动力机器基础设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先讨论了质量—弹簧—阻尼器理论和弹性半空间理论两种理论的优缺点,然后根据弹性半空间理论近几十年的发展成果,采用方程对等法推演出一套适合质量—弹簧—阻尼器理论的复合集总参数模型。该模型的可靠性已经过理论和试验证明,并通过工程实例(采用本文所提出的模型对125000kN压力机基础的动力响应计算)进一步说明该模型的可靠性。在中国工程建设标准化协会课题“动力机器基础设计理论及其应用研究”的资助下,本文作者经过多年研究,完成以下主要研究工作:
     1.根据弹性半空间理论及基础振动试验和数值计算的最新成果,采用方程对等法推演出一套适合任意形状、任意埋置状况、任意频率和任意泊松比的块体基础竖向、扭转、滑移和摇摆振动的复合集总参数模型。
     2.运用该模型对复杂形状明置和埋置块体基础分别在竖向、扭转、水平和摇摆谐和扰力作用下的动力响应进行计算,并将计算结果与采用弹性半空间理论所得到的刚度和阻尼系数计算公式(由大量试验、数值计算所证实)的计算结果进行比较,结果表明,两者计算结果非常吻合,误差分别为:竖向明置基础1.95%,埋置基础10.7%;扭转明置基础3.13%,埋置基础2.31%;滑移明置基础9.16%,埋置基础22.91%;摇摆明置基础0.17%,埋置基础12.31%。
     3.在20m×10mx4m土坑内,分别采用底面形状为0.5m×0.5m,质量283kg和底面1.0mx0.5m,质量566kg混凝土块体模型基础,采用自制脱钩装置使质量5.5kg的圆形钢球发生自由落体运动和圆弧运动,分别对两种不同底面形状在明置和埋置状况下的块体模型基础施加竖向和水平冲击荷载使基础发生竖向和扭转自由振动。
     4.将试验结果与采用基础竖向、扭转振动复合集总参数模型的计算结果进行比较,结果表明,试验结果与计算结果吻合较好。竖向振动时底面形状0.5mx0.5m和1.0mx0.5m明置基础误差分别为16.2%和44.4%,埋置基础误差分别为33.2%和26.3%;扭转振动时底面形状0.5mx0.5m和1.0mx0.5m明置基础误差分别为7.8%和15.5%,埋置基础误差分别为14.1%和14.5%。
     5.采用本文所提出的复合集总参数模型对125000kN压力机基础动力响应进行计算,并将计算结果与采用《动力机器基础设计规范》、波的散射理论的计算结果及实测结果进行比较,结果表明,本文所提出的复合集总参数模型是正确的,在这3种计算模型的计算结果中,本文所提出的复合集总参数模型所计算的振幅值是最小的,因此采用本文所提出的模型进行动力机器基础设计是最即经济的。
     本文推导出的块体基础复合集总参数模型,把弹性半空间理论基础振动所得到的与激振力频率有关的动力特性参数,转化为与激振力频率无关的定参数。该模型具有概念明确、计算简单的优点,对于任意形状、任意埋置状况的动力设备块体基础都能使用。采用该模型可以不做试验或少做试验,只要已知地基土的剪切模量、基础底面形状及埋置状况就可以利用机械多自由度振动理论计算弹性半空间上块体基础的动力响应。本模型不受无量纲频率因数的影响,理论上可以适用于包括连续频率在内的所有频率,对于结构工程的地震响应计算具有参考意义。
The advantages and disadvantages of the theory of quality-spring-damper and the theory of elastic half-space were discussed in this dissertation first, and based on the results of the development of elastic half-space theory in recent decades, developed a set of composite lumped parameter model compatible with the theory of quality-spring-damper using equation equivalence method, its reliability has been proved by the theory and the author,s experiment, And using the engineering examples (the dynamic response of125000kN press foundation was calculated by making use of this model), the results of calculations were compared to further illustrate the reliability of the model. In the underfunded of China Association for Engineering Construction Standardization project'study of dynamic machine foundation design theory and its application', the main achievements of this dissertation what the author studys after years are described as follows:
     1.Based on elastic half-space theory and the latest research results of the foundations oscillating experiments and numerical analysis, a set of the composite lumped parameter model (CLPM) was developed by adopting equation equivalence method, which suits to vertical, torsional, swaying and rocking vibration of the lumped foundation. All of oscillation frequencies, a realistic range of Poisson's ratios, all foundation base shapes, and complicated embedment are considered.
     2. With the new model, dynamic responses of a complicatedly-shaped surface and embedment foundation vibration harmonic vertically, torsionally, horizontally, rockily is calculated respectively and in good agreement with the results obtained by the formulas(supported by results of comprehensive experimental and numerical analysis), which have been developed by the theory of elastic half-space for computing the dynamic stiffness and damping coefficient of foundations harmonically oscillating on a homogeneous half-space, the amplitude difference of surface and embedment foundation is:verticality1.95%and embedment10.7%, torsion3.13%and embedment2.31%, horizontality9.16%and embedment22.91%, in lateral direction, rock0.17%and embedment12.31%, respectively.
     3. In the pits of20m×10m×4m, based on concrete lumped model of foundation designed for0.5m×0.5m,283kg and1.0m×0.5m,566kg, a steel ball of5.5kg happens free-fall motion and circular motion by the initial velocity. Free vibration of foundation perturbed vertically and torsionally was achieved in case of surface and embedment respectively.
