含硫氨基酸基因对烟草、百脉根的遗传转化及表达定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含硫氨基酸(SAAs)对动物产毛和产奶的质量影响很大,饲料中补充SAAs,可使羊毛生长和羊毛中含硫量均显著增加,提高奶牛产奶量。含硫氨基酸在饲料植物中含量较少,特别是半胱氨酸和蛋氨酸,常成为第一限制性必需氨基酸。培育高含硫氨基酸的牧草品种是当前牧草品质改良的研究热点之一。
     百脉根(Lotus corniculatus L.)是重要的豆科牧草之一,但含硫氨基酸含量较低。通过分子克隆及遗传转化等方法,将外源高含硫氨基酸蛋白基因转入百脉根,提高牧草蛋白中含硫氨基酸含量具有十分重要的意义。玉米醇溶蛋白(zein)是玉米种子中的主要贮藏蛋白质,在胚乳中以蛋白体的形式存在,可分为α-、β-、γ-和δ-zein等四种主要类型。其中β-、γ-和δ-zein富含甲硫氨酸和半胱氨酸,其具有在反刍动物瘤胃中稳定而在肠中降解的特性,可用于牧草品质的改良。研究表明在转基因植株中含硫氨基酸均有提高,但必须使外源蛋白占到总提取蛋白的1%~5%才具有实际的营养价值。因此,zein在转基因植株的表达量仍有待提高。
     本试验将玉米γ-zein基因和zeolin基因(γ-zein和菜豆球蛋白的融合基因)与植物表达载体pCAMBIA1302的绿色荧光蛋白(GFP)报告基因融合,构建植物表达载体pCBzeolin和pCBzein。通过叶盘法转化模式植物烟草,分析目的基因的表达,验证植物表达载体pCBzeolin和pCBzein的正确性。利用农杆菌介导法将γ-zein基因和zeolin基因导入百脉根中,对转化再生植株进行分子检测和含硫氨基酸含量检测。研究结果如下:
     1.用限制性内切酶NcoⅠ和BglⅡ从中间载体pMD18zeolin和pMD18zein上切下zeolin基因(约1600bp)和γ-zein基因(约720bp),将其定向连接在经相同酶切的质粒载体pCAMBIA1302上,构建成植物表达载体pCBzeolin和pCBzein,测序并进行序列的生物信息学分析。
     2.采用冻融法将pCBzeolin和pCBzein导入根癌农杆菌(Agrobacterium tumefaciens)菌株LBA4404,利用该菌株转化烟草和百脉根。
     3.通过筛选培养和PCR检测,得到转γ-zein基因和zeolin基因的烟草再生植株。目的蛋白表达分析表明γ-zein基因和zeolin基因以蛋白体方式,不均匀地分布在原生质体中,并验证表达载体pCBzeolin和pCBzein的正确性和可行性。
     4.经过共培养、筛选分化、再生,得到百脉根抗性植株。对抗性植株进行PCR、RT-PCR和斑点杂交检测表明,γ-zein和zeolin基因已经整合到百脉根基因组中,在核酸水平得到表达。
     5.含硫氨基酸数据分析表明,转zeolin基因百脉根植株含硫氨基酸含量极显著高于转γ-zein基因百脉根植株和非转基因百脉根植株的含量(P<0.01),但转γ-zein基因植株与非转基因植株间差异不显著。
Sulphur-containing amino acids (SAAs) play an imimportant role in the efficiency of wool growth in sheep and milk production in dairy animals. The forage rich in sulphur-containing amino acids is benefit to the wool growth, the increase of the content of sulphur in wool, and the enhancement of yield of milk. The forage plants are deficient in sulphur-containing amino acids became the first limiting amino acids, especially cysteine and methionine. Breeding of forage variety containing sulphur-rich amino acid is one of research focus on improvement of forage quality at present.
     Crowtoe (Lotus corniculatus L.) is one of the most main legume forages which contain little sulphur-containing amino acids. The sulphur-rich protein encoding genes are transferred into crowtoe to improve the content of the sulphur-containing amino acids of forage protein through genetic engineering. Zeins, maize prolamin, the major protein reserves of maize kernels, are accumulated in protein bodies (PBs) arising from the rough endoplasmic reticulum. Zeins can be classified intoα-,β-,γ- andδ-zeins.β-,γ- andδ-zein are rich in the essential sulphur amino acids methionine and cysteine. The zeins are characterized by their stabilization in ruminal and digestibility in intestines, so it can be utilized in forage quality improvement. Though this may be considered a good starting point, further improvements must still be made to significantly increase the nutritional quality of forages, considering that foreign proteins must account for 1%~5% of the total protein in the leaf .
