小黑杨(Populus simonii×P.nigra)休眠顶芽的磷酸化和乙酰化蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了初步探索芽休眠的调控过程是否依赖磷酸化信号级联反应,以及Nα-乙酰化修饰在芽休眠的调控过程中可能的生物学意义,本文以杨树休眠顶芽为试材,应用nano-UPLC-MS/MS串联质谱结合磷酸化和乙酰化肽段富集的方法,进行了杨树休眠顶芽蛋白和核糖体P-蛋白的磷酸化蛋白质组研究,以及杨树休眠顶芽蛋白的乙酰化蛋白质组研究,分别得到了以下结论。
     1.通过磷酸化蛋白质组鉴定和分析杨树休眠顶芽蛋白研究,鉴定了161个高信任值的磷酸化位点(131个pSer、28个pThr和2个pTyr),磷酸化共涉及到151个杨树蛋白。在这些磷酸化事件中,大部分磷酸化位点相对保守,表明依赖磷酸化的调控机制在杨树和拟南芥间是相对保守的;仅34个位点不保守,表明与草本植物相比其特有的依赖磷酸化调控机制也可能存在。应用Motif-X程序,获得四个显著富集的磷酸化基序,分别是脯氨酸引导的蛋白激酶(proline-directed protein kinase, PDPK)底物基序、未知磷酸化基序、酪氨酸激酶Ⅱ(casein kinases II, CK2)底物基序和14-3-3结合基序,该结果显示在杨树休眠期间PDPK和CK2应该是负责这些杨树蛋白磷酸化的主要蛋白激酶。此外,在杨树中还发现一些磷酸化蛋白与目前已知在其它植物物种中鉴定到的休眠相关候选基因产物同源,暗示了这些蛋白的磷酸化与休眠调控的相关性。这些结果将为未来理解和揭示杨树磷酸化调控顶芽休眠机理提供丰富的数据资源,也为人们提供了一个新的视角去探索木本植物休眠调控机理。
     2.通过磷酸化蛋白质组鉴定和分析杨树休眠顶芽核糖体P-蛋白研究,相对完整地获得了休眠期间顶芽被修饰的全部磷酸化P-蛋白的状态。总共鉴定了5个Ser和1个Thr磷酸化位点,涉及到全部10个P-蛋白中的8个(2P0,2P1,3P2和1P3),且这些磷酸化都发生在它们保守的C-末端,表明休眠期间蛋白质的合成过程可能要通过磷酸化修饰大部分核糖体P-蛋白的C-末端来调控。序列分析显示发生在Ptr RPP2AC-末端的Thr磷酸化位点专门存在于木本植物的P2蛋白,同时此位点也被证明是新的磷酸化位点。鉴定的位于C-末端的全部磷酸化肽段具有一致的磷酸化基序(S/T)XX(D/E),且完好地与酪氨酸激酶Ⅱ(casein kinases II, CK2)底物基序相匹配,表明P-蛋白C-末端的磷酸化全部由CK2所介导。此外,进化分析显示P2蛋白的分歧(类型Ⅰ和Ⅱ)也出现在木本植物杨树中,此结果支持了目前P2蛋白具有分歧的学术观点。据了解,这是第一篇系统的表征木本植物P-蛋白磷酸化蛋白质组,此结果将为未来理解和揭示杨树P-蛋白磷酸化调控机理提供丰富的数据资源。
     3.通过乙酰化蛋白质组鉴定和分析杨树休眠顶芽蛋白研究,共鉴定了51个高信任值的乙酰化位点,涉及到58个杨树Nα-乙酰化蛋白。它们的大部分(47,>81%)属于组(ii)依赖NME的Nα-乙酰化类型,其余小部分(11,~19%)属于组(i)非依赖NME的Nα-乙酰化类型,此类现象表明Na-乙酰化和NME代表了杨树蛋白普遍发生的NPM。全基因组鉴定和分析揭示,与拟南芥、酵母及人类等真核生物相类似,杨树基因组编码全部两种类型的MetAP, MetAP2s (Ptr MetAP2A和2B),MetAPls (Ptr MetAP1A-E),且杨树的Ptr MetAP1E在进化上与其它MetAP1s仍具一定的分歧,故将其考虑作为新的MetAP1s家族成员。TargetP亚细胞定位预测发现杨树的2个Ptr MetAP2s (Ptr MetAP2A和Ptr MetAP2B)专门定位到细胞质,而PtrMetAP1s既定位到细胞器(PtrMetAP1B-E)也定位到细胞质(PtrMetAP1A)。由于经历NME的全部组(ii)47个乙酰化蛋白均定位在细胞质,因此这些NME应该是由细胞质定位的杨树MetAPs (PtrMetAP1A, PtrMetAP2A和PtrMetAP2B)成员所介导。同时值得注意的是,这些经历NME的蛋白在位置2上的氨基酸完全被Ala(25/47),Ser(13/47),Gly(7/47),Thr(1/47)和Vla(1/47)残基占据,这些残基完全遵循真核生物蛋白普遍的NME规则。此外,全基因组鉴定和分析还揭示,杨树与拟南芥、酵母及人类具一致的Nats类酶系统,其基因组具编码全部Nats六个类型的所有催化和辅亚基基因。然而,也发现杨树的大部分类型的Nat催化亚基具备两个旁系同源异构体,相比之下,拟南芥、酵母及人类很少有这样的现象发生,此证据表明杨树中编码完整类型Nat催化亚基的基因是相对扩展的。基于全部Nats类型的所有催化和辅亚基的亚细胞定位信息,再结合乙酰化底物谱的分析结果揭示,在鉴定的58个乙酰化蛋白中,81%(47)蛋白乙酰化由杨树细胞质型的NatA异构体负责,其余的主要由细胞质型的NatB异构体负责乙酰化。总之,杨树与拟南芥、酵母及人类具一致的NME规则及Nat类型系统,表明包含杨树在内的真核生物具类似的NPM。此方法适合同时鉴定大量蛋白的乙酰化位点信息。此特异性位点乙酰化修饰数据将为进一步揭示杨树乙酰化蛋白功能提供了丰富的数据资源。据了解,这是第一次广泛调查木本植物蛋白Na-乙酰化的研究。然而在杨树休眠期间鉴定每个乙酰化蛋白的特定功能仍是当前所面临的挑战。
Although there has been considerable progress made towards understanding the molecular mechanisms of bud dormancy, the roles of protein phosphorylation in the process of dormancy regulation in woody plants remain unclear. We used mass spectrometry combined with TiO2phosphopeptide-enrichment strategies to investigate the phosphoproteome of dormant terminal buds (DTBs) in poplar(Populus simonii×P. nigra). There were161unique phosphorylated sites in161phosphopeptides from151proteins;141proteins have orthologs in Arabidopsis, and10proteins are unique to poplar. Only34sites in proteins in poplar did not match well with the equivalent phosphorylation sites of their orthologs in Arabidopsis, indicating that regulatory mechanisms are well conserved between poplar and Arabidopsis. Further functional classifications showed that most of these phosphoproteins were involved in binding and catalytic activity. Extraction of the phosphorylation motif using Motif-X indicated that proline-directed kinases are a major kinase group involved in protein phosphorylation in dormant poplar tissues. This study provides evidence about the significance of protein phosphorylation during dormancy, and will be useful for similar studies on other woody plants.
     To better understand the role that reversible phosphorylation plays in woody plant ribosomal P-protein function, we initiated a phosphoproteomic investigation of P-proteins from Populus dormant terminal buds. Using gel-free (in-solution) protein digestion and phosphopeptide enrichment combined with a nanoUPLC-ESI-MS/MS strategy, we identified six phosphorylation sites on eight P-proteins from Populus dormant terminal buds. Among these, six Ser sites and one Thr site were identified in the highly conserved C-terminal region of eight P-proteins of various P-protein subfamilies, including two P0, two P1, three P2, and one P3protein. Among these, the Thr site was shown to be novel and has not been identified in any other organisms. Sequence analysis indicated that the phosphothreonine sites identified in the C-terminus of Ptr RPP2A exclusively occurred in woody species of Populus etc. The identified phosphopeptides shared a common phosphorylation motif of (S/T)XX(D/E) and may be phosphorylated in vivo by casein kinase2as suggested by using Scansite analysis. Furthermore, phylogenetic analysis suggested that divergence of P2also occurred in Populus, including Type Ⅰ and Type Ⅱ. To the best of our knowledge, this is the first systematic phosphoproteomic and phylogenetic analysis of P-proteins in woody plants, the results of which will provide a wealth of resources for future understanding and unraveling of the regulatory mechanisms of Populus P-protein phosphorylation during the maintenance of dormancy.