     4. Compare the result of experiment to the result of calculation performed with vertical and torsional CLPM, which shows a better closed agreement is found. The difference of vertically vibration of0.5m×0.5m and1.0m×0.5m surface foundation is16.2%and44.4%respectively, embedment foundation is33.2%and26.3%respectively; the difference of torsion vibration of0.5m×0.5m and1.0m×0.5m surface foundation is7.8%and14.1%respectively, embedment foundation is15.5%and14.5%respectively.
     5.The dynamic response of125000kN press foundation was calculated by making use of this CLPM proposed in this paper and the cod for design of dynamic machine foundation and the theory of wave scattering, the results of calculations were compared with the experimental results to further illustrate the model is correct. The amplitude of calculation of125000kN press foundation by making use of three models, the amplitude of calculations of the CLPM proposed in this paper is the smallest that it is the most economical in the design of dynamic machine foundation by using the model presented in this paper.
     The CLPM of block foundation deduced in this paper translates the dynamic parameter of the relevant frequency parameters based on theory of half-space elastic, into constant parameters which has nothing to do with frequency of perturbation load. The advantages of the composite lumped parameter model are clear concept and simple calculation. It is practical for power equipment lumped foundation of arbitrarily shaped and complicatedly embedded lumped foundations. Adopting CLPM can reduce or omit experiments. The multiple degrees of mechanical vibration theory can be used to canculate the dynamic response of block foundation based on elastic half-space as long as the known of foundation soil shear modulus, basic bottom shape and buried for status. This model from the dimensionless frequency factor influence, theoretically, applies to all frequencies including continuous frequency, playing an important reference role for the earthquake response analysis of structural engineering.
引文
[1]Barkan, D. D. Dynamics of base and foundation. New York:McGraw-Hill Book Co,1962,36
    [2]E. Reissner. Stationare, Exialsymmertrische Eines Schuttelnde Masse Erregte Schwingungen Eines Homogenen Elastischen Halbraumes. Ingenieur Archiv,1936,7,Part 6,223-224
    [3]蔡钟业,王明洋,吴少武,张绍治.动力机器基础的地基动力参数测试.岩石力学与工程学报,1996,15(Supp):594-598
    [4]尹春明,钱萍.风机大块式基础简化动力计算研究.电力标准化与计量,2002,41(3):29-33
    [5]T. K. Hsieh.Foundation vibrations,Proc. Institution of Civil Engineers,1962, 22:221-226
    [6]R. V. Whitman. Analysis of soil-structure interaction, A State-of-the art review.In:Applications of experimental and theoretical structural dynamics. Southampton,1972,9.1-9.20
    [7]严人觉,王贻荪,韩清宇.动力基础半空间理论概论.北京:中国建筑工业出版社,1981,255
    [8]George Gazetas and Kenneth H. Stokoe II. Free vibration of embedded foundations:Theory versus experiment. J. Geotch. Engrg, ASCE,1991,117(9): 1382-1401
    [9]Erden, S. M. Influence of shap and embedment on dynamic foundation response:[thesis presented to the University of Massachusetts, at Amherst, Mass., in partial fulfillment of the requirements for the degree of Doctor of Philosophy]. Amherst, Mass:University of Massachusetts,1974,65-72
    [10]Stokoe, K. H., Richart, F. E.. Dynamic response of embedded machine foundations.J. Geotech.Engrg., Div., ASCE,1974,100(GT4):427-447
    [11]Stokoe, K. H., Erden, S. M. Influence of base shape on dynamic response of surface foundations. In:Geotech. Engrg. Report GP85-1. University of texas at Austin,Tex,1985,4-7
    [12]王贻荪,周汉荣.弹性半空间上受冲击的刚性基础振动的简便计算法.湖南大学学报,1980,1:1-12
    [13]J. Pwolf.吴世明,唐有职,陈龙珠,陈云敏译.曾国熙,董翊湘校.土-结构动力相互作用.北京:地震出版社,1989,116-117
    [14]中华人民共和国机械工业部.动力机器基础设计规范(GB50040-96).北京:中国计划出版社,1996,10
    [15]中华人民共和国建设部.地基动力特性测试规范(GB/T 50269-97).北京:中国计划出版社,1997,17
    [16]王锡康.动力机器基础振动学科在我国的发展及需研究的若干问题.工业建筑,2007,37(6):83-90
    [17]王锡康.基底面积和压力对地基动力特性的影响.工业建筑,1988,11:51-53
    [18]George Gazetas. Formulas and charts for impedances of surface and embedded foundations. J. Geotech. Engrg., ASCE,1991,117(9):1363-1381
    [19]Robertson, I. A.. Forced vertical vibration of a rigid circular disc on a semi-infinite elastic solid. Proc. Cambridge Philosophyical Society,1996,62: 547-553