     The sulphur-containing amino acids genes ofγ-zein and zeolin (fused withγ-zein and phaseolin ) were fused with the report gene GFP from the plant expression vector pCAMBIA1302. The plant expression vectors pCBzeolin and pCBzein were obtained. pCBzeolin and pCBzein were transformed into the model plant tobacco by leaf disc method to prove the validity of pCBzeolin and pCBzein. The expressions ofγ-zein and zeolin gene from transgenic tobaccos were analysesd. pCBzeolin and pCBzein were also transformed into Lotus corniculatus mediated by strain LBA4404. The transformed regeneration plants were testified by molecular detections and analysis of the content of sulphur-containing amino acid. The main results of this study are as following.
     1. Zeolin gene (about 1600bp) andγ-zein gene (about 720bp) were got by cutting from the middle vectors pMD18zeolin and pMD18zein respectively, and were linked to the expression vector pCAMBIA1302 in the same endonucleases digestion sites. The plant expression vector pCBzeolin and pCBzein were obtained,sequenced and analyzed by bioinformatics software.
     2. Plasmids pCBzeolin and pCBzein were transferred into Agrobacterium tumefaciens LBA4404 by freeze-thaw method, and then were transformed into tobacco and crowtoe mediated by strain LBA4404.
     3. After selective culture and PCR analysis, transgenic tobacco regeneration plants were obtained. It was showed thatγ-zein and zeolin accumulated in protein bodies were distributed heterogeneously in the protoplast to prove the validity and feasibilityof pCBzeolin and pCBzein.
     4. After co-culture, selective differentiation and regeneration, resistant crowtoe plants were obtained. Resistant plants were detected by PCR, RT-PCR and Dot blot. The results have proved that theγ-zein and zeolin genes have been transformed into the genome of L. corniculatus, and expressed on nucleic acid level in the transgenic plants.
     5. Sulphur-containing amino acid of transgenic crowtoe plants analysis showed that the content of sulphur-amino acid of transgenic zeolin crowtoe plants was significantly higher than that of the content of the transgenicγ-zein crowtoe plants and non-transgenic crowtoe plants (P<0.01), but there was no significant difference between the transgenicγ-zein plants and non-transgenic plants.
引文
1.刁其玉. 2007.动物氨基酸营养与饲料.北京化学工业出版社.
    2.方希修,王冬梅,路桂平. 2003.现代生物技术在动物营养中的应用研究进展.饲料工业, 1043-47.
    3.方福德. 2000.蛋白质转运的细胞分子机理研究:介绍1999年度诺贝尔生理学或医学奖.生理通讯, 19 (1):3-5.
    4.王文军,景新明. 2005.种子蛋白质与蛋白质组的研究.植物学通报, 22 (3):257-266.
    5.王娜,贾志海. 1999.反刍动物硫营养研究进展.中国饲料, 614-17.
    6.王宝琴,王小龙,张永光,潘丽,王文秀,董金杰. 2005. FMDV vp1基因在豆科牧草百脉根中的转化与表达.中国病毒学, 20 (5):526-529.
    7.王广立,潜忠兴,刘宝先,麻密,林忠平. 1994.水稻10kD醇溶蛋白基因克隆、序列分析及对植物百脉根的转化.植物学报, 36 (5):351-357.
    8.王炜,张永光,王永录,方玉珍,潘丽,蒋守田,刘力宽,孙元吕,建亮,智晓莹等2007.口蹄疫病毒P12A-3C免疫原基因在百脉根中的遗传转化与表达.中国人兽共患病学报, 23 (3):236-239, 247.
    9.田玮,苏兰丽,赵改名. 2001.蛋白质和氨基酸对羊毛生长的影响.中国饲料, (19):2.
    10.安骥飞,玉永雄. 2005.百脉根组织培养的研究.山西农业大学学报, 25 (4):337-339.
    11.余叔文. 1998.植物生理与分子生物学(第2版).北京科学出版社.
    12.李有业. 1983.硫在畜禽饲养中研究的新进展.国外畜牧科技, 629-30.
    13.李建平,单安山. 2004.硫的生物学效价.饲料研究, 319-22.
    14.李振,卢晓光. 1997.硫酸钠在畜禽生产中的应用[J].,1999(7):28.中国饲料, 728.
    15.周奕华,韩厉玲,王兰岚,宋桂英,陈正华. 1997.利用激光微束穿刺法将GUS基因导入百脉根并获得转基因植物的研究.中国激光, 24 (4):380-384.
    16.周霞,程家安,娄永根. 2006.转cry1Ab基因水稻对非靶标昆虫白背飞虱种群增长的影响.昆虫学报, 49 (5):786-791.