     The N-terminal protein processing mechanism (NPM) represents a common protein modification process of eukaryotes, and involves the co-translational processes of N-terminal Met excision (NME) and N-terminal acetylation (Nα-acetylation). To reveal the NPM in poplar, we investigated the Nα-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TO2enrichment of acetylated peptides. We identified58N-terminally acetylated (Nα-acetylated) proteins. Most proteins (47,>81%) are subjected to Nα-acetylation following the N-terminal removal of Met, indicating that Nα-acetylation and NME could represent a common NPM of poplar proteins. Based on N-terminal features of these acetylated proteins, the NME in poplar was found to be similar to the NME process observed in yeast and humans. The poplar genome encodes cytosolic or organelle-targeted methionine aminopeptidase (MetAP), and NME of these identified poplar proteins is mediated by three cytosolic poplar MetAPs (PtrMetAP1A, PtrMetAP2A and PtrMetAP2B). A novel member of MetAP1s was identified and named Ptr MetAP1E because of its divergence with other known MetAP1s. We found that poplar possessed the entire N-terminal acetyltransferase (Nat) system composed of six Nats (NatA-F), however, one extended Nat system was also found in poplar, probably arising from multiple gene duplication events. Based on a comparison of these recognized substrate motifs of Nats found in yeast and humans with our extraction of substrate motifs, we predict that NatA and NatB represent the major Nats that acetylate the identified poplar proteins. This result reveals that poplar possesses analogous NPMs to those observed in eukaryotes.
引文
[1]A. Rohde, T. Ruttink, V. Hostyn, L. Sterck, K. Van Driessche and W. Boerjan. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J. Exp. Bot.,2007,58 (15-16),4047-4060.
    [2]L. J. R. Rajeev Arora, Karen Tanino. Induction and Release of Bud Dormancy in Woody perennials:A science Comes of Age Hortscience,2003,38 (5),911-921.
    [3]I. Allona, A. Ramos, C. Iba ez, R. Contreras, R. Casado and C. Aragoncillo. Review. Molecular control of winter dormancy establishment in trees. J. Agric. Res.,2008,6 (SPECIAL),201-210.
    [4]A. Rohde and R. Bhalerao. Plant dormancy in the perennial context. Trends Plant Sci.,2007, 12(5),217-223.
    [5]J. V. A. David P. Horvath, Wun S. Chao and Michael E. Foley. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci.,2003,8(11),534-540.
    [6]J. Anderson, W. Chao, D. Horvath and A. USDA. A current review on the regulation of dormancy in vegetative buds. Weed Sci.,2001,49 (5),581-589.
    [7]T. Ruttink, M. Arend, K. Morreel, V. Storme, S. Rombauts, J. Fromm, R. Bhalerao, W. Boerjan and A. Rohde. A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant cell,2007,19 (8),2370-2390.
    [8]N. Druart, A. Johansson, K. Baba, J. Schrader, A. Sj din, R. Bhalerao, L. Resman, J. Trygg, T. Moritz and R. Bhalerao. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J.,2007,50 (4),557-573.
    [9]K. Mathiason, D. He, J. Grimplet, J. Venkateswari, D. Galbraith, E. Or and A. Fennell. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct. Integr. Genomics,2009,9(1), 81-96.
    [10]L. Mazzitelli, R. Hancock, S. Haupt, P. Walker, S. Pont, J. McNicol, L. Cardle, J. Morris, R. Viola and R. Brennan. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J. Exp. Bot.,2007,58 (5),1035-1045.
    [11]M. Campbell, E. Segear, L. Beers, D. Knauber and J. Suttle. Dormancy in potato tuber meristems:chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct. Integr. Genomics,2008,8 (4),317-328.
    [12]J. Schrader, R. Moyle, R. Bhalerao, M. Hertzberg, J. Lundeberg, P. Nilsson and R. Bhalerao. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J.,2004,40 (2),173-187.
    [13]S. B. Ficarro, M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz, D. F. Hunt and F. M. White. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.,2002,20 (3),301-305.
    [14]S. de la Fuente van Bentem, E. Roitinger, D. Anrather, E. Csaszar and H. Hirt. Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol. Plant,2006,126 (1),110-119.
    [15]R. Linding, L. J. Jensen, G. J. Ostheimer, M. A. T. M. van Vugt, C. Jorgensen, I. M. Miron, F. Diella, K. Colwill. L. Taylor, K. Elder, P. Metalnikov, V. Nguyen, A. Pasculescu, J. Jin, J. G. Park, L. D. Samson. J. R. Woodgett, R. B. Russell, P. Bork, M. B. Yaffe and T. Pawson. Systematic discovery of in vivo phosphorylation networks. Cell.2007,129 (7),1415-1426.
    [16]P. Van Damme. T. Arnesen and K. Gevaert. Protein alpha-N-acetylation studied by N-terminomics. FEBS J.,2011,278 (20).3822-3834.
    [17]J. Hollebeke, P. Van Damme and K. Gevaert. N-terminal acetylation and other functions of N-alpha-acetyltransferases. Biol. Chem.,2012,393 (4),291-298.
    [18]S. Jansson and C. Douglas. Populus:a model system for plant biology. Annu. Rev. Plant Biol.,2007,58,435.
    [19]张勇,张守攻,齐力旺,陈小强,陈瑞阳and宋文芹.杨树—林木基因组学研究的模式物种.植物学通报,2006,23(3),286-293.
    [20]G. Tuskan, S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, N. Putnam, S. Ralph, S. Rombauts and A. Salamov. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science,2006,313 (5793),1596-1604.
    [21]杨传平,刘桂丰,梁宏伟and张慧.耐盐基因Bet-A转化小黑杨的研究.林业科学,2001,37(6),34-38.
    [22]周以良,董世林,聂绍荃.黑龙江树木志.黑龙江:科学技术出版社,1986,118.
    [23]H. Okubo. Growth cycle and dormancy in plants. Dormancy in plants:from whole plant behaviour to cellular control,2000,1.
    [24]R. Arora, L. J. Rowland and K. Tanino. Induction and release of bud dormancy in woody perennials:a science comes of age. Hortscience,2003,38 (5),911-921.
    [25]G. Lang. Dormancy:a new universal terminology. HortScience (USA),1987.
    [26]A. Rohde, M. Van Montagu, D. Inz"| and W. Boerjan. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta,1997,201 (1),43-52.
    [27]F. Gevaudant, G. P"|tel and A. Guilliot. Differential expression of four members of the H+-ATPase gene family during dormancy of vegetative buds of peach trees. Planta,2001,212 (4), 619-626.
    [28]G. Whitelam and P. Devlin. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ.,1997,20 (6),752-758.
    [29]J. E. Olsen, O. Junttila, J. Nilsen, M. E. Eriksson, I. Martinussen, O. Olsson, G. Sandberg and T. Moritz. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J.,1997,12 (6),1339-1350.
    [30]B. E. Frewen, T. H. H. Chen, G. T. Howe, J. Davis, A. Rohde, W. Boerjan and H. Bradshaw. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics,2000,154 (2),837.
    [31]C. F. Morris, R. J. Anderberg, P. J. Goldmark and M. K. Walker-Simmons. Molecular cloning and expression of abscisic acid-responsive genes in embryos of dormant wheat seeds. Plant Physiol.,1991,95 (3),814-824.
    [32]M. M. Muthalif and L. J. Rowland. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol.,1994, 104(4),1439.