    [20]Kausel, E., Ushijima, R. Vertical and torsional stiffness of cylindrical footings. In:Res. Report R7-6. M.I.T., Cambridge,1979,133-141
    [21]Chen, Huei-Tsyr. Dynamic stiffness of strip footings on irregular soil stratum. J. Chin. Inst. Engrg. Ser. A,1994,17(3):377-384
    [22]侯兴民,周正华,李山有,陈少林.刚性基础阻抗矩阵的一种近似公式.世界地震工程,1999,15(3):34
    [23]侯兴民,廖振鹏.表面矩形基础阻抗函数的集中参数模型.地震工程与工程振动,1999,19(4):6-12
    [24]Apsel, R.J., Luco, J. E..Impedance functions for foundations embedded in a layered medium:An integral equation approach.Earthquake Engrg. and Strc. Dynamics,1987,15(2):213-231
    [25]. Gazetas G.. Forced vibrations of strip footing on layered soils.ASCE,1976, SM1:115
    [26]Kausel, E., Roesset, J. M.. Dynamic stiffness of circular foundations. J. Engrg. Mech. Div., ASCE,1975,101(6):771-785
    [27]Muralikrishna,G..Dynamic response of foundations on layered soil system: [dissertation of Doctor of Philosophy to Indian Institute of Technology]. Kharagpur, India:Indian Institute of Technology,1998,62-81
    [28]Gazetas, G., Dobry, R., Tassoulas, J. L.. Vertical response of arbitrarily shaped embedded foundations.J. Geotech.Engrg., ASCE,1985,111(6):750-771
    [29]王锡康,张新山.对桩竖向弹性刚度的讨论.工业建筑,2002,32(11):30-32
    [30]王锡康.对地基动刚度及惯性作用的研究.岩土工程学报,1984,7:75-85
    [31]王锡康,谷耀武.水平旋转耦合振动下地基惯性及刚度的研究.建筑结构,1996,12:3-8
    [32]机器动荷载作用下建筑物承重结构的振动计算和隔振设计规程(YSJ009-1990).北京:中国标准出版社,1990,22
    [33]王锡康,段士伟,杨先健.弹性波在土体中的传递.土木工程学报,1998,5:14-22
    [34]H.Lamb. On the propagation of an elastic solid. London:Phil. Trans.Roy.Soc.A.1904,203
    [35]T.Y.Sung. Vibration in semi-infinite solids due to periodic surface loading. In: No.156, Symposium of Dynamic Testing of Soils. Philadelphia, ASTM Special Technical Publication,1953,47-55
    [36]R.N.Arnold, G. N.Bycroft, G.B.Wwarburton.Forced vibrations of a body on an infinite elastic solid. Appl. Mech. Trans. ASME,1955,77 (5):112-118
    [37]G. N.Bycroft. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on a elastic stratum. London:Phil. Trans. Roy. Sco. London, Ser. A, 1956,Vol.248
    [38]张有龄.动力基础的设计原理,北京:科学出版社,1959,31
    [39]A. O. Awojobi, P. Grootenhuis.Vibration of rigid bodies on semi-infinite elastic media. Proc. Roy. Soc.,1965,287 (Series A):27-63
    [40]Drnevich, V. P., and Hall, J. R., Jr..Transient loading tests on a circular footing. J. Soil Mech. Found. Div.,ASCE,1966,92(11):153-167
    [41]Lysmer, J., Richart, F. E., Jr..Dynamic response of footings to vertical loading. J. Soil Mech. Found. Div.,ASCE,1966,92(1):65-91
    [42]Elorduy, J., Nieto, A., and Szekely, E. M.. Dynamic response of base of arbitrary shape subjected to periodic vertical loading. In:Proc. Int. Symp. On Wave Propagation and Dynamic Properties of Earth Materials. University of New Mexico, Albuquerque, N.M.,1967,105-121
    [43]Veletsos AS, Wei YT. Lateral and rocking vibration of footings.Journal of Soil Mechanics and Foundation's Division, ASCE,1971,97 (SM9):1227-1248
    [44]Novak, Milos, Beredugo, et al. Vertical vibration of embedded footings. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98 (SM12): 1291-1311
    [45]Novak,M,Sachs,K.Torsional and coupled vibrations of embedded footings.Earthquake Eng Struct Dyn,1973,2(1):11-33
    [46]Veletsos Anestis S., Damodaran Nair, V. V. Torsional vibration of viscoelastic foundations.Journal of the Geotechnical Engineering Division, ASCE,1974,100 (GT3):225-246
    [47]Veletsos Anestis S., Verbic, Branislav.Basic response functions for elastic foundations.J. Eng Mech Div, ASCE,1974,100 (EM2):189-202
    [48]Kausel, Eduardo, Roesset, et al.Dynamic analysis of footings on layered media.J. Eng Mech Div, ASCE,1975,101 (5):679-693
    [49]Nii Y. Swaying and rocking vibration of bodies resting on the surface of a foundation. Journal of the Acoustical Society of Japan,1975,31 (8):496-503
    [50]Beredugo, Youpele O.Modal analysis of coupled motion of horizontally excited embedded footings.Earthquake Engineering & Structural Dynamics,1976,4 (4):403-410
    [51]Elsabee, F, Kausel, et al. Dynamic stiffness of embedded foundations. In:Annu ASCE Eng Mech Div Spec Conf,2nd, Proc,Adv in Civ Eng through Eng Mech. New York,1977,40-43
    [52]Chen, Wayne W. H., Chatterjee, M. Response of foundation embedded in layered media.In-. Conf on Electron Comput. New York,1979,235-250.