    17.林鹿,傅家瑞. 1994.花生种子2S蛋白.花生科技, 31-4.
    18.武雅楠,李建国,曹玉凤,韩醒,钟荣珍. 2006.硫在反刍动物营养中的作用及其需要量的研究.中国畜牧兽医, 33 (5):16-19.
    19.金芜军,郝旸;,程红梅,路兴波,彭于发,贾士荣. 2005.用复合PCR方法检测6种转基因玉米外源DNA的特异性.农业生物技术学报, 11 (5):562-567.
    20.侯丙凯,夏光敏. 2001.植物基因工程表达载体的改进和优化策略.遗传, 23 (5):492-497.
    21.唐广立. (2007).百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化, vol.硕士:西北农林科技大学.
    22.徐伟荣. (2005).中国葡萄野生种芪合成酶基因载体构建及转化烟草研究, vol.硕士:西北农林科技大学.
    23.崔凯荣,邢更生,周功克,刘新民,王亚馥. 2000.植物激素对体细胞胚胎发生的诱导与调节. 22, 5349-354.
    24.盛艳敏,杨燕平,吴英杰,王倩倩. 2008.应用于PCR技术的DNA聚合酶.长春师范学院学报(自然科学版), 27 (6):67-70.
    25.郭喜英,刘艳芝,韦正乙. 2006.吉林省第四届科学技术学术年会论文集(下).长春吉林大学出版社.
    26.陶震,杨胜利,龚毅. 2000.利用MPCR方法快速检测植物转基因背景.生物技术通报, 16 (6):37-41.
    27.潘科,黄炳球,侯学文. 2002.植物凝集素在病虫害防治中的研究进展.植物保护, 28 (4):42-44.
    28.刘小琳,王继峰,胡晓艳. 2007.根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化.中国草地学报, 29 (2):102~106.
    29.刘光明,王群力,陈伟玲,栾国彦,苏文金,梁基选. 2001.荧光PCR同时检测转基因成分
    35S和NOS.检验检疫科学, 11 (6):6-8.
    30.刘昌财,刘关君,刘桂丰,李晓泽. 2007.西伯利亚蓼硫堇基因的克隆和序列分析.植物生理学通讯, 43 (1):25-30.
    31.刘建利,张占路,吴燕民,唐益雄,郭蔼光,陈两桂. 2006.百脉根农杆菌快速高效遗传转化体系的建立.草业学报, 15 (3):128-131.
    32.刘玲丽,谭岩,刘力华,张琨,时阳,许淑芬,方艳秋,段秀梅,姜艳芳,王晓祺. 2004.获得重构基因的简捷方法—重叠延伸PCR.吉林大学学报(医学版), 30 (5):713~716.
    33.刘晓颖. (2007).农杆菌介导的玉米醇溶蛋白基因转化紫花苜蓿的研究, vol.硕士:新疆大学.
    34.刘艳芝,邢少辰,王玉民. 2006. Bar基因转化豆科牧草百脉根的研究.吉林农业科学, 31 (5):45-47,55.
    35.吴显荣,刘建卫. 1988.种子贮藏蛋白合成与调节的研究进展.生物化学与生物物理进展, 15 (5):338-342,334.
    36.孙燕琳. (2007).沙棘几丁质酶基因的克隆和序列分析. In中国科学院, vol.硕士.
    37.孙艳香,杨红梅,耿云红,朱晔荣,王宁宁,王勇. 2006.根癌农杆菌介导的百脉根遗传转化体系的优化研究.南开大学学报(自然科学版), 39 (2):51-57.
    38.张成岗,贺福初. 2002.生物信息学方法与实践(第一版).北京科学出版社.
    39.张振霞,席嘉宾,张惠霞,储成才. 2005.农杆菌介导转化豆科牧草百脉根影响因子.中山大学学报(自然科学版), 44 (4):96-98.
    40.张振霞,符义坤,储成才. 2002a.豆科牧草基因工程研究进展.遗传, 24 (5):607-612.
    41.张振霞,储成才,符义坤. 2002b. GA20-氧化酶基因转化豆科牧草百脉根的研究.草业学报, 11 (3):97-100.
    42.张桂国. (2003).不同NPN水平下肉牛硫需要量及营养物质代谢规律的研究:山东农业大学.
    43.张莉,汪东风,张宾,孙丽平. 2006.豆类植物蛋白酶抑制剂研究进展.大豆科学, 25 (3):314-319.
    44.张丽娟,许宗运. 2006.硫的营养作用及在养殖业的应用.饲料研究, 9 (30-33).
    45.杨文正. 1996.动物矿物质营养.北京中国农业出版社.