    [33]A. Welling, P. Kaikuranta and P. Rinne. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol. Plant,1997,100 (1),119-125.
    [34]T. Ruttink, M. Arend, K. Morreel, V. Storme, S. Rombauts, J. Fromm, R. P. Bhalerao, W. Boerjan and A. Rohde. A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell Online,2007,19 (8),2370.
    [35]R. Ruonala, P. L. H. Rinne, J. Kangasjarvi and C. Van Der Schoot. CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. The Plant Cell Online,2008,20 (1),59-74.
    [36]S. E. Clark, S. E. Jacobsen, J. Z. Levin and E. M. Meyerowitz. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development,1996,122 (5),1567.
    [37]N. Brunei, N. Leduc, P. Poupard, P. Simoneau, J. C. Mauget and J. D.Vi"|mont. KNAP2, a class I KN1-like gene is a negative marker of bud growth potential in apple trees (Malus domestica [L.] Borkh.). J. Exp. Bot.,2002,53 (378),2143.
    [38]F. M. Rosin, J. K. Hart, H. T. Horner, P. J. Davies and D. J. Hannapel. Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol.,2003,132 (1),106.
    [39]R. Law and J. Suttle. Transient decreases in methylation at 50-CCGG-30 sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol. Biol.,2002,51,437-447.
    [40]Z. Jekni and T. H. H. Chen. Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods. Plant Cell Physiol.,1999,40 (1),25-35.
    [41]C. A. Beveridge, G. M. Symons and C. G. N. Turnbull. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rmsl and Rms2. Plant Physiol.,2000,123 (2),689-697.
    [42]M. G. Cline. The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol. Plant,1994,90 (1),230-237.
    [43]D. Francis and D. A. Sorrell. The interface between the cell cycle and plant growth regulators:a mini review. Plant Growth Regul.,2001,33 (1),1-12.
    [44]D. P. Horvath, W. S. Chao and J. V. Anderson. Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol.,2002, 128(4),1439.
    [45]M. Ogawa, A. Hanada, Y. Yamauchi, A. Kuwahara, Y. Kamiya and S. Yamaguchi. Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell Online,2003,15 (7),1591-1604.
    [46]M. Sauter. Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J., 1997,11 (2),181-190.
    [47]X. Fu and N. P. Harberd. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature,2003,421 (6924),740-743.
    [48]H. Wang, L. C. Fowke and W. L. Crosby. A plant cyclin-dependent kinase inhibitor gene. Nature,1997,386 (6624),451.
    [49]J. Healy, M. Menges, J. H. Doonan and J. A. H. Murray. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem.,2001,276 (10),7041.
    [50]N. V. Fedoroff. Cross-talk in abscisic acid signaling. Science's STKE:signal transduction knowledge environment,2002,2002 (140), re 10.
    [51]S. J. Gilmour and M. F. Thomashow. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol.,1991,17 (6),1233-1240.
    [52]H. Wang, Q. Qi, P. Schorr, A. J. Cutler, W. L. Crosby and L. C. Fowke. ICK1, a cyclin(?)\dependent protein kinase inhibitor fromArabidopsis thalianainteracts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J.,1998,15 (4),501-510.
    [53]B. Kersten, G. K. Agrawal, H. Iwahashi and R. Rakwal. Plant phosphoproteomics:A long road ahead. Proteomics,2006,6 (20),5517-5528.
    [54]P. A. Grimsrud, D. L. Swaney, C. D. Wenger, N. A. Beauchene and J. J. Coon. Phosphoproteomics for the Masses. Acs Chemical Biology,2010,5 (1),105-119.
    [55]M. Mann, S. E. Ong, M. Gronborg, H. Steen, O. N. Jensen and A. Pandey. Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome. Trends Biotechnol.,2002,20 (6),261-268.
    [56]G. Manning, D. B. Whyte. R. Martinez, T. Hunter and S. Sudarsanam. The protein kinase complement of the human genome. Science,2002,298 (5600),1912-1934.
    [57]S. C. Peck. Phosphoproteomics in Arabidopsis:moving from empirical to predictive science. J. Exp. Bot.,2006,57 (7),1523-1527.
    [58]S. Reiland, G. Messerli, K. Baerenfaller, B. Gerrits, A. Endler, J. Grossmann, W. Gruissem and S. Baginsky. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol.,2009,150 (2),889-903.
    [59]J. Stone and J. Walker. Plant protein kinase families and signal transduction. Plant Physiol., 1995,108(2),451-457.
    [60]F. M. White. Quantitative phosphoproteomic analysis of signaling network dynamics. Curr. Opin. Biotechnol.,2008,19 (4),404-409.
    [61]T. P. Conrads and T. D. Veenstra. An enriched look at tyrosine phosphorylation. Nat. Biotechnol.,2005,23 (1),36-37.
    [62]N. Imam-Sghiouar, I. Laude-Lemaire, V. Labas, D. Pflieger, J. P. Le Ca r, M. Caron, D. K. Nabias and R. Joubert-Caron. Subproteomics analysis of phosphorylated proteins:Application to the study of B(?)\lymphoblasts from a patient with Scott syndrome. Proteomics,2002,2 (7), 828-838.
    [63]F. Wolschin and W. Weckwerth. Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods,2005,1 (1),1-9.
    [64]T. S. Nuhse, A. Stensballe, O. N. Jensen and S. C. Peck. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics,2003,2 (11),1234.
    [65]S. Y. Imanishi, V. Kochin and J. E. Eriksson. Optimization of phosphopeptide elution conditions in immobilized Fe (Ⅲ) affinity chromatography. Proteomics,2007,7 (2),174-176.
    [66]Y. Oda, T. Nagasu and B. T. Chait. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.,2001,19 (4),379-382.
    [67]K. Moser and F. M. White. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res.,2006,5 (1),98-104.
    [68]M. Kokubu, Y. Ishihama, T. Sato, T. Nagasu and Y. Oda. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem.,2005,77 (16),5144-5154.
    [69]S. B. Ficarro, A. R. Salomon, L. M. Brill, D. E. Mason, M. Stettler-Gill, A. Brock and E. C. Peters. Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites. Rapid Commun. Mass Spectrom.,2005,19(1),57-71.
    [70]S. A. Beausoleil, M. Jedrychowski, D. Schwartz, J. E. Elias, J. Villen, J. X. Li, M. A. Cohn, L. C. Cantley and S. P. Gygi. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Nat. Acad. Sci.,2004,101 (33),12130-12135.
    [71]B. A. Ballif, J. Vill"|n, S. A. Beausoleil, D. Schwartz and S. P. Gygi. Phosphoproteomic analysis of the developing mouse brain. Mol. Cell. Proteomics,2004,3 (11),1093.
    [72]Y. IKEGUCHI and H. NAKAMURA. Selective enrichment of phospholipids by titania. Analytical sciences,2000,16 (5),541-543.
    [73]A. SANO and H. NAKAMURA. Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides:application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Analytical sciences,2004,20 (5),861-864.
    [74]A. SANO and H. NAKAMURA. Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Analytical sciences,2004,20 (3),565-566.
    [75]M. W. H. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms and A. J. R. Heck. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.,2004,76 (14),3935-3943.
    [76]S. Rinalducci. M. R. Larsen, S. Mohammed and L. Zolla. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry. J. Proteome Res.,2006,5 (4),973-982.
    [77]S. S. Liang, H. Makamba, S. Y. Huang and S. H. Chen. Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr. A,2006,1116 (1-2),38-45.
    [78]H. K. Kweon and K. H kansson. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem.,2006,78 (6),1743-1749.
    [79]J. C. Trinidad, C. G. Specht, A. Thalhammer, R. Schoepfer and A. L. Burlingame. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics,2006,5 (5),914.
    [80]J. V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen and M. Mann. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell,2006,127 (3), 635-648.
    [81]姜颖,徐朗莱and贺福初.质谱技术解析磷酸化蛋白质组.生物化学与生物物理进展,2003,(03),350-356.
    [82]M. R. Larsen, G. L. S rensen, S. J. Fey, P. M. Larsen and P. Roepstorff. Phospho-proteomics:evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis. Proteomics,2001,1 (2),223-238.