    [53]Savidis, S. A, Richter, T.Dynamic response of elastic plates on the surface of the half-space.International Journal for Numerical and Analytical Methods in Geomechanics,1979,3 (3):245-254
    [54]Kitamura, Yasutoshi, Sakurai, et al. Dynamic stiffness for rectangular rigid foundations on a semi-infinite elastic medium. International Journal for Numerical and Analytical Methods in Geomechanics,1979,3 (2):159-171
    [55]Selvadurai A. P. S. Rotary oscillations of a rigid disc inclusion embedded in an isotropic elastic infinte space. International Journal of Solids and Structures, 1981,17 (5):493-498
    [56]Lguchi, M., Luco, J. E. Dynamic response of flexible rectangular foundations on an elastic half-space. Earthquake Engineering & Structure Dynamics,1981, 9(3):239-249
    [57]Hryniewicz, Z. Dynamic response of a rigid strip on an elastic half-space. Computer Methods in Applied Mechanics and Engineering,1981,25 (3): 355-364
    [58]潘复兰.地基抗压刚度系数随深度变化的分析.固体力学学报,1981,34(1):48-57
    [59]王贻荪,王可成,贺台琼.弹性半空间表面在水平谐和集中力作用下的位移.固体力学学报,1981,34(2): 251-256
    [60]王贻荪,王可成,贺台琼.圆心位移影响函数法及其在基础振动分析中的应用.土木工程学报,1981,1:1-19
    [61]王贻荪,王可成,贺台琼.矩形基础竖向振动分析中.土木工程学报,1981,2:23-34
    [62]Rucker, Werner. Dynamic behaviour of rigid foundations of arbitrary shape on a halfspace. Earthquake Engineering & Structural Dynamics,1982,10 (5): 675-690
    [63]Wolf, J, P., Darbre, G. R. Dynamic-stiffness matrix of surface foundation on layered halfspace based on stiffness-matrix approach. In:IAEA Specialists Meeting on Gas-Cooled Reactor Seismic Design Problems and Solutions. San Giego, CA, USA:GA Technologies Inc(GAA17034),1983,183-206.
    [64]Tassoulas, John L., Kausel, Eduardo. On the effect of the rigid sidewall on the dynamic stiffness of embedded circular footings.Earthquake Engineering & Structural Dynamics,1983,11 (3):403-414
    [65]Wolf, Jhon.P, Darbre, Georges. Dynamic-stiffness matrix of soil by the boundary-element method:embedded foundation.Earthquake Engineering & Structural Dynamics,1984,12 (3):401-416
    [66]Tassoulas, John L., Kausel, Eduardo. On the dynamic stiffness of circular ring footings on an elastic stratum. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(5):411-426
    [67]Gazetas, George. Rocking of strip and circular footings. In:Dynamic Soil-Structure Interaction, Proceedings of the Interational. Rotterdam,1984, 3-10
    [68]Constantinou, Michalakis C., Gazetas, George. Torsional vibration on anisotropic halfspace. Journal of the Geotechnical Engineering,1984,110 (11): 1549-1558
    [69]Harada, Takanori, Kubo, et al.Dynamic stiffness of embedded cylindrical rigid foundation. Transactions of the Japan Society of civl Enginees,1985,15: 191-197
    [70]Kitamura, Y., Sakurai, S. Dynamic stiffness under rigid rectangular foundations resting on an elastic two-layered medium. In:Numerical Methods in Geomechanics, Proceedings of the Fifth Interational Conference. Rotterdam, 1985,1499-1504
    [71]Jido, Junichi, Hayamizu, Yutaka, et al. Dynamic analysis of three-dimensional soil-structure interaction by boundary element method:part1. Fundamental study for homogeneous elastic half-space. Takenaka Technical Research Report, 1986,36:97-108
    [72]Triantafyllidis, Th. Dynamic stiffness of rigid rectangular foundations on the half-space. Earthquake Engineering & Structural Dynamics,1986,14 (3): 391-411
    [73]Dobry, Ricardo, Gazetas, et al. Dynamic response of arbitrarily shaped foundations. Journal of Geotechnical Engineering,1986,112 (2):109-135
    [74]Veletsos, Anestis S., Yu, et al. Vertical vibration of ring foundations with mass. Journal of Engineering Mechanics,1986,112 (10):1090-1098
    [75]Dobry, Ricardo, Gazetas, et al.Dynamic response of arbitrarily shaped foundations:Experiment verification.Journal of Geotechnical Engineering,1986, 112 (2):136-149
    [76]Yoshinori Nii. Experiment half- space dynamic stiffness. Journal of Geotechnical Engineering,1987,113 (11):1359-1373