    46.杨宗岐,李轶女,张志芳,王勇,沈桂芳. 2007.猪瘟病毒E2基因在百脉根叶绿体基因组中定点整合载体的构建.中国农业科学, 40 (11):2648-2654.
    47.杨晓泉,张水华,黎茵,傅家瑞. 1998.花生2S蛋白提取分离及部分性质研究. .华南理工大学学报(自然科学版), 26 (4):1-5.
    48.蒋宗泽. 1994.硫酸钠添加剂饲养奶牛的效果.上海奶牛, 17 (1):29-30.
    49.谢芝勋,庞耀珊,谢志勤,邓显文. 2000.应用多重反转录-聚合酶链反应检测鸡新城疫病毒和传染病支气管炎病毒的研究.中国预防兽医学报, 22 (2):126-130.
    50.谢芝勋,谢志勤,庞耀珊,刘加波,邓显文,廖敏. 2001.应用三重聚合酶链反应同时检测鉴别鸡3种病毒性呼吸道传染病的研究.中国兽医科技, 31 (1):11-14.
    51.谢实勇,贾志海,卢德勋. 2003.包被蛋氨酸对内蒙古白绒山羊消化代谢及生产性能的影响研究.中国草食动物, 96-99.
    52.贺红霞,林春晶,王铭,董英山. 2007.乙肝表面抗原基因表达载体的构建及对百脉根的转化.农业生物技术学报, 15 (1):115-118.
    53.邹竹荣,俞梅敏. 1997.高含硫蛋白基因及其在植物品质改良中的应用.生物学通报, 32 (3):10-12.
    54.闫向忠. (2007).百脉根早熟品系农艺性状及组培再生体系研究, vol.硕士.兰州:甘肃农业大学.
    55.陈燕,李聪,苏加楷,黄文惠,吕德杨,赵广宇. 1996.发根农杆菌介导的百脉根的基因转化.草地学报, 4 (2):116-120.
    56.韦正乙,刘艳芝,王兴智,郭喜英,于志晶,蔡勤安,侯敬尧,邢少辰. 2007. HAL1基因转化百脉根(Lotus cirniculatus)的初步研究
    57.吉林农业科学, 32 (1):14-16,46.
    58.马永强,韩春然,石忠志. 2006.小麦醇溶蛋白的研究进展.食品科学, 27 (12):813-817.
    59.马得莹,单安山. 2003.铜对动物体内自由基防御系统酶活性及其基因表达的影响.中国畜牧兽医, 30 (5):27-29.
    60.马荣才,李季伦. 1993.种子储藏蛋白的基因工程.生物工程进展, 13 (4):25-29.
    61. Altenbach, S. B., Pearson, K. W., Leung, F. W., Sun, S. S. M. 1987. Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine Plant Molecular Biology, 8 (3):239-250.
    62. Altenbach, S. B., Pearson, K. W., Meeker, G., Staraci, L. C., Sun, S. S. M. 1989. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants Plant Molecular Biology, 13 (5):513-522.
    63. Aruffo, A. 1991. Expression cloning systems. Current Opinion Biotechnology, 2 (5):735-741.
    64. Beach, L. R., Ballo, B. 1992. Biosynthesis and molecular regulation of amino acids in plants American society of plant physiology.
    65. Bewley, J. D., Black, M. 1994. Seed: Physiology of development and germination. NewYorkPlenum Press.
    66. Boevink, P., Cruz, S. S., Hawes, C., N.Harris, Oparka., K. 1996. Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J., 10 (5):935-941.
    67. Bray, E. A., Beachy, R. N. 1985. Regulation by ABA ofβ-conglycinin expression in cultured developing soybean cotyledons. Plant Physiol, 79746-750.
    68. Carlson, A. R., Letarte, J., Chen, J. 2001. Visual screening of microspore derived transgenic barley (Hordeum vulgare L.) with green fluorescent protein. Plant Cell Rep., 20 (4):331~337.
    69. Chabaud, M., Passiatore, J. E., Cannon, F., Buchanan-Wollaston, V. 1988. Parameters affecting the frequency of Kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep, 7512-516.
    70. Chalfie, M., Kain, S. 1998. GFP: Green Fluorescent Protein Strategies and Applications. New York Wiley & Sons
    71. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. 1994. Green flourescent protein as a maker for gene expression. Science, 263 (5148):802-805.
    72. Chiu, W.-l., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., Sheen, J. 1996. Engineered GFP as a vital reporter in plants. Curr Biol., 6 (3):325-330.
    73. Cormack, B. P., Valdivia, R. H., Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP) Gene, 173 (1):33-38.
    74. Cruz, S. S., Chapman, S., Roberts, A. G., Roberts, I. M., Prior, D. A., Oparka, K. J. 1996. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA, 93 (13):6286-6290.