    [83]B. Bogdanov and R. D. Smith. Proteomics by FTICR mass spectrometry:top down and bottom up. Mass spectrometry reviews,2005,24 (2),168-200.
    [84]Z. Liu and K. L. Schey. Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis. Journal of the American Society for Mass Spectrometry,2005,16 (4),482-490.
    [85]A. Stensballe, O. N. Jensen, J. V. Olsen, K. F. Haselmann and R. A. Zubarev. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom.,2000,14 (19),1793-1800.
    [86]P. K. Jensen, L. Pa a-Tolic, G. A. Anderson, J. A. Horner, M. S. Lipton, J. E. Bruce and R. D. Smith. Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.,1999,71 (11), 2076-2084.
    [87]M. M. K. Khan, A. Jan, H. Karibe and S. Komatsu. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol. Biol.,2005,58(1),27-40.
    [88]J. Lee, Y. Xu, Y. Chen, R. Sprung, S. C. Kim, S. Xie and Y. Zhao. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics,2007,6 (4),669.
    [89]T. S. Nuhse, A. Stensballe, O. N. Jensen and S. C. Peck. Phosphoproteomics of the arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell,2004,16 (9),2394-2405.
    [90]A. V. Vener, A. Harms, M. R. Sussman and R. D. Vierstra. Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes ofArabidopsis thaliana. J. Biol. Chem.,2001,276 (10),6959.
    [91]N. V. Bykova, H. Egsgaard and I. M. M ller. Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett.,2003,540 (1-3),141-146.
    [92]C. S. Hwang, A. Shemorry and A. Varshavsky. N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals. Science,2010,327 (5968),973-977.
    [93]C. Giglione, A. Serero, M. Pierre, B. Boisson and T. Meinnel. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J,2000,19 (21),5916-5929.
    [94]B. Polevoda and F. Sherman. Nalpha-terminal acetylation of eukaryotic proteins. J Biol Chem,2000,275 (47),36479-36482.
    [95]C. Giglione. A. Boularot and T. Meinnel. Protein N-terminal methionine excision. Cell Mol Life Sci.2004,61 (12),1455-1474.
    [96]B. Polevoda and F. Sherman. N alpha-terminal acetylation of eukaryotic proteins. J. Biol. Chem.,2000,275 (47),36479-36482.
    [97]P. Van Damme, K. Hole, A. Pimenta-Marques, K. Helsens, J. Vandekerckhove, R. G. Martinho, K. Gevaert and T. Arnesen. NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation. PLoS Genetics, 2011,7(7), e1002169.
    [98]B. Polevoda, J. Hoskins and F. Sherman. Properties of Nat4, an N{alpha}-Acetyltransferase of Saccharomyces cerevisiae That Modifies N Termini of Histones H2A and H4. Mol. Cell. Biol.,2009,29 (11),2913-2924.
    [99]B. Polevoda, T. Arnesen and F. Sherman In A synopsis of eukaryotic Nα-terminal acetyltransferases:nomenclature, subunits and substrates, BioMed Central Ltd:2009; p S2.
    [100]N. Jensen. Modification-specific proteomics:characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.,2004,8 (1),33-41.
    [101]M. Mann and O. Jensen. Proteomic analysis of post-translational modifications. Nat. Biotechnol.,2003,21 (3),255-261.
    [102]T. Arnesen, P. Van Damme, B. Polevoda, K. Helsens, R. Evjenth, N. Colaert, J. Varhaug, J. Vandekerckhove, J. Lillehaug and F. Sherman. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci.,2009,106 (20),8157-8162.
    [103]A. Paradela and J. Albar. Advances in the Analysis of Protein Phosphorylation. J. Proteome Res.,2008,7 (5),1809-1818.
    [104]W. Schulze. Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr. Opin. Plant Biol.,2010,13 (3),280-287.
    [105]R. Linding, L. Jensen, G. Ostheimer, M. van Vugt, C. Jorgensen, I. Miron, F. Diella, K. Colwill, L. Taylor and K. Elder. Systematic discovery of in vivo phosphorylation networks. Cell,2007,129 (7),1415-1426.
    [106]M. Mann, S. Ong, M. Gr(?)nborg, H. Steen, O. Jensen and A. Pandey. Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome. Trends Biotechnol.,2002,20 (6),261-268.
    [107]K. Schmelzle and F. M. White. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol,2006,17 (4),406-414.
    [108]L. B. Areces, V. Matafora and A. Bachi. Analysis of protein phosphorylation by mass spectrometry. Eur. J. Mass Spectrom.,2004,10 (3),383-392.
    [109]S. van Bentem, E. Roitinger, D. Anrather, E. Csaszar and H. Hirt. Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol. Plant,2006,126 (1),110-119.
    [110]S. de la Fuente van Bentem and H. Hirt. Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant Sci.,2007,12 (9),404-411.
    [111]S. Peck. Phosphoproteomics in Arabidopsis:moving from empirical to predictive science. J. Exp. Bot.,2006,57 (7),1523-1527.
    [112]N. Sugiyama, H. Nakagami, K. Mochida, A. Daudi, M. Tomita, K. Shirasu and Y. Ishihama. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol.,2008,4 (193),1-7.
    [113]R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,2003,422 (6928),198-207.
    [114]H. Zhou, J. Watts and R. Aebersold. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.,2001,19 (4),375-378.
    [115]M. Larsen, T. Thingholm, O. Jensen, P. Roepstorff and T. Jorgensen. Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns*. Mol. Cell. Proteomics,2005,4 (7),873-886.
    [116]C. Klemm, S. Otto, C. Wolf, R. Haseloff, M. Beyermann and E. Krause. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. J. Mass Spectrom.,2006, 41 (12),1623-1632.
    [117]G. Han, M. Ye and H. Zou. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. The Analyst, 2008,133 (9),1128-1138.
    [118]T. Thingholm, T. Jorgensen, O. Jensen and M. Larsen. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc.,2006,1 (4),1929-1935.
    [119]T. Nuhse, A. Stensballe, O. Jensen and S. Peck. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics,2003,2 (11),1234-1243.
    [120]T. Nuhse, A. Stensballe, O. Jensen and S. Peck. Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Database. Plant Cell,2004,16 (9),2394-2405.
    [121]T. Nuhse, A. Bottrill, A. Jones and S. Peck. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J.,2007,51 (5),931-940.
    [122]S. de la Fuente van Bentem, D. Anrather, E. Roitinger, A. Djamei, T. Hufnagl, A. Barta, E. Csaszar, I. Dohnal, D. Lecourieux and H. Hirt. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res., 2006,34 (11),3267-3278.
    [123]A. M. Jones, D. Maclean, D. J. Studholme, A. Serna-Sanz, E. Andreasson, J. P. Rathjen and S. C. Peck. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. Journal of Proteomics,2009,72 (3),439-451.
    [124]S. A. Whiteman, T. S. Nuhse, D. A. Ashford, D. Sanders and F. J. Maathuis. Aproteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. The Plant journal 2008,56 (1),146-156.
    [125]H. Li, W. S. Wong, L. Zhu, H. W. Guo, J. Ecker and N. Li. Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics,2009,9 (6),1646-1661.
    [126]S. de la Fuente van Bentem, D. Anrather, I. Dohnal, E. Roitinger, E. Csaszar, J. Joore, J. Buijnink, A. Carreri, C. Forzani, Z. J. Lorkovic, A. Barta, D. Lecourieux, A. Verhounig, C. Jonak and H. Hirt. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Proteome Res.,2008,7 (6),2458-2470.
    [127]A. J. Carroll, J. L. Heazlewood, J. Ito and A. H. Millar. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol. Cell. Proteomics,2008,7 (2),347-369.
    [128]T. Niittyla, A. T. Fuglsang, M. G. Palmgren, W. B. Frommer and W. X. Schulze. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics,2007,6(10),1711-1726.
    [129]J. Benschop, S. Mohammed, M. O'Flaherty, A. Heck, M. Slijper and F. Menke. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Molecular & cellular proteomics,2007,6 (7),1198-1214.
