result can be obtained when the temperature is 28℃, the partical size is in the scale of 4mm to 8mm and the initial pH value is 10.0. The Cr(VI) content is reduced from initial 7.394 mg/kg to 0.585mg/kg in the end,the leaching percent is 92.088%.
     3. The pilot plant research verified the bio-detoxification of the chromium-containing slag is feasible in industrialization. It is a innovate way to the detoxification of the chromium-containing slag. Condition optimization experiments is conducted by "granulating-bacterial heap leaching". The demonstration project of 10 tons/ batch is functioned and the result demonstrate that the chromium containing slag is detoxification completely after 7-10 bio-leaching and reached the leaching toxicity discriminate national standard of hazardous waste (GB5085-1996) .The treatment cost for every ton chromium containing slag is 200 yuan.
引文
[1] 兰嗣国,殷惠民,狄一安等.浅谈铬渣解毒技术.环境科学研究,1998,11(3):53-56
    [2] 成思危,丁翼,杨春荣.铬盐生产工艺.北京:化学工业出版社,1988:18
    [3] 纪柱.铬渣的物相组成及其对铬渣解毒和综合利用的影响.化工环保,1984,4(1):37-41
    [4] 王孝峰.从原料及产品进出口看我国铬盐行业发展趋势.铬盐工业,2005,(1):36-49
    [5] 中国无机盐工业协会铬盐分会.铬盐行业“十一五”规划(讨论稿).铬盐工业,2005,(2):1-13
    [6] 丁翼.铬渣治理工作回顾及经验教训.化工环保,1994,14(4):210-215
    [7] 纪柱.铬的健康、安全、环境指南.铬盐工业,2003,(2):1-41
    [8] 史黎蔽.铬化合物的健康效应(综述).中国环境卫生,2003,6(1-3):125-129
    [9] 张汉池,张继军,刘峰.铬的危害与防治.内蒙古石油化工,2004,30:72-73
    [10] 樊金祥等.一起含Cr~(6+)废水污染饮料厂的报告.环境与健康杂志,1996,13(5):211
    [11] 王宝桐.镀铬废水污染井水的调查.环境与健康杂志,1993,10(3):122
    [12] 王春茂等.某镀铬厂废水污染抽水井水质调查报告.环境健康杂志,1993,10(4):160
    [13] 朱建华,王莉莉.不同价态铬的毒性及其对人体的影响.环境与开发,1997,12(3):46-48
    [14] 徐衍忠,秦绪娜,刘祥红等.铬污染及其生态效应.环境科学与技术,2002,25:8-9
    [15] 国家正在制定方案 彻底治理铬渣污染.新材料产业.2004(9):7
    [16] 梅海军,李霞,张大威等.“无钙焙烧”技术在我国的发展及应用前景.铬盐工业,2004,(1):46-52
    [17] 刘健,张琴,代群.昔日不排污,今偿环境巨债.沿海经济,2003(12):38-39
    [18] 胡舒为.民丰农化 危机重重.知识经济,2003(12):42-45
    [19] 喻志科,言娟.长沙铬盐厂急需关停.红网http://xwgl.rednet.com.cn/show.aso?id=324924
    [20] 杨扬.中国铬盐废渣污染触目惊心。化工管理,2003(1):4-5
    [21] 杨扬.铬盐治污断源正逢其时.中国化工报,2002—12—09
    [22] 刘方斌.中国铬盐清洁生产日臻成熟 中国环境科学学会发布6项铬渣治理技 术.中国化工报:2004—12—23(T00)
    [23] 纪柱.介绍铬渣无害化、资源化实用技术.铬盐工业:18-27
    [24] 周志中.专家提出新方案筛选铬渣治理技术.中国环境报:2004—07—13
    [25] 周志中.铬渣资源化专家献良策.中国环境报:2004—08—20
    [26] 周志中.铬渣无害化资源化实用技术报告会在京举行 努力实现铬渣无害化处理.中国环境报:2004—12—24
    [27] 梅海军、李霞、张大威等.浅析铬盐清洁生产技术“无钙焙烧法”的优势.铬盐工业,2005,(1):1-12
    [28] Ti-Tin Wang. Microbial Reduction of Chromate Environmental, Microbe-metal Interactions, 2000 chapter10:225-232
    [29] 颜和详,魏无际.电镀含铬废水的处理技术及资源利用.江苏化工,2001,29(2):36-39
    [30] 马锦民.硫酸盐还原菌处理含铬(Ⅵ)废水的基础研究:[硕士学位论文].上海:华东师范大学,2005
    [31] 马锦民,张烂漫,夏君等.微生物处理含铬(Ⅵ)废水的研究进展.江苏化工,2005,33(2):46-50
    [32] Sag Y., Kutsal T.. The selective biosorption of chromium(Ⅵ) and copper(Ⅱ) ions from binary metal mixtures by R. arrhizus. Process Biochemistry, 1996, 31 (6) 561-572
    [33] Prakasham R.S., Sheno Merrie J., Sheela R. et al.. Biosorption of chromium Ⅵ by free and immobilized Rhizopus arrhizus.Enviromental Pollution, 1999,104: 421-427
    [34] Ozdemir Guven, Ceyhan Nur, Ozturk Tansel et al.. Biosorption of chromium(Ⅵ), cadmium(Ⅱ) and copper(Ⅱ) by Panroea sp. TEM18. Chemical Engineering Journal, 2004,102: 249-253.