    75. Cubitt, A. B., Heim, R., RAdams, S., Boyd, A. E., Gross, L. A., Tsien, R. Y. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 20 (11):448-455.
    76. Delagrave, S., Hawtin, R. E., Silva, C., Yang, M. M., Youvan, D. C. 1995. Red-shifted excitation mutants of the green fluorescent protein. Bio/ Technol, 13151-154.
    77. Eady, C. C., Weld, R. J., Lister, C. E. 2000. A grobacterium tumefaciens mediated transformation and transgenic plant regeneration of onion (Allium cepa L.). Plant Cell Rep., 19 (4):376~381.
    78. Edson, B., Antonio, O., M., C. M., Maria, T. G., Mariano, C. 2001. Single-step multiplex RT-PCR for simultaneous and colorimetric detection of six RNA viruses in olive trees. J. Virol Methods, 96 (1):33-41.
    79. Faust, M., Montenarh, M. 2000. Subcellular localization of protein kinase CK2. A key to its function. Cell Tissue Res, 301 (3):329-340.
    80. Forde, B. G., MDay, H., Turton, J. F., Shen, W. J., Cullimore, J. V., Oliver, J. E. 1989. Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. The Plant Cell, 1 (4):391-401.
    81. Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors ofGCC box-mediated gene expression. The Plant Cell, 12393-404.
    82. Galbraith, D. W., Lambert, G. M., Grebenok, R. J., Sheen, J. 1995. Flow cytometry analysis of transgene expression in higher plants: green-fluorescent protein. Method Cell Biol., 503-14.
    83. Gayler, K. R., Sykes, G. E. 1985. Effects of Nutritional Stress on the Storage Proteins of Soybeans. Plant Physiol, 78582-585.
    84. Geest, A. H. M. v. d., Petolino, J. F. 1998. Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. PlantCell Rep., 17 (10):760~764.
    85. Gehring, U., Hotz, A. 1983. Photoaffinity labeling and partial proteolysis of wild-type and variant glucocorticoid receptors. Biochemistry, 22 (17):4013–4018.
    86. Goday, A., Sánchez-Martínez, D., Gómez, J., Puigdomènech, P., Pagès, M. 1988. Gene Expression in Developing zea mays embryos: regulation by abscisic acid of a highly phosphorylated 23- to 25-kD group of proteins
    87. Plant Physiol, 88564-569.
    88. Guo, X. Z., Liu, Y. G., Luo, D. 2004. The construction and screening of genomic library based on transformable artificial chromosome (TAC) vector in Lotus japonicus. Journal of Plant Physiology and Molecular Biology, 30 (2):234-238.
    89. Habben, J. E., Kirleis, A. W., Larkins, B. A. 1993. The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant Mol Biol., 23 (4):825-838.
    90. Habben, J. E., Larkins, B. A. 1995. Genetic modification of seed proteins. Current Opinion in Biotechnology, 6171-174.
    91. Hansen, G., Wright, M. S. 1999. Recent advances in the transformation of plants. Trends Plants Sci, 4 (6):226-231.
    92. Haseloff, J., Amos, B. 1995. GFP in plants. Trends Genet, 11 (8):328-329.
    93. Heim, R., Cubitt, A. B., Tsien, R. Y. 1995. Improved green fluorescence. Nature, 373663-664.
    94. Heim, R., Prasher, D. C., Tsien, R. Y. 1994. Wavelength mutations and posttranslational autoxidation of green flourescent protein. Proc Natl Acad Sci USA, 91 (26):12501-12504.
    95. Hoffman, L. M., Donaldson, D. D., Bookland, R., Rashka, K., Herman, E. M. 1987. Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J., 6 (11):3213-3221.
    96. Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, A., Lebo, R., Thompson, E. B., Rosenfeld, M. G., Evans, R. M. 1985. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, 318635-641.
    97. Hori, Y. 2007. Crystal structure of the Aequorea victoria green fluorescent protein. Tanpakushitsu Kakusan Koso, 521768-1769.
    98. Hudson, L. C., Chamberlain, D., JR, C. N. S. 2001. GFP tagged pollen to moniter pollen flow of transgenic plants. Mol Ecol Notes, 1 (4):321-323.
    99. Irene K. Lichtscheidl, Url, W. G. 1990. Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma, 157203-215.
    100. J.Sheen, Hwang, S., Niwa, Y., Kobayashi, H., Galbraith, D. W. 1995. Green-fluorescent protein as a new vital marker in plant cells. Plant J., 8 (5):777-784.