    [130]G. Agrawal and J. Thelen. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol. Cell. Proteomics,2006,5 (11),2044-2059.
    [131]A. Endler, S. Reiland, B. Gerrits, U. G. Schmidt, S. Baginsky and E. Martinoia. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics,2009,9 (2).310-321.
    [132]T. Lu. L. Meng. C. Yang. G. Liu, G. Liu, W. Ma and B. Wang. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta,2008,228.1029-1041.
    [133]R. Mackintosh. S. Davies. P. Clarke, J. Weekes, J. Glllespie. B. Gibb and D. Hardie. Evidence for a protein kinase cascade in higher plants. Eur. J. Biochem..2005,209 (3).923- 931.
    [134]S. Baginsky and W. Gruissem. The chloroplast kinase network:new insights from large-scale phosphoproteome profiling. Molecular plant,2009,2 (6),1141-1153.
    [135]A. J. Link, J. Eng, D. M. Schieltz, E. Carmack, G. J. Mize, D. R. Morris, B. M. Garvik and J. R. Yates. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol., 1999,17(7),676-682.
    [136]M. P. Washburn, D. Wolters and J. R. Yates. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.,2001,19 (3),242-247.
    [137]G. Aparicio, S. Gotz, A. Conesa, D. Segrelles, I. Blanquer, J. Garcia, V. Hernandez, M. Robles and M. Talon. Blast2GO goes grid:developing a grid-enabled prototype for functional genomics analysis. Studies in Health Technology and Informatics,2006,120,194.
    [138]A. Conesa, S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon and M. Robles. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21 (18),3674-3676.
    [139]D. Schwartz and S. Gygi. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat. Biotechnol.,2005,23 (11),1391-1398.
    [140]G. Crooks, G. Hon, J. Chandonia and S. Brenner. WebLogo:a sequence logo generator. Genome Res.,2004,14 (6),1188-1190.
    [141]P. A. Grimsrud, D. den Os, C. D. Wenger, D. L. Swaney, D. Schwartz, M. R. Sussman, J. M. Ane and J. J. Coon. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol.,2010,152 (1),19-28.
    [142]H. Nakagami, N. Sugiyama, K. Mochida, A. Daudi, Y. Yoshida, T. Toyoda, M. Tomita, Y. Ishihama and K. Shirasu. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol.,2010,153 (3),1161-1174.
    [143]G. Han, M. Ye and H. Zou. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst,2008,133 (9),1128-1138.
    [144]J. D. Dunn, G. E. Reid and M. L. Bruening. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev,2010,29 (1),29-54.
    [145]A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. Eddy, S. Griffiths-Jones, K. Howe, M. Marshall and E. Sonnhammer. The Pfam protein families database. Nucleic Acids Res.,2002,30(1),276-280.
    [146]S. Reiland, G. Messerli, K. Baerenfaller, B. Gerrits, A. Endler, J. Grossmann, W. Gruissem and S. Baginsky. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol.,2009,150 (2),889.
    [147]S. Whiteman, L. Serazetdinova, A. Jones, D. Sanders, J. Rathjen, S. Peck and F. Maathuis. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics,2008,8 (17),3536.
    [148]A. M. Jones, D. Maclean, D. J. Studholme, A. Serna-Sanz, E. Andreasson, J. P. Rathjen and S. C. Peck. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J Proteomics,2009.
    [149]J. Benschop, S. Mohammed, M. O'Flaherty, A. Heck, M. Slijper and F. Menke. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Molecular & cellular proteomics:MCP,2007,6 (7),1198.
    [150]C.-C. Liu, T.-C. Lu, H.-H. Li, H.-X. Wang, G.-F. Liu, L. Ma, C.-P. Yang and B.-C. Wang. Phosphoproteomic identification and phylogenetic analysis of ribosomal P-proteins in Populus dormant terminal buds. Planta,2010,231 (3),571-581.
    [151]G. Ostlund, T. Schmitt, K. Forslund, T. Kostler, D. N. Messina, S. Roopra, O. Frings and E. L. Sonnhammer. InParanoid 7:new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res..2010,38 (Database issue). D196-203.
    [152]K. P. O'Brien, M. Remm and E. L. Sonnhammer. Inparanoid:a comprehensive database of eukaryotic orthologs. Nucleic Acids Res.,2005,33 (Database issue), D476-480.
    [153]J. D. Thompson, T. J. Gibson and D. G. Higgins. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics,2002, Chapter 2, Unit 23.
    [154]P. Durek, R. Schmidt, J. L. Heazlewood, A. Jones, D. MacLean, A. Nagel, B. Kersten and W. X. Schulze. PhosPhAt:the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res.,2010,38 (Database issue), D828-834.
    [155]H. Nakagami, N. Sugiyama, K. Mochida, A. Daudi, Y. Yoshida, T. Toyoda, M. Tomita, Y. Ishihama and K. Shirasu. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol.,2010,153 (3),1161-1174.
    [156]T. Bunney, H. van Walraven and A. de Boer.14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc. Natl. Acad. Sci.,2001,98 (7),4249-4254.
    [157]J. Derory, P. Leger, V. Garcia, J. Schaeffer, M. T. Hauser, F. Salin, C. Luschnig, C. Plomion, J. Glossl and A. Kremer. Transcriptome analysis of bud burst in sessile oak(Quercus petraea). New Phytol.,2006,170 (4),723-738.
    [158]S. Jimenez, Z. Li, G. Reighard and D. Bielenberg. Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol.,2010,10(1),25.
    [159]S. Park, D. E. Keathley and K. H. Han. Transcriptional profiles of the annual growth cycle in Populus deltoides. Tree Physiol.,2008,28 (3),321-329.
    [160]Y. Jia, J. V. Anderson, D. P. Horvath, Y. Q. Gu, R. G. Lym and W. S. Chao. Subtractive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge(Euphorbia esula). Plant Mol. Biol.,2006,61 (1-2),329-344.
    [161]I. A. Yakovlev, C. G. Fossdal, Johnsen, O. Junttila and T. Skr ppa. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes,2006,2 (1),39-52.
    [162]D. P. Horvath, J. V. Anderson, M. Soto-Suarez and W. S. Chao. Transcriptome analysis of leafy spurge(Euphorbia esula) crown buds during shifts in well-defined phases of dormancy. Weed Sci.,2006,821-827.
    [163]D. Horvath, W. Chao, J. Suttle, J. Thimmapuram and J. Anderson. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge(Euphorbia esula L.). BMC Genomics,2008,9 (1),536.
    [164]P. Hedley, J. Russell, L. Jorgensen, S. Gordon, J. Morris, C. Hackett, L. Cardle and R. Brennan. Candidate genes associated with bud dormancy release in blackcurrant(Ribes nigrum L.). BMC Plant Biol.,2010,10 (1),202.
    [165]F. Vlad, S. Rubio, A. Rodrigues, C. Sirichandra, C. Belin, N. Robert, J. Leung, P. L. Rodriguez, C. Lauriere and S. Merlot. Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. Plant Cell,2009,21 (10),3170-3184.
    [166]K. Meyer, M. P. Leube and E. Grill. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science,1994,264 (5164),1452-1455.
    [167]X. Pang, T. Halaly, O. Crane, T. Keilin, A. Keren-Keiserman, A. Ogrodovitch, D. Galbraith and E. Or. Involvement of calcium signalling in dormancy release of grape buds. J. Exp. Bot.,2007,58 (12),3249-3262.
    [168]Y. Osakabe, K. Maruyama, M. Seki, M. Satou, K. Shinozaki and K. Yamaguchi-Shinozaki. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell,2005,17 (4),1105-1119.
    [169]J. Leung, S. Merlot and J. Giraudat. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell,1997,9 (5),759-771.
    [170]M. C. Kim. W. S. Chung. D. J. Yun and M. J. Cho. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant,2009,2(1),13-21.
    [171]R. Brennan. L. Jorgensen. C. Hackett. M. Woodhead. S. Gordon and J. Russell. The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica,2008,161 (1),19-34.