    [35] Ozdemir Guven, Ozturk Tansel, Ceyhan Nur et al.. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Techmology, 2003, 90:71-74
    [36] Srinath T., Verma T., Ramteke P.W. et al.. Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48:427-435
    [37] Gupta V.K., Shrivastava A.K., Jain N.. Biosorption of chromium(Ⅵ) from aqueous solutions by green algae apirogyra species. Wat. Res. 2001, 35(17):4079-4085.
    [38] Aksu Z., Akpinar Derya. Competitive biosorption of phenol and chromium(Ⅵ) from binary mixtures onto dried anaerobic activated sludge . Biochemical Engineering Journal, 2001, 7:183-193
    [39] Matis K.A., Zouboulis A. I., Grigoriadou A. A. et al.. Metal biosorption-flotation Application to cadmium removal. Appl Microbiol Biotechnol, 1996, 45:569-573
    [40] 陈永生,孙启俊,陈钧等.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-41
    [41] 张建梅,韩志萍,王亚军.重金属废水的生物处理技术.环境污染治理技术与设备,2003,4(4):75-78
    [42] Moore,W.A.,McDermott, GN.,Post,M.A. Mandia, J.W.,and Ettinger, M.B..Effects ofchromium on the activated sludge Progress.J.Water Pollut.Control Fed.,1961, 33(1):50-58
    [43] Barth,E.F.,Ettinger, M.B.,Salotto,B.V.,and McDermott, G.N Summarey report on the effects of heavy metals on the biological treatment rocesses, J.Water pollut.control fed. 1965, 37(1):78-92
    [44] Lamb, A.and Tollefson, E.L..Toxic effects of cupric, chromate and chromicions on biological oxidation, Water Res., 1973,7(5):595-602
    [45] Prakasham R.S.,Merrie J.S,Sheela R..Biosorption of chromium by free and immobilized Rhizopus arrhizus. Environmental Pollution, I999,104(3):421-427
    [46] J.M. Tobin.Investgation of the mechanism of metal uptake by denatured rhizopus arrhizus biomass.enzyme and Microbial Technoligy, 1999,21 (7):591-595
    [47] 尹华,叶锦韶,彭辉等.酵母菌—活性污泥法吸附处理含铬电镀废水的性能.2004,25(3):61-64
    [48] 汪频等.硫酸盐还原菌还原铬(Ⅵ)的研究.环境科学,1993,4:1-4
    [49] 吴乾菁,李昕,李福德等.环境科学.1997,18(5):47-50
    [50] 张介弛,田小光,于德水等.硫酸盐还原菌净化含铬电镀废水的中试研究.生物技术,1997,7(1):32-34
    [51] 田小光,张介弛,傅俐等.硫酸盐还原菌净化工业废水的研究.生物技术,1997,7(1):29-31
    [52] 张建民,宋庆文,朱宝瑜等.生物法处理电镀铬废水的研究.西北纺织工学院学报,1999,13(4):421-424
    [53] 申如香,瞿建国,张晓旗等.微生物法处理冷轧含铬(Ⅵ)废水的试验研究.上海化工,2001(1):4-7
    [54] 李福德.微生物治理电镀废水方法.电镀与精饰,2002,24(2):35-37
    [55] 李福德,李昕,吴乾菁等.微生物法治理电镀废水新技术.给水排水,1997,23(6):25-29
    [56] 汪频,李福德,刘大江.硫酸盐还原菌还原铬(Ⅵ)的研究.环境科学,1993,14(6):1-4
    [57] 耿振香,孙颖.微生物法处理含铬废水.化学工程师,2003,2:6-8
    [58] 瞿建国,申如香,徐伯兴等。微生物法处理含铬(Ⅵ)废水的研究.化工环保,2005,25(1):1-4
    [59] 俞勇梅,周渝生,夏曙演等.生物法治理宝钢2030mm冷轧混合含铬废水的条件选择.宝钢技术,2005,(3):51-60
    [60] 周渝生,俞勇梅,白凌等.生物法治理宝钢冷轧含铬废水的研究进展.钢铁,2005,40(6):76-79