    [77]Veletsos, Anestis S., Tang, Yu. Rocking vibration of rigid ring foundations. Journal of Engineering Mechanics,1987,113 (9):1019-1032
    [78]Veletsos, Anestis S., Tang, Yu. Vertical vibration of rigid ring foundations. Earthquake Engineering & Structural Dynamics,1987,15(1):1-21
    [79]Gazetas, George, Tassoulas John L.Horizontal stiffness of arbitrarily shaped embedded foundations.Journal of Geotechnical Engineering,1987,113 (5): 440-457
    [80]Veletsos, Anestis S., Dotson, et al.Horizontal impedances for inhomogeneous viscoelastic soil layers. Earthquake Engineering & Structural Dynamics,1988, 16 (7):947-966
    [81]Veletsos, Anestis S., Dotson, et al.Horizontal impedances for inhomogeneous viscoelastic soil layers. Journal of Engineering Mechanics,1988,114 (9): 1002-1021
    [82]Triantafyllids, Th, Prange, et al. Rigid circular foundations:Dynamic effects of coupling to the half-space. Soil Dynamics and Earthquake Engineering,1988, 7(1):40-52
    [83]Pais, Artur, Kausel, et al.Approximate formulas for dynamic stiffness of rigid foundations.Soil Dynamics and Earthquake Engineering,1988,7 (4):213-227
    [84]Gaitanaros, Alexandros P, Karabalis, et al. Dynamic analysis of 3-D flexible embedded foundations by a frequency domain BEMFEM. Earthquake Engineering & Structural Dynamics,1988,16 (5):653-674
    [85]Han, Yingcai. Coupled vibration of embedded foundation.Journal of Geotechnical Engineering,1989,115 (9):1227-1238
    [86]Crouse C B, Hushmand Behnam, Luco J Enrique, Wang H L. Foundation impedance functions:Theory versus experiment. Journal of Geotechnical Engineering,1990,116 (3):432-449
    [87]Savidis, S., Vrettos, et al. Vertical vibration of a rigid plate on a continously nonhomogeneous soil. In:First Interational Conference on Soil Dynamics and Earthquake Engineering V. Southampton,1991,663-671
    [88]Ahmad, S., Bharadwaj, A. Horizontal impedsance of embedded strip foundations inlayered soil. Journal of Geotechnical Engineering,1991,117 (7):1021-1041
    [89]Wolf, John P., Paronesso, et.al.Lumped-parameter model for foundation on layer.In:Proceedings of the Interational Conference on Soil Mechanics and Foundation Engineering. Rotterdam,1991,287-290
    [90]Tohma, Jun, ichi, et al. Forced vibration tests and earthquake observation on the dynamic response of rigid embedded foundations. Structural Engineering/Earthquake Engineering,1992,9 (1):45-55
    [91]Meek, Jethro W., Wolf, et al. Approximate Green's function for surface foundations. Journal of Geotechnical Engineering,1993,119 (10):1499-1514
    [92]Gucunski, Nenad, Peek, et al. Vertical vibrations of circular flexible foundations on layered media. Soil Dynamics and Earthquake Engineering,1993,12 (3): 183-192
    [93]Bougacha, Samir, Roesset, et al. Dynamic stiffness of foundations on fluid-filled poroelastic stratum. Journal of Engineering Mechanics,1993,119 (8): 1649-1662
    [94]申世强.扰力水平对基础固有频率的影响.西安冶金建筑学院学报,1994,26(3):279-283
    [95]Liou, Gin-Show. Dynamic stiffness matrices for two circular foundations. Earthquake Engineering & Structural Dynamics,1994,23 (2):193-210
    [96]Wolf, Jhon. P, Meek, et al. Dynamic-stiffness of foundation on layered soil half-space using cone frustums. Earthquake Engineering & Structural Dynamics, 1994,23 (10):1079-1095
    [97]Deeks, A.J. Simple model for inelastic footing response to transient loading. International Journal for Numerical and Analytical Methods in Geomechanics, 1995,19 (5):307-329
    [98]Gucunski, Nenad. Rocking response of flexible circular foundations on layered media.Soil Dynamics and Earthquake Engineering,1996,15 (8):485-497
    [99]Vrettos, C. Elastic settlement and rotation of rectangular footings on nonhomogeneous soil. Geotechnique,1998,48 (5):703-707
    [100]侯兴民,周正华,李山有等.刚性矩形基础阻抗矩阵的一种近似公式.世界地震工程,1999,15(3):33-39
    [101]魏新江,林水珍,夏唐代.动力机器基础响应分析的波数法.浙江大学学报(工学版),2000,34(4):459-463
    [102]杨先健.土-基础相互作用的辐射阻尼.岩土工程学报,2000,22(4):416-420
    [103]侯兴民,廖振鹏,丁海平.基础动力刚度的精确数值解及集中参数模型.地震工程与工程振动,2001,21(4):24-28
    [104]蒋东旗,谢定义.动力机器基础设计的数值方法研究.土木工程学报,2002,35(1):74-78