    101. Jefferson, R. A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5 (4):387-405.
    102. Jordan, M. C. 2000. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep., 19 (11):1069-1075.
    103. Jun, Y. L., Domoney, C., Casey, R., Hall, T. C. 1990. Processing Pisum sativum seed storage protein precursors in vitro. Cell Research, 1 (2):153-162.
    104. Kahlon, T. S., Meisk, J. C., Goodrich, R. D. 1975. Sulfur metabolism in ruminantsⅡ. in vivo availability of various chemical forma of sulfur. J Animal Sci, 411154-1160.
    105. Keeler, S. J., Maloney, C. L., Webber, P. Y., Patterson, C., Hirata, L. T., Falco, S. C., Rice, J. A. 1997. Expression of de novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants.
    106. . Plant Molecular Biology, 34 (1):15-29.
    107. Khan, M. R., Ceriotti, A., Tabe, L., Aryan, A., McNabb, W., Moore, A., Craig, S., Spencer, D., Higgins, T. J. 1996a. Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterraneum L.). Transgenic Res., 5 (3):179-185.
    108. Khan, M. R., Ceriotti, A., Tabe, L., Aryan, A., McNabb, W., Moore, A., S. Craig, Spencer, D., Higgins, T. J. 1996b. Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterraneum clover (Trifolium subterraneum L.). Transgenic Res, 5179-185.
    109. Kho, C. J., Lumen, B. O. 1988. Identification and isolation of methionine-cysteine rich proteins in soybean seed Plant Foods for Human Nutrition, 38 (4):287-296.
    110. Kim, J. H., Jaynes, J. M. 1992. Molecular approaches to improving food quality and safety. New York Van Nostrand Reinhold.
    111. Klein, T. M., Fitzpatrick-McElligott, S. 1993. Particle bombardment : a universal approach for gene transfer to cells and tissues. Current Opinion in Biotechnology, 4 (5):583-590.
    112. Lawrence, M. C., Suzuki, E., Varghese, J. N., Davis, P. C., Donkelaar, A. V., Tullock, P. A., Colman, P. M. 1990. The three-dimensional structure of the seed storage protein phaseolin at 3 ? resolution. EMBO J., 9 (1):9-15.
    113. Leffel, S. M., Mabon, S. A., Stewart, C. N. 1997. Application of green fluorescent protein in plants. BioTechniques, 23 (5):917-918.
    114. Lending, C. R., Wallace, J. C., Larkins, B. A. 1992. Plant Protein Engineering.
    115. Lichtscheidl, I. K., Lancelle, S. A., Hepler, P. K. 1990. Actin-endoplasmic reticulum complexes in Drosera: their structural relationship with the plasmalemma, nucleus, and organelles in cellsprepared by high pressure freezing. Protoplasma, 155116-126.
    116. Loosfelt, H., Atger, M., Misrahi, M., Guiochon-Mantel, A., Meriel, C., Logeat, F., Benarous, R., Milgrom, E. 1986. Cloning and sequence analysis of rabbit progesterone-receptor complementary DNA. PNAS, 839045-9049.
    117. Lorence, A., Verpoorte, R. 2004. Gene transfer and expression in plants. Methods Molecular Biology, 267329-350.
    118. M. Bellucci , Alpini, A., Paolocci, F., Li, C. 2000. ccumulation of maizeγ-zein andγ-zein: KDEL to high levels in tobacco leaves and differential increase of BiP synthesis in transformants. Theor Appl Genet, 101796-804.
    119. Mansour, M. 1995. NaCl alteration of plasma membrane of Allium cepaepidermal cells: alleviation by calcium. Plant Physiol, 145726-730.
    120. Marsolier, M., Debrosses, G., Hirel, B. 1993. Multiple functions of promoter sequences involved in organ specific expression and ammonia regulation of a cytosolic soybean glutam ine synthetase gene in transgenic Lotus corniculatas. Plant J, 3405-414.
    121. Más, P., Beachy, R. N. 2000. Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci USA, 97 (22):12345-12349.
    122. Masumura, T., Shibata, D., Hibino, T. 1989. cDNA cloning of an mRNA encoding a sulfur-rich 10kD prolamin polypeptide in rice seeds. Plant Mol Biol, 12123-130.
    123. Matthews, B. F., Hughes, C. A. 1993. Nutritional improvement of the aspartate family of amino acids in edible crop plants Amino Acids, 421-34.
    124. Miao, G. H., Hirel, B., Marsolier, M. C., WRidge, R., Verma, D. P. 1991. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell, 311-22.
    125. Miesfeld, R., Okret, S., Wikstr?m, A.-C., Wrange, ?., Gustafsson, J.-?., Yamamoto, K. R. 1984. Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells
    126. Nature, 312779-781.
    127. Misteli, T., Spector, D. L. 1997. Applications of the green fluorescent p rotein in cell biology and biotechnology Nat Biotechnol,1997, 15 (10) : 961 - 4., 15 (10):961-964.