    [61] Moore,W.A., McDermott,G.N., Post, M.A..Mandia,J.W.,and Ettinger, M.B..Effects of chromium on the activated sludge progress.J.Water Pollut. Control Fed., 1961, 33(1):50-58
    [62] Barth, E.F., Ettinger, M.B., SAlotto, B.V., andMcDermott, G.N..Summary report on the effects of heavy metals on the biological treatment processes.Water pollut.control fed. 1965, 37 (1): 78-92
    [63] 张纯一.铬(Ⅵ)还原菌的分离筛选及应用基础研究:[硕士学位论文].上海:华东师范大学,2004
    [64] Lamb, A. and Tollefson, E.L.. Toxic effects of cupric,chromate and chromic Ions on biological oxidation. Waters Red., 1973,7(5):595-602
    [65] Schroeder, D.C.and Lee, G F., Potential transformation of chromium in natural waters.water Air soil Pollut.,1975 4(4):352-358,
    [66] Dehkordi,F.G. The effect of heavy metals on the performance of rotating biological contactors. 1980,NTIS No.PB81-198434,Springfield,VA,.
    [67] Lee, S.E., Shin, H.S., and Paik, B.C.. Treatment of Cr(Ⅵ)-congtaining wastewater by addition of powered activataed carbon to the activated sludge process.Water Res., 1989, 23(1): 63-70
    [68] Roda, I.G. and Smirnova, G.F..Biochemical treatment of chromium-containing wastewater. Khimiya I Tekhnnologiya Vody, 1989, 11(2): 163-172
    [69] Coleman, R. N. and Paran, J.H.., Biofilm concentration of chromium. Eviron. Technol., 1991, 12(11):1075-1083
    [70] Hisao Ohtake, Eiji Fujii, Kiyoshi Toda. Bacterial Reduction of Hexavalent Chromium: Kinetic Aspects of Chromate Reduction By Enterobacter cloacae HO1, Biotechnology and Bioengeering 1990, 4:227-235
    [71] Fujii,Kiyoshi Toda, Hisao Ohtake. Bacterial Reduction of Toxic HexavalentChromium Using a Fed-Batch Culture of Enterobacter cloacae Strain HO1.Fermentation and Bioengineering, 1990, 60(5): 365-367
    [72] K Komori. Biological.Removal of Toxic Chromium Using an Enterobacter Cloacae Strain That Reduces Chromate Under Anaerobic Conditions. Biotechnology and Bioengineering, 1990(35): 951-954
    [73] H Shen, Y T wang. Modeling Hexavalent Chromium Reduction In Escherichia Coli33456.. Biotechnology and Bioengeering, 1994, 43(4): 293-300
    [74] Hai Shen Yi-Tin.Biological Reduction of Chromium By E.Coli..Environmental Engineering, 1994,120(3):560-571
    [75] H Shen,Y T wang.Hexavalent Chromium Removal In Two-Stage Bioreacter System.Environmental Engineering. 1995, 121 (11):798-804
    [76] Romanenko V L et al.Patent Specification(Ⅱ)1475369. The patent office, London, 1997
    [77] 纪柱.含Cr~(6+)废水废渣的治理新法—介绍利用细菌还原的生物化学法.铬盐工业,1997,(1):21-27