    [105]陈炯.动力基础的竖向振动分析.土木工程学报,2002,35(4):70-76转81页
    [106]陈胜立,陈龙珠.饱和地基上含刚核弹性圆板的竖向振动分析.力学学报,2002,34(1):77-85
    [107]Nogami, Toyoaki, Chen, et al.Boundary differential equation method:Simplified dynamic soil stiffnesses for embedded rigid foundations.Soil Dynamics and Earthquake Engineering,2002,22 (4):323-334
    [108]Prasad, A. Meher, Jaya,et al. Embedded foundation in layered soil under dynamic excitations. Soil Dynamics and Earthquake Engineering,2002,22 (6): 485-498
    [109]Wolf, John P., Preisig, et al. Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones.Earthquake Engineering and Structural Dynamics,2003,32 (7):1075-1098
    [110]陈龙珠,王国才.饱和地基上刚性圆板的扭转振动.工程力学,2003,20(1):131-135
    [111]王四根.刚性动力荷载作用下地基动力反应的若干问题.岩土力学,2003,24(2):202-208
    [112]陈胜立,张建民,陈龙珠.上覆单相弹性层的饱和地基上弹性圆板轴对称竖向振动分析.固体力学学报,2003,24(2):215-220
    [113]Saitoh, Masato, Watanabe, Hiroyuki. Effects of flexibility on rocking impedance of deeply embedded foundation. Journal of Geotechnical and Geoenvironmental Engineering,2004,130 (7):438-445
    [114]Anam Iftekhar, Roesset Jose M. Dynamic stiffness of surface foundations:An explicit solution. International Journal of Geomechanics,2004,4 (3):216-223
    [115]D.K.Baidya, A. Rathi. Dynamic response of footing on a sand layer of thickness. Journal of Geotechnical and Geoenvironmental Engineering,2004,130 (6): 651-655
    [116]蒋通,张听.用粘性边界有限元法分析弹性半无限地基的动力问题.力学季刊,2004,2(4):535-540
    [117]朱永杰.基础形状和基侧回填土对基础动力特性的影响.建筑技术开发,2004,31(2):24-27
    [118]潘旦光,楼梦麟.基岩弹性刚度对土层地震反应的影响.地震工程与工程振动,2004,24(4):158-163
    [119]A. Mandal, D.K.Baidya. Effect of presence of rigid base within the soil on the dynamic response of rigid surface foundation. Geotechnical Testing Journal, 2004,27 (5):475-482
    [120]P. K. Pradhan, D.K.Baidya, D.P.Ghosh. Dynamic response of foundations resting on layered soil by cone model. Soil Dynamics and Earthquake Engineering,2004, 24 (6):425-434
    [121]蔡袁强,孟楷,徐长节.成层地基在轴对称荷载下的稳态振动分析.岩土力学,2004,25(12):1994-1998
    [122]许苗健,王诚,孟楷.Gibson地基在简谐荷载下的竖向振动分析.浙江大学学报(工学版),2004,38(8):1015-1019
    [123]王赞芝.动力机器地基随机振动研究.力学与实践,2005,27(4):18-21
    [124]燕彬,黄义,王成林.任意刚性基础竖向动阻抗的简化计算.世界地震工程,2005,21(1):1-96
    [125]郑灶锋,徐长节,蔡袁强.稳态荷载下轴对称成层饱和粘弹性地基动力响应.岩石力学与工程学报,2005,24(13):2381-2385
    [126]徐长节,孙益华,李庆金等.上覆单向弹性层饱和地基上刚性条形基础的竖向振动的混合边值问题.岩土力学,2005,26(增刊):105-108
    [127]祝彦知,仲政.横观各向同性饱和无限土体三维粘弹性动力时域解.水利学报,2005,36(6):667-669
    [128]Luo, Albert C. J. Vibration of soil and foundation- Literrature review. Proceedings of the ASME Design Engineering Division 2005,2005, v118B, n2,1061-1071
    [129]高广运,李志毅,邱畅.弹性半空间不规则异质体引起的瑞利波散射.岩土工程学报,2005,27(4):378-382
    [130]尚守平,李刚,任慧.剪切模量沿深度按指数规律增大的场地土的地震放大效 应.工程力学,2005,22(5):153-157
    [131]尚守平,卢华喜,李刚等.粉质粘土动剪切模量的试验对比研究.岩土工程学报,2006,28(3):410-414
    [132]尚守平,卢华喜,李刚等.动载荷作用下土阻尼比的试验对比研究.地震工程与工程振动,2006,26(2):161-165
    [133]尚守平,刘方成,杜运兴等.应变累积对黏土动剪模量和阻尼比影响的试验研究.岩土力学,2006,27(5):683-688
    [134]陈哲,刘林超.分数导数描述的粘弹性基础-动力机器系统振动特性分析.噪声与振动控制,2006,3:26-28
    [135]简政,杨芳,李爱国.相邻机器基础动力相互作用研究.西安理工大学学报,2006,22(3):265-268
    [136]Celebi, E., Firat, S., Cankaya, I. The effectiveness of wave barrieers on the dynamic stiffness coefficients of foundations using boundary element method. Applied Mathematics and Computation(New York),2006,180 (2):683-699
    [137]Celebi, Erkan., Firat, Seyha.,Cankaya, Llyas. Dynamic impedance functions for rectangular rigid foundations.Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers,2006,17 (2):3827-3849
    [138]李宁,郭琪,问锦等.半空间饱和土表面在简谐扭转载荷作用下的响应.甘肃科技,2006,22(1):139-141转141页
    [139]Kumar, Jyant, Reddy, et al. Dynamic response of footing and machine with spring mounting base. Geotechnical and Geological Engineering,2006,24 (1): 15-27
    [140]李庆金,王戌平,徐长节等.饱和地基上刚性条形基础的竖向振动分析.岩土工程学报,2006,28(1):19-23
    [141]Prakash, Shamsher, Puri, et.al.Foundations for vibrating machines. Journal of Structural Engineering (Madras),2006,33 (1):13-29
    [142]时刚,高广运.瞬态弹性波散射的变换域积分方程法.西北地震学报,2006,28(3):225-228
    [143]吴大志,董天乐,蔡袁强等.横观各向同性饱和地基中埋置刚性圆柱基础的扭转振动.岩土力学,2007,28(4):733-737