    [172]X. Huang, T. Xue, S. Dai, S. Gai, C. Zheng and G. Zheng. Genes associated with the release of dormant buds in tree peonies (Paeonia suffruticosa). Acta Physiol. Plant.,2008,30 (6),797-806.
    [173]J. V. Anderson, R. W. Gesch, Y. Jia, W. S. Chao and D. P. Horvath. Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ.,2005,28 (12),1567-1578.
    [174]L. Sreekantan, K. Mathiason, J. Grimplet, K. Schlauch, J. A. Dickerson and A. Y. Fennell. Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. Plant Mol. Biol.,2010, 73(1),191-205.
    [175]C. Sheldon, M. Hills, C. Lister, C. Dean, E. Dennis and W. Peacock. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc. Natl. Acad. Sci.,2008,105 (6),2214-2219.
    [176]H. Zhang and S. Van Nocker. The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J.,2002,31 (5),663-673.
    [177]T. Close. Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant,1996,97 (4),795-803.
    [178]C. Allagulova, F. Gimalov, F. Shakirova and V. Vakhitov. The plant dehydrins:structure and putative functions. Biochemistry (Mosc.),2003,68 (9),945-951.
    [179]K. Kosova, P. Vitamvas and I. Prasil. The role of dehydrins in plant response to cold. Biol. Plant.,2007,51 (4),601-617.
    [180]A. Tunnacliffe and M. Wise. The continuing conundrum of the LEA proteins. Naturwissenschaften,2007,94 (10),791-812.
    [181]T. Rorat. Plant dehydrins-tissue location, structure and function. Cell. Mol. Biol. Lett., 2006,11 (4),536-556.
    [182]P. Rinne, A. Welling and P. Kaikuranta. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ.,1998,21 (6),601-611.
    [183]P. L. H. Rinne, P. L. M. Kaikuranta, L. H. W. van der Plas and C. van der Schoot. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.):production, localization and potential role in rescuing enzyme function during dehydration. Planta,1999, 209 (4),377-388.
    [184]T. Puhakainen, C. Li, M. Boije-Malm, J. Kangasj rvi, P. Heino and E. T. Palva. Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol.,2004,136 (4),4299-4307.
    [185]A. Goday, A. B. Jensen, F. A. Culianez-Macia, M. M. Alba, M. Figueras, J. Serratosa, M. Torrent and M. Pages. The Maize Abscisic Acid-Responsive Protein Rab17 Is Located in the Nucleus and Interacts with Nuclear Localization Signals. Plant Cell,1994, (6),351-360.
    [186]A. B. Jensen, A. Goday, M. Figueras, A. C. Jessop and M. Pages. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J.,1998,13 (5),691-697.
    [187]M. Riera, M. Figueras, C. Lopez, A. Goday and M. Pages. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rabl7 from maize. Proc. Natl. Acad. Sci.,2004,101 (26),9879-9884.
    [188]C. C. Liu, C. M. Li, B. G. Liu, S. J. Ge, X. M. Dong, W. Li, H. Y. Zhu, B. C. Wang and C. P. Yang. Genome-wide Identification and Characterization of a Dehydrin Gene Family in Poplar (Populus trichocarpa). Plant Mol. Biol. Report.,2011,1-12.
    [189]W. Wang. B. Vinocur. O. Shoseyov and A. Altman. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci.,2004,9 (5),244-252.
    [190]M. E. Santamaria, R. Rodriguez, M. J. Ca al and P. E. Toorop. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann. Bot.,2011,108 (3),485-498.
    [191]M. Wisniewski, J. Sauter, L. Fuchigami and V. Stepien. Effects of near-lethal heat stress on bud break, heat-shock proteins and ubiquitin in dormant poplar(Populus nigra Charkowiensis × P. nigra incrassata). Tree Physiol.,1997,17 (7),453-460.
    [192]A. Jones, D. MacLean, D. Studholme, A. Serna-Sanz, E. Andreasson, J. Rathjen and S. Peck. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J. Proteomics,2009,72 (3),439-451.
    [193]N. Sugiyama, H. Nakagami, K. Mochida, A. Daudi, M. Tomita, K. Shirasu and Y. Ishihama. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol.,2008,4 (1),1-7.
    [194]E. Ono, M. Hatayama, Y. Isono, T. Sato, R. Watanabe, K. Yonekura-Sakakibara, M. Fukuchi-Mizutani, Y. Tanaka, T. Kusumi and T. Nishino. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J.,2006,45 (2),133-143.
    [195]K. C. Jefferies, D. J. Cipriano and M. Forgac. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch. Biochem. Biophys.,2008,476 (1),33-42.
    [196]G. Duby and M. Boutry. The plant plasma membrane proton pump ATPase:a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch,2009,457 (3),645-655.
    [197]M. G. Palmgren. Plant plasma membrane H+-ATPases:powerhouses for nutrient uptake. Annu. Rev. Plant Biol.,2001,52 (1),817-845.
    [198]S. A. Whiteman, T. S. Nuhse, D. A. Ashford, D. Sanders and F. J. Maathuis. Aproteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J.,2008,56(1),146-156.
    [199]T. Kuromori, T. Miyaji, H. Yabuuchi, H. Shimizu, E. Sugimoto, A. Kamiya, Y. Moriyama and K. Shinozaki. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci.,2010,107 (5),2361-2366.
    [200]J. A. Pighin, H. Zheng, L. J. Balakshin, I. P. Goodman, T. L. Western, R. Jetter, L. Kunst and A. L. Samuels. Plant cuticular lipid export requires an ABC transporter. Science,2004,306 (5696),702-704.
    [201]T. A. Paw owski. Proteomic approach to analyze dormancy breaking of tree seeds. Plant Mol. Biol.,2010,73(1),15-25.
    [202]C. C. Liu, T. C. Lu, H. H. Li, H. X. Wang, G. F. Liu, L. Ma, C. P. Yang and B. C. Wang. Phosphoproteomic identification and phylogenetic analysis of ribosomal P-proteins in Populus dormant terminal buds. Planta,2010,231 (3),571-581.
    [203]M. Hopkins, Y. Lampi, T. Wang, Z. Liu and J. Thompson. Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol.,2008,148 (1),479-489.
    [204]H. Feng, Q. Chen, J. Feng, J. Zhang, X. Yang and J. Zuo. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol., 2007,144(3),1531-1545.
    [205]M. Lebska, A. Ciesielski, L. Szymona, L. Godecka, E. Lewandowska-Gnatowska, J. Szczegielniak and G. Muszyhska. Phosphorylation of Maize Eukaryotic Translation Initiation Factor 5A (eIF5A) by Casein Kinase 2. J. Biol. Chem..2010,285 (9),6217-6226.
    [206]E. Greganova, M. Heller and P. Biitikofer. A Structural Domain Mediates Attachment of Ethanolamine Phosphoglycerol to Eukaryotic Elongation Factor 1A in Trypanosoma brucei. PLoS ONE,2010,5 (3), e9486.
    [207]S. Gross and T. Kinzy. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat. Struct. Mol. Biol,2005,12 (9),772-778.
    [208]H. Peters, Y. Chang and J. Traugh. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity. Eur. J. Biochem.,2004,234 (2),550-556.
    [209]S. Rinalducci, M. Larsen, S. Mohammed and L. Zolla. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry. J. Proteome Res,2006,5 (4),973-982.
    [210]F. Klimmek, A. Sjodin, C. Noutsos, D. Leister and S. Jansson. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol.,2006, 140 (3),793-804.
    [211]M. Hansson and A. Vener. Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol. Cell. Proteomics, 2003,2(8),550-559.
    [212]A. Liljas. Comparative biochemistry and biophysics of ribosomal proteins. Int. Rev. Cytol.,1991,124,103-136.
    [213]M. Tchorzewski. The acidic ribosomal P proteins. Int. J. Biochem. Cell Biol.,2002,34 (8),911-915.
    [214]S. Zinker and J. Warner. The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins. J. Biol. Chem.,1976,251 (6),1799-1807.