    128. Niedz, R. P., Sussman, M. R., Satterlee, J. S. 1995. Grenn fluorescent protein: an in vivo reporter of plant gene espression. Plant Cell Rep., 14 (7):403-406.
    129. Nurkiyanova, K. M., Ryabov, E. V., Commandeur, U., Duncan, G. H., Canto, T., Gray, S. M., Mayo, M. A., Taliansky, M. E. 2000. Tagging Potato leafroll virus with the jellyfish green fluorescent protein gene. Journal of General Virology, 81617-626.
    130. Ohtani, T., Galili, G., Wallace, J. C., Thompson, G. A., Larkins, B. A. 1991. Normal and lysine-containing zeins are unstable in transgenic tobacco seeds Plant Mol Biol, 16117-128.
    131. Ow, D. W., Wet, J. R. D., Helinski, D. R., Howell, S. H., Wood, K. V., Deluca, M. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234856-859.
    132. P.Lombari, E.Ercolano, Alaoui, H. E., M.Chiurazzi. 2003. A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Rep, 21771-777.
    133. Pedersen, K., Argos, P., Naravana, S. V., Larkins, B. A. 1986. Sequence analysis andcharacterization of a maize gene encoding a high-sulfur zein protein of Mr 15,000. J Biol Chem, 261 (14):6279-6284.
    134. Petit, A., Stougaard, J., Kuhle, A., Marcker, K. A., Tempe, J. 1987. Transformation and regeneration of the legume Lotus corniculatus: A system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet, 207245-250.
    135. Pimpl, P., Movafeghi, A., Coughlanb, S., Denecke, J., Hillmer, S., Robinson, D. G. 2000. In situ localization and in vitro induction of plant COPⅠ-coated vesicles. Plant Cell, 122219-2235.
    136. Ponappa, T., Brzozowsk, A. E., Finer, J. J. 1999. Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep., 19 (1):6-12.
    137. Presley, J. F., Cole, N. B., Schroer, T. A., Hirschberg, K., Zaal, K. J. M., Lippincott-Schwartz, J. 1997. ER-to-Golgi transport visualized in living cells. Nature, 389 (6646):81-85.
    138. Qi, K., DLu, C., Owens, F. N. 1993. Sulfate supplementation of growing goats: effecton performance,acid-base balance,and nutrient digestibilities. J Anim Sci,, 71 (6):1579-1587.
    139. Quader, H., Schnepf, E. 1986. Endoplasmi creticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales. Protoplasma, 131 (250-252).
    140. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., Pozzan, T. 1995. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol., 5 (6):635-642.
    141. Rouwendal, G. J., Mendes, O., Wolbert, E. J. 1997. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its cordon usage. Plant Mol Biol., 33989-999.
    142. Rshid, H., Yokoi, S., Toriyama, K., Hinata, K. 1996. Transgenic plant production mediated by Agrobacterium in indian rice. Plant Cell Rep, 15727-773.
    143. Runthala, P., Bhattacharya, S. 1991. Effect of magnetic field on the living cells of Allium cepa L. Cytologia, 5663-72.
    144. Saalbach, I., Pickardt, T., Machemehl, F., Saalbach, G., Schieder, O., Muntz, K. 1994. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol Gen Genet, 242 (2):226-236.
    145. Sathe, G. M., O'Brien, S., McLaughlin, M. M., Watson, F., Livi, G. P. 1991. Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucleic Acids Research, 19 (17):4775.
    146. Scott, A., Wyatt, S., Tsou, P., Robertson, D., Allen, N. S. 1999. Model system for plant cell biology: GFP imaging in living onion epidermal cells. BioTechniques, 26 (6):1125,1128-1132.
    147. Shaul, O., Galili, G. 1992. Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts
    148. The Plant Journal, 2 (2):203-209.
    149. Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H., Galbraith, D. W. 1995. Green fluorescent protein as a new vital marker in plant cells. Plant J, 8 (5):777-784.
    150. Shewry, P. R., Casey, R. 1999. Seed Protein. Netherlands Kluwer Academic Publishers.
    151. Shewry, P. R., Johnathan, A. N., Arthur, S. T. 1995. Seed Storage Proteins: Structures and Biosynthesis. The Plant Cell, 7945-956.
    152. Shewry, P. R., Tatham, A. S. 1990. The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J, 267 (1):1-12.
    153. Shimoda, N., Toyoda-Yamamo, A., Nagamine, J., Usami, S., Katayama, M., Sakagami, Y., Machida, Y. 1990. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc. Natl. Acad Sci., 19906684- 6688.