    [144]王春玲,黄义,贾继红.弹性半空间地基上四边自由矩形板稳态振动的解析解.应用数学和力学,2007,28(2):156-164
    [145]李刚,段林,尚守平,熊益农,黄均田.SH波作用下粘弹性半空间场地土地震反应分析.工程抗震与加固改造,2007,29(2):37-40
    [146]龚耀清,张正维.半无限大弹性地基等效刚度公式及其应用.工程力学,2007, 24(5):10-16
    [147]王满生,潘旦光,周锡元.基于土层集总参数模型的土-结构动力相互作用分析.北京科技大学学报,2007,29(1):5-10
    [148]徐建.动力机器基础设计理论研究发展建议.建筑振动理论与实践.见:第三届全国建筑振动学术会议论文集.昆明:云南科技出版社,2000,1-5
    [149]谢定义.土动力学.西安:西安交通大学出版社,1988,383
    [150]刘纯康.机器基础振动分析和现状.见:第二届全国建筑振动学术会议论文集.北京:中国建筑工业出版社,1997,1
    [151]陈炯.动力机器基础设计理论之思辨.建筑振动理论与实践.见:第三届全国建筑振动学术会议论文集.昆明:云南科技出版社,2000,28-35
    [152]刘志久,尚守平,徐建,王贻荪.任意形状埋置基础的竖向复合集总参数模型.中南大学学报,2007,38(1):170-174
    [153]刘志久,李慧剑,黎振兹.任意形状埋置基础摇摆振动复合集总参数模型//崔京浩.见:第16届全国结构工程学术会议论文集.北京:《工程力学》杂志社,2007,340-346
    [154]刘志久,尚守平,徐建等.任意形状基础滑移振动复合集总参数模型.工程力学,2007,24(12):72-75
    [155]刘志久,尚守平,徐建,王贻荪.任意形状明置基础扭转振动复合集总参数模型.铁道科学与工程,2010,7(4):121-124
    [156]刘志久,尚守平,徐建,王贻荪.任意形状埋置基础滑移振动复合集总参数模型.工程力学,2010,27(12):174-178
    [157]刘志久,尚守平,徐建.埋置基础扭转振动的实用化计算与试验的对比[J].岩土力学,2011,32(12):18-22
    [158]王杰贤.动力地基与基础.北京:科学出版社,2001,2
    [159]Richart, F. E., Jr., Hall, et al. Vibrations of soils and foundations, New Jersey: Prentice Hall, Englewood Cliffs, N.J,1972,377-394
    [160]Beredugo Y O., Novak, M. Coupled horizontal and rocking vibrations of embedded footings. Canadian Geotech. J.,1972,9(2):447-497
    [161]Meek, J. W., Veletsos, A. S..Simple models for foundations in lateral and rocking motion. In:Proc.5th World Conf. Earthquake Engrg., Rome,1973, 2610-2613
    [162]Clough, Penzien. Structural dynamics. New York:McGraw-Hill,1974,102-103
    [163]Erden, S. M, Influence of shap and embedment on dynamic foundation response: [dissertation of Doctor of Philosophy to the University of Massachusetts]. Amherst, Mass:University of Massachusetts,1974,34-39
    [164]Bielak, J. Dynamic behavior of structures with embedded foundations. Earthquake Engrg. Strc. Dynamics,1975,3:259-274
    [165]Wong, H. L., Luco, et al.Dynamic response of rigid foundations of arbitrary shape. Earthquake Engrg. And Strut. Dynamics,1975,5:4579-4587
    [166]Elsabee, F., Morray, J.P. Dynamic behavior of embedded foundations.In:Res. Report R77-33, M.I.T. Cambridge,1977,62-73
    [167]Jakub, M., Roesset, J. M.. Dynamic stiffness of foundations:2-D vs.3-D solutions.In:Res. Report R77-36. M.I.T., Cambridge,1977,98-107
    [168]Veleteos, A.S. Dynamics of structure-foundation systems.Structural and geotechnical mechanic, New Jersey:Prentice Hall, Englewood Cliffs, N.J,1977, 333-361
    [169]Lysmer, J.. Analytical procedures in soil dynamics. Earthquake Engrg., Soil Dynamics, ASCE,1978,3:1267-1316
    [170]Novak, M. Nogami, T., Aboul-Ella, F.. Dynamic soil reactions for plane strain case.Engrg. Mech., ASCE,1978,104:1024-1041
    [171]Kagawa, T., Kraft, et al. Lateral load-deflection relationship of piles subjected to dynamic loadings.Soils and Found.,1981,20(4):19-36
    [172]Roesset, J. M. Stiffness and damping coefficients in foudations. Dynamic response of pile foundations, M. O,Neil and R. Dobry, eds., New York, N. Y., ASCE,1980,1-30
    [173]Roesset, J. M.. The use of simple models in soil-structure interaction. Civil Engineering and Nuclear Power, New York, N. Y., ASCE,1980,10(3):1-25
    [174]Tassoulas, J. L.. Elements for numerical analysis of wave motion in layered media.In:Res. Report R81-2, M.I.T., Cambridge,1981,22-33
    [175]Luco, J. E. Linear soil-structure interaction:A review. Earthquake ground motion and its effects on structures, ASME, New York, N. Y.,1982,41-57
    [176]Das, B. M. Fundamentals of soil dynamics. New York:Elsevier Science Publishers, New York, N. Y,1983,52-53
    [177]Gazetas, G.. Analysis of machine foundation vibrations:State-of- the-art. Soil Dynamics and Earthquake Engrg.,1983,3(1):2-42
    [178]Velez, A., Gazetas, G., Krishnan, R.. Lateral dynamic response of constrained-head piles.J. Geotech.Engrg., ASCE,1983,109(8):1063-1081
    [179]Lin, A. N., and Jennings, P. C. Effect of embedment of foundation-soil impedances.J. Engrg. Mech., ASCE,1984,110(7):1060-1075