    [78] 曹宏斌,戴吴波,李玉平等.生物法直接解毒解铬渣.第一届污染控制与资源化全国学术会议
    [79] 胡勇,全学军,谭怀琴等.铬渣生物解毒实验研究.第一届污染控制与资源化全国学术会议
    [80] 裴耀文,骆祝华,黄翔玲等.深海抗铬(Ⅵ)细菌的分离、鉴定及其铬(Ⅵ)还原能力的研究.海洋学报,2004,26(2):140-148
    [81] 徐磊辉,黄巧云,陈雯莉.环境重金属污染的细菌修复与检测.应用与环境生物学报,2004,10(2):256-262
    [82] 周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究.环境科学学报,2001,21(4):504-506
    [83] 段学军,闵航.一株抗镉细菌的分离鉴定及其抗性基因定位的初步研究.环境科学学报,2004,24(1):154-158
    [84] 李先荣,马顺友,张国庆.中国铬盐行业发展趋势及“三废”治理技术探讨.铬盐工业,2004,(2):70-81
    [85] 环学会.努力实现铬渣无害化.中国环境报,2004—12—29
    [86] 中国经济信息网,环境发展:努力实现铬渣无害化处理 http://sdep.cei.gov.cn/index/a/aindex.htm
    [87] Chai Li~yuan, He De~wen, Yu Xia, et al.Technological progress on detoxification and comprehensive utilization of chromium containing slag·Trans. Nonferrons Met.Soc.China, 2002, 12(3): 514-518
    [88] 柴立元,龙腾发,唐宁等.微生物治理碱性含铬废水的试验研究.中南大学学报(自然科学版).2005,36(5):816-820
    [89] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京: 中国环境科学出版社,1998
    [90] 刘方,张效苏,陈超五.铬渣中全量六价铬溶取方法研究.环境科学研究,1995,8(4):40-42
    [91] 工业固体废物有害特性试验与监测分析方法组.工业固体废物有害特性试验与监测分析方法(试行).北京:中国环境科学出版社,1986
    [92] 胡家骏,周群英.环境工程微生物学.北京:高等教育出版社,2000
    [93] 纪柱.治理铬渣的两个关键.铬盐工业,2004,(2):1-14
    [94] 《浸矿技术》编委会.浸矿技术.北京:原子能出版社.1994
    [95] 袁廷芬,汤琦.制粒堆浸提金在龙王山金矿的生产实践.黄金,1994,15(5):39-42
    [96] 张大维.氧化铜矿粉的制粒及柱浸实验初探.矿产保护与利用,1994,3:33-35
    [97] 潘志兵.赛都浸矿制粒堆浸实践.黄金,1994,15(7):39-44
    [98] 王卉,吕萍.含泥铜矿制粒堆浸—细菌氧化浸铜试验研究.湿法冶金,1997,(4):23-26
    [99] 王旭东.粘土状金矿制粒堆浸厂工艺设计浅析.云南冶金,2000,29(1):30-31
    [100] 王旭东.粘土状氧化矿制粒堆浸的工艺流程及生产实践.黄金科学技术,2000,8(1):32-35
    [101] 吕萍.低品位高含泥氧化铜矿制粒堆浸新工艺的研究.矿业研究与开发,2001,21(2):32-34
    [102] 周晓源,王卉.制粒堆浸技术处理含泥铜矿.有色金属,2002,54(1):47-49
    [103] 郑其.铁帽型金矿石制粒堆浸提金工艺的探讨.黄金,2002,23(8):29-32
    [104] 任明强.贵州省晴隆县老万场金矿制粒堆浸提金工艺.贵州地质,2003,20(4):264-269
    [105] 梁建龙,刘惠娟,史文革等.某泥质氧化金矿制粒堆浸工业实验.金属矿山,2004,(12):39-41
    [106] 李国斌.含金焙砂制粒堆浸提金生产实践.湿法冶金,2004,23(3):141-143
    [107] 刘斌.制粒有利于堆浸.新疆有色金属,1994,(2):60-61
    [108] 张一敏.球团理论与工艺。北京:冶金工业出版社,1997:48-53
    [109]Phllipp Gerhardt.普通微生物学方法手册.福建:厦门大学出版社.1989:246-253
    [110] 闵航.厌氧微生物学.浙江:浙江大学出版社:218
    [111] 冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理.环境科学与技术,2004,27(6):104-107
    [112] 万海清,苏仕军,朱家骅等.硫酸盐还原菌的生长因子及脱硫性能的研究.高等化学工程学报,2004,2(18):217-223
    [113] 徐兰山,徐石平,鲁纪鸣.中南大学驯化出铬渣的“解毒细菌”.科技日报: 2005-9-23(001)
    [114] 刘斌.中南大学驯化出铬渣解毒细菌.中国环境报:2005-11-8(007)
    [115] 李志屹.细菌解毒铬渣及其选择性回收铬的新技术通过鉴定.中国有色金属报:2005-10-22(006)
    [116] 胡宇芬,徐勇.淤泥中找到铬渣“解毒细菌”中南大学探索八年成果居国际领先水平.湖南日报:2005-9-22(A02)
    [117] 胡宇芬,徐勇.中南大学分离出铬渣“解毒细菌”在铬渣治理的同时还可实现铬资源再生.中国矿业报:2005-11-3(006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700