    154. Shyur, L. F., Chen, C. S. 1990. Nucleotide sequence of two rice prolamin cDNAs. Nucl Acids Res, 18 (22):66-83.
    155. Somers, D. A., Samac, D. A., Olhoft., P. M. 2003. Recent advances in legume transformation. Plant Physiology, 131892- 899.
    156. Song, C.-P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., Zhu, J.-K. 2005. Role of an Arabidopsis AP2/ EREBP- type transcriptional repressor in abscisic acid and drought stress responses The Plant Cell, 17 2384-2396.
    157. Stewart, J. C. N. 2001. The utility of green fluorescent protein in transgenic plants. Plant Cell Rep., 20 (5):376-382.
    158. Stiller, J., Martirani, L., Tuppale, S., Chian, R.-J., Chiurazz, M., Gresshoff, P. M. 1997. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. Journal of Experimental Botany, 48 (312):1357-1365.
    159. Stougaord, J., Petersen, T. E., Marcker, K. A. 1987. Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus. Proc Natl Acad Sci, 845754-5757.
    160. SUN, S. S. M., Zuo, W. N., Tu, H. M. 1992. Biosynthesis and molecular regulation of aminp acids in plants American society of plant physiologists.
    161. Sun, Y. X., Wang, D., Bai, Y. L. 2006. Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus:The reduced Na+ level is the basis of the increased salt tolerance. Chinese Science Bulletin, 51 (8):928-936.
    162. T.Aoki, A.Kamizawa, S.Ayabe. 2002. Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Rep, 21238~243.
    163. Tabe, L. M., Wardley-Richardson, T., Ceriotti, A., Aryan, A., McNabb, W., Moore, A., Higgins, T. J. 1995. A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci, 73 (9):2752-2759.
    164. Takumi, T. 1994. PCR Cloning Protocols Humana Press.
    165. Ueng, P. P., Galili, G., Sapanara, V., Goldsbrough, P. B., Dube, P., Beachy, R. N., Larkins, B. A. 1988. Expression of a maize storage protein gene in petunia plants is not restricted to seeds. Plant Physiology, 861281-1285.
    166. Vain, P., Worland, B., Kohli, A., Snape, J. W., Christou, P. 2000. The green fluorescent protein(GFP) as a vital screenable marker in rice transformation. TAG Theoretical and Applied Genetics, 96 (2):164-169.
    167. Vincent, R., Fraisier, V., Chaillou, S. 1997. overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta, 201424-433.
    168. Wallace, J. C., Galili, G., Kawata, E. E., Cuellar, R. E., Shotwell, M. A., Larkins, B. A. 1988. Aggregation of lysine-containing zeins into protein bodies in Xenopus oocytes. Science, 240 (4852):662-664.
    169. Walling, L., Drews, G. N., Goldberg, R. B. 1986. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci, 83 (7):2123-2127.
    170. Wang, B. Q., Wang, X. L., Zahng, Y. G. 2005. Transformation of vp1 Gene of Foot-and- Mouth Disease Virus in Legume Forage Lotus corniculatus L. Virologica Sinica, 20 (5):526-529.
    171. Wang, S., Hazelrigg, T. 1994. Implications for bcd mRAN localization from spatial distribution of exuprotein in Drosophila oogenesis. Nature, 369400-403.
    172. Wayne, A. P., Matthew, A. B. 1993. Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium Plant Cell, Tissue and Organ Culture, 3269-76.
    173. Webb, K. J. 1986. Transformation of forage legumes using Agrobacterium tumefaciens Theor Appl Genet, 7253-58.
    174. Webb, K. J., Jones, S., Robbins, M. P., Minchin, F. R. 1990. Characterization of transgenic root cultures of Trifolium repens, T. prantense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci, 70243-254.
    175. Yang, F., Moss, L. G., Phillips, G. N. J. 1996a. The molecular structure of green fluorescent protein. Nat Biotechnol., 14 (10):1246-1251.
    176. Yang, M. S., Espinoza, N. O., Nagpala, P. G., Dodds, J. H., White, F. F., Schnorr, K. L., Jaynes, J. M. 1989. Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant science, 64 (1):99-111.
    177. Yang, T.-T., Cheng, L., Kain, S. R. 1996b. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res, 24 (22):4592-4593.
    178. Yeh, E., Gustafson, K., Boulianne, G. L. 1995. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA, 92 (15):7036-7040.
    179. Zhang, G., Gurtu, V., Kain, S. R. 1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun, 227707-711.
    180. Zhang, H.-X., Zeevaart, J. A. D. 1999. An efficient Agrobacterium tumefaciens mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep. , 18 (7/ 8) :, 18640-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700