    [180]Moore, P. J. Analysis and design of foundations for vibrations. The Netherlands:A. A.Balkema, Rotterdam,1985,102
    [181]Dobry, R., Gazetas, et al.. Dynamic stiffness and damping of foundations by simple methods.Vibration problems in geotechnical engineering, G. Gazetas and E. T. Selig, eds., ASCE, New York, N. Y.,1985,77-107
    [182]Novak, M.. Experiments with shallow and deep foundations.Vibration problems in geotechnical engineering. G. Gazetas and E. Selig. eds., ASCE, New York, N. Y.,1985,47-74
    [183]Veleteos, A.S., Tang, Y. Vertical vibration of ring foundations.In:Res. Report, 32, Rice University, Houston, Tex,1985,5
    [184]Wong, H. L., Luco, et al. Tables of impedance functions for square foundations on layered media.Soil Dynamics and Earthquake Engrg.,1986,4(2):64-81
    [185]Gazetas, G.. Simple physical methods for foundation impedances. Dynamic behavior of foundations and buried structures. Elsevier Applied Science, London England:1987,45-93
    [186]Novak, M. State-of- the-art in analysis and design of machine foundations, Soil-structure interaction. New York:Elsevier and Computational Mechanics Ltd., New York, N. Y.,1987,171-192
    [187]Gazetas, G., tassoulas, J. L..Horizontal stiffness of arbitrarily shaped embedded foundations.J. Geotech.Engrg., ASCE,1987,113(5):458-475
    [188]Prakash, F. E., and Puri V. K. Foundations for machines.Analysis and design. New York:John Wiley & Sons, New York, N. Y,1988,38
    [189]Wolf, J. P. Dynamic soil-structure interaction in the time domain. Englewood Cliffs:Prentice Hall, Englewood Cliffs, N.J,1988,79
    [190]Hatzikonstantinou, E., et al.. Rocking stiffness of arbitrarily shaped embedded foundation. J. Geotech.Engrg., ASCE,1989,115(4):457-472
    [191]Fotopoulou, M., et al..Rocking damping of arbitrarily shaped embedded foundations.J. Geotech.Engrg., ASCE,1989,115(4):473-490
    [192]Mita, A., Luco, J. E..Impedance function and input motions for embedded square foundations. J. Geotech.Engrg., ASCE,1989,115(4):491-503
    [193]Ahmad, R., and Gazetas, G.. Torsional impedances of embedded foundations.In:Research Report, Dept. of Civil Engineering SUNY. Buffalo, 1991,47-55
    [194]刘习军,贾启芬,张文德.工程振动与测试技术.天津:天津大学出版社,1999,78
    [195]Margason, B. E., McNeil, R. L., et al. Case histories in foundation vibrations. Special Tech. Publication 450, American Society for Testing and Materials(ASTM),San Francisco, Calif.,1968,167-196
    [196]Crouse, C. B., Liang, G. C., Martin, G. R..Experimental foundation impedance functions.J. Geotech. Engrg., ASCE,1985,111(6):819-822
    [197]Fry, Z. B. Development and evaluation of soil bearing capacity; field vibratory test data. Report No.3-632, Waterways Experiment Station, Vicksburg, Miss,1963,3
    [198]Barkan, D. D. Examples of bases and foundations. New York:McGraw-Hill Book Co., New York,8N. Y,1962,77
    [199]Novak, M.. Prediction of footing vibrations.J. Soil. Mech. And Found. Div., ASCE,1970,96(3):837-861
    [200]Tajimi, H. Predicted and measured vibrational characteristics of a large-scale shaking table foundation. In:Proc.,8th World Conf. on Earthquake Engrg., San Francisco,1984, Vol. Ⅲ:873-880
    [201]Weissman, K. Centrifugal modeling of dynamic soil-structure interaction: [dissertation of Doctor of Philosophy to the University of Princeton] Princeton: University of Princeton,1989,117
    [202]A1-Homoud, A.S, Al-Maaitah,O.Experimental investigation of vertical vibration of model footings on sand.Soil Dyn Earthquake Eng,1996,15(7):431-445
    [203]尚守平,刘志久,王贻荪,徐建,刘静,周慧,张谓博,胡二中.竖向振动复合集总参数模型试验结果与理论结果的对比.中南大学学报,2009,40(2):533-537
    [204]刘志久,尚守平,徐建,王贻荪.明置基础扭转振动复合集总参数模型试验与理论的对比.铁道科学与工程学报,2011,8(2):5-11
    [205]中华人民共和国建设部.密度试验.土工试验方法标准(GB/T 50123-1999)北京:中国计划出版社,1999,17
    [206]Gibson, R. E. The analytical method in soil mechanics. Geotechnique,1974, 24(2):115-121
    [207]Brown, P. T. Surface settlement of a deep elastic stratum whose modulus increases with depth. Can .Geotech. J.1972,22 (3):467-473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700