    [215]D. Krokowski, A. Boguszewska, D. Abramczyk, A. Liljas, M. Tchorzewski and N. Grankowski. Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins. Mol. Microbiol.,2006,60 (2),386-400.
    [216]B. Wittmann-Liebold, B. Hardesty and G. Kramer. Structure, function and genetics of ribosomes. Ribosomal Proteins:Their Structure and Evolution.—Hardesty B, Kramer G, eds, 1986,326-361.
    [217]M. Tchorzewski, A. Boguszewska, P. Dukowski and N. Grankowski. Oligomerization properties of the acidic ribosomal P-proteins from Saccharomyces cerevisiae:effect of P1A protein phosphorylation on the formation of the P1A-P2B hetero-complex. BBA-Molecular Cell Research,2000,1499 (1-2),63-73.
    [218]G. Nusspaumer, M. Remacha and J. Ballesta. Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO J, 2000,19,6075-6084
    [219]H. Molina, D. Horn, N. Tang, S. Mathivanan and A. Pandey. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci.,2007,104 (7),2199.
    [220]K. Moser and F. White. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res,2006,5 (1),98-104.
    [221]J. Ballesta, M. Rodriguez-Gabriel, G. Bou, E. Briones, R. Zambrano and M. Remacha. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol. Rev.,1999,23 (5),537-550.
    [222]X. Lin, S. Kaul, S. Rounsley, T. Shea, M. Benito, C. Town, C. Fujii, T. Mason, C. Bowman and M. Barnstead. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature,1999,402,761-768.
    [223]A. Carroll, J. Heazlewood, J. Ito and A. Millar. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Molecular and Cellular Proteomics,2008,7 (2),347.
    [224]S. van Bentem, D. Anrather, I. Dohnal, E. Roitinger, E. Csaszar, J. Joore, J. Buijnink, A. Carreri, C. Forzani and Z. Lorkovic. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Proteome Res,2008,7 (6),2458-2470.
    [2251 R. Aguilar. L. Montoya and E. Sanchez de Jimenez. Synthesis and Phosphorylation of Maize Acidic Ribosomal Proteins Implications in Translational Regulation. Plant Physiol., 1998,116(1),379-385.
    [226]P. Hasler, N. Brot, H. Weissbach, A. Parnassa and K. Elkon. Ribosomal proteins PO, P1, and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini. J. Biol. Chem.,1991,266(21),13815-13820.
    [227]K. Szick, M. Springer and J. Bailey-Serres, Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. In Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes, National Acad Sciences:1998; Vol.95, pp 2378-2383.
    [228]J. Bailey-Serres, S. Vangala, K. Szick and C. Lee. Acidic Phosphoprotein Complex of the 60S Ribosomal Subunit of Maize Seedling Roots (Components and Changes in Response to Flooding). Am Soc Plant Biol,1997,114 (4),1293-1305.
    [229]K. Schmelzle and F. White. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol.,2006,17 (4),406-414.
    [230]K. Bennett, A. Stensballe, A. Podteiejnikov, M. Moniatte and O. Jensen. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry. J. Mass Spectrom.,2002,37 (2),179-190.
    [231]A. Stensballe and O. Jensen. Phosphoric acid enhances the performance of Fe (III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun. Mass Spectrom.,2004,18 (15),1721-1730.
    [232]F. Vidales, F. Sanchez-Madrid and J. Ballesta. The acidic proteins of eukaryotic ribosomes. A comparative study. Biochim. Biophys. Acta,1981,656 (1),28.
    [233]Inisghtll Version 2005. San Diego, USA.:Accelrys Inc.,2005.
    [234]C. W. Yde, I. Ermakova, O. G. Issinger and K. Niefind. Inclining the purine base binding plane in protein kinase CK2 by exchanging the flanking side-chains generates a preference for ATP as a cosubstrate. J Mol Biol,2005,347 (2),399-414.
    [235]N. Zhang and R. Zhong. Docking and 3D-QSAR studies of 7-hydroxycoumarin derivatives as CK2 inhibitors. Eur J Med Chem,2010,45 (1),292-297.
    [236]Z. W. Yang, G. Yang, Y. G. Zu, Y. J. Fu and L. J. Zhou. The conformational analysis and proton transfer of the neuraminidase inhibitors:a theoretical study. Phys. Chem. Chem. Phys. 2009,11,10035-10041.
    [237]Z. Yang, Y. Nie, G. Yang, Y. Zu, Y. Fu and L. Zhou. Synergistic effects in the designs of neuraminidase ligands:Analysis from docking and molecular dynamics studies. J. Theor. Biol., 2010,267(3),363-374.
    [238]Z. Yang, G. Yang, Y. Zu, Y. Fu and L. Zhou. Computer-Based De Novo Designs of Tripeptides as Novel Neuraminidase Inhibitors. Int. J. Mol. Sci.,2010,11 (12),4932-4951.
    [239]Z. Yang, X. Wu, G. Yang, Y. Zu and L. Zhou. Understanding the chiral recognitions between neuraminidases and inhibitors:Studies with DFT, docking, and MD methods. Int. J. Quantum. Chem.,2011.
    [240]J. D. Head and M. C. Zerner. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem. Phys. lett.,1985,122 (3),264-270.
    [241]Affinity User Guide. San Diego, USA:Accelrys Inc.,2005.
    [242]J. I. Park, I. S. Nou, S. S. Lee, K. K. Kang and M. Watanabe. Identification of S-genotypes by PCR-RFLP in breeding lines of Brassica. Mol. Cells,2001,12 (2),227-232.
    [243]A. Barakat, K. Szick-Miranda, I. Chang, R. Guyot, G. Blanc, R. Cooke, M. Delseny and J. Bailey-Serres. The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol.,2001,127 (2),398-415.
    [244]K. Tamura, J. Dudley, M. Nei and S. Kumar. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol.,2007,24 (8),1596.
    [2451 J. Heazlewood. P. Durek. J. Hummel, J. Selbig, W. Weckwerth, D. Walther and W. Schulze. PhosPhAt:a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res.,2007.
    [246]J. Gao, G. Agrawal, J. Thelen and D. Xu. P3DB:a plant protein phosphorylation database. Nucleic Acids Res.,2008.
    [247]J. Obenauer, L. Cantley and M. Yaffe. Scansite 2.0:proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.,2003,31 (13),3635-3641.
    [248]D. W. Litchfield. Protein kinase CK2:structure, regulation and role in cellular decisions of life and death. Biochem. J.,2003,369 (Pt 1),1-15.
    [249]L. A. Pinna. Protein kinase CK2:a challenge to canons. J. Cell Sci.,2002,115 (Pt 20), 3873-3878.
    [250]B. Guerra and O. G. Issinger. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis,1999,20 (2),391-408.
    [251]A. C. Bibby and D. W. Litchfield. The multiple personalities of the regulatory subunit of protein kinase -CK2:CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci,2005,1 (2),67-79.
    [252]D. Y. Lou, I. Dominguez, P. Toselli, E. Landesman-Bollag, C. O'Brien and D. C. Seldin. The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol. Cell. Biol.,2008,28 (1),131-139.
    [253]J. Moreno-Romero, M. C. Espunya, M. Platara, J. Arino and M. C. Martinez. A role for protein kinase CK2 in plant development:evidence obtained using a dominant-negative mutant. Plant J.,2008,55(1),118-130.
    [254]M. C. Espunya and M. C. Martinez. In situ hybridization analysis of protein kinase CK2 expression during plant development. Physiol. Plant,2003,117 (4),573-578.
    [255]M. Riera, M. Figueras, C. Lopez, A. Goday and M. Pages. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc. Natl. Acad. Sci.,2004,101 (26),9879-9884.
    [256]H. G. Kang and D. F. Klessig. Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2. Plant Mol. Biol.,2005,57 (4),541-557.
    [257]S. Sugano, C. Andronis, M. S. Ong, R. M. Green and E. M. Tobin. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Nat. Acad. Sci.,1999, 96(22),12362-12366
    [258]S. Sugano, C. Andronis, R. M. Green, Z. Y. Wang and E. M. Tobin. Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Nat. Acad. Sci.,1998,95 (18),11020-11025.
    [259]Y. Lee, A. M. Lloyd and S. J. Roux. Antisense expression of the CK2 alpha-subunit gene in Arabidopsis. Effects on light-regulated gene expression and plant growth. Plant Physiol., 1999,119(3),989-1000.
    [260]X. Daniel, S. Sugano and E. M. Tobin. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl. Acad. Sci.,2004,101 (9),3292-3297.
    [261]Q. Bu, L. Zhu, M. D. Dennis, L. Yu, S. X. Lu, M. D. Person, E. M. Tobin, K. S. Browning and E. Huq. Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis. J. Biol. Chem.,2011,286 (14),12066-12074.
    [262]M. D. Dennis and K. S. Browning. Differential phosphorylation of plant translation initiation factors by Arabidopsis thaliana CK2 holoenzymes. J. Biol. Chem.,2009,284 (31), 20602-20614.
    [263]I. M. Johnston, S. J. Allison, J. P. Morton, L. Schramm, P. H. Scott and R. J. White. CK2 forms a stable complex with TFⅢB and activates RNA polymerase Ⅲ transcription in human cells. Mol. Cell. Biol.,2002,22 (11),3757-3768.
    [264]P. Hu, S. Wu and N. Hernandez. A minimal RNA polymerase Ⅲ transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol. Cell,2003,12 (3),699-709.
    [265]P. Salinas, D. Fuentes, E. Vidal, X. Jordana, M. Echeverria and L. Holuigue. An extensive survey of CK2 alpha and beta subunits in Arabidopsis:multiple isoforms exhibit differential subcellular localization. Plant Cell Physiol.,2006,47 (9),1295-1308.
    [266]M. Lebska, J. Szczegielniak, G. Dobrowolska, G. Cozza, S. Moro and G. Muszynska. A novel splicing variant encoding putative, catalytic alpha subunit of maize protein kinase CK2 Physiol. Plant,2009,136 (3),251-263.
    [267]I. Chang, K. Szick-Miranda, S. Pan and J. Bailey-Serres. Proteomic Characterization of Evolutionarily Conserved and Variable Proteins of Arabidopsis Cytosolic Ribosomes 1 [w]. Plant Physiol.,2005,137 (3),848-862.
    [268]F. Meggio and L. Pinna. One-thousand-and-one substrates of protein kinase CK2? The FASEB Journal,2003,17 (3),349-368.
    [269]B. Zschoernig and U. "Mahlknecht. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem. Biophys. Res. Commun.,2009,381 (3),372-377.
    [270]M. Dlakic. The ribosomal subunit assembly line. Genome Biology,2005,6(10),234.
    [271]M. Riera, G. Peracchia and M. Pages. Distinctive features of plant protein kinase CK2. Mol. Cell. Biochem.,2001,227(1-2),119-127.
    [272]N. Saitou, The neighbor-joining method a new method for reconstructing phylogenetic tree. In The neighbor-joining method a new method for reconstructing phylogenetic tree, SMBE:1987; Vol.4, pp 406-425.
    [273]D. Horvath, J. Anderson, W. Chao and M. Foley. Knowing when to grow:signals regulating bud dormancy. Trends Plant Sci.,2003,8 (11),534-540.
    [274]M. Wilkinson, J. McInerney, R. Hirt, P. Foster and T. Embley. Of clades and clans:terms for phylogenetic relationships in unrooted trees. Trends Ecol. Evol.,2007,22 (3),114-115.
    [275]B. Polevoda and F. Sherman. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol.,2003,325 (4),595-622.
    [276]A. Martinez, J. A. Traverso, B. Valot, M. Ferro, C. Espagne, G. Ephritikhine, M. Zivy, C. Giglione and T. Meinnel. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics,2008,8 (14),2809-2831.
    [277]S. Ross, C. Giglione, M. Pierre, C. Espagne and T. Meinnel. Functional and Developmental Impact of Cytosolic Protein N-Terminal Methionine Excision in Arabidopsis. Plant Physiol.,2005,137 (2),623-637.
    [278]P. Pesaresi, N. A. Gardner, S. Masiero, A. Dietzmann, L. Eichacker, R. Wickner, F. Salamini and D. Leister. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell,2003,15 (8),1817-1832.
    [279]C. Giglione, O. Vallon and T. Meinnel. Control of protein life-span by N-terminal methionine excision. EMBO J,2003,22 (1),13-23.
    [280]A. Serero, C. Giglione, A. Sardini, J. Martinez-Sanz and T. Meinnel. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J. Biol. Chem.,2003,278 (52),52953-52963.
    [281]T. Arnesen In Protein N-terminal acetylation:NAT 2007-C2008 Symposia, BioMed Central Ltd:2009; p S1.
    [282]M. Gautschi, S. Just, A. Mun, S. Ross, P. Riicknagel, Y. Dubaquie, A. Ehrenhofer-Murray and S. Rospert. The Yeast N"-Acetyltransferase Nat A Is Quantitatively Anchored to the Ribosome and Interacts with Nascent Polypeptides. Mol. Cell. Biol.,2003,23 (20),7403.
    [283]A. Marchler-Bauer, S. Lu, J. B. Anderson, F. Chitsaz. M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer and N. R. Gonzales. CDD:a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res.,2011,39 (suppl 1), D225-229.
    [284]M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. McGettigan, H. Mc William, F. Valentin, I. Wallace, A. Wilm and R. Lopez. Clustal W and Clustal X version 2.0. Bioinformatics,2007,23 (21),2947-2948.
    [285]S. R. Eddy. A new generation of homology search tools based on probabilistic inference. Genome Inform,2009,23 (1),205-211.
    [286]K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol.,2011,28 (10),2731-2739.
    [287]H. Michel, D. Hunt, J. Shabanowitz and J. Bennett. Tandem mass spectrometry reveals that three photosystem Ⅱ proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem,1988,263 (3),1123-1130.
    [288]B. Zybailov, H. Rutschow, G. Friso, A. Rudella, O. Emanuelsson, Q. Sun and K. J. van Wijk. Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome. Plos One,2008,3 (4),1-19.
    [289]O. Emanuelsson, S. Brunak, G. von Heijne and H. Nielsen. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc.,2007,2 (4),953-971.
    [290]B. Polevoda and F. Sherman. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun.,2003,308 (1),1-11.
    [291]O. K. Song, X. R. Wang, J. H. Waterborg and R. Sternglanz. An N-alpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem.,2003,278 (40),38109-38112.
    [292]M. Kamita, K. Yayoi, Y. Ino, R. Kamp, B. Polevoda, F. Sherman and H. Hirano. N [alpha]-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. J. Proteomics,2010,74 (4),431-441.
    [293]T. Kleffmann, D. Russenberger, A. von Zychlinski, W. Christopher, K. Sjolander, W. Gruissem and S. Baginsky. The Arabidopsis thaliana Chloroplast Proteome Reveals Pathway Abundance and Novel Protein Functions. Curr. Biol.,2004,14 (5),354-362.
    [294]T. Kleffmann, A. Von Zychlinski, D. Russenberger, M. Hirsch-Hoffmann, P. Gehrig, W. Gruissem and S. Baginsky. Proteome dynamics during plastid differentiation in rice. Plant Physiol.,2007,143 (2),912-923.
    [295]W. V. Bienvenut, C. Espagne, A. Martinez, W. Majeran, B. Valot, M. Zivy, O. Vallon, Z. Adam, T. Meinnel and C. Giglione. Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics,2011,11 (9), 1734-1750.
    [296]T. Meinnel, A. Serero and C. Giglione. Impact of the N-terminal amino acid on targeted protein degradation. Biol. Chem.,2006,387 (7),839-851.
    [297]Z. Adam, A. Rudella and K. van Wijk. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Plant Biol.,2006,9 (3),234-240.
    [298]T. Arnesen. Towards a Functional Understanding of Protein N-Terminal Acetylation. PLoS Biol.,2011,9 (5), e1001074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700