用户名: 密码: 验证码:
CT灌注成像评价大鼠C6胶质瘤血管生成及血管成熟度的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分高碳酸血症模型下正常大鼠脑组织血液动力学变化的CT灌注研究
     目的:研究高碳酸血症条件下正常大鼠脑组织CT灌注参数的变化特征,并与免疫组化α-SMA(平滑肌抗体反应素)染色阳性血管计数对照,分析CT灌注评价高碳酸血症模型下正常大鼠脑组织血流动力学变化的可行性以及CT灌注参数与α-SMA之间的相关性。
     材料与方法:10只雄性SD大鼠,体重250~300g,在吸入空气和吸入高浓度CO_2混合气体(10%CO_2和90%空气组成)后15min,分别使用GE 16层Light Speed CT扫描仪对大鼠脑尾状核层面进行CT灌注扫描,原始图像经GE ADW 4.2工作站Perfusion3.0脑肿瘤灌注软件处理后产生灌注曲线及伪彩图像,两次扫描前均测定大鼠的血液CO_2分压、PH值等血气分析指标。检查结束后24小时内,处死大鼠并取脑固定,在尾状核中心层面切片,进行脑组织HE染色及鼠特异性SMA抗体免疫组化染色。应用SPSS 11.5统计学软件进行分析:采用配对t检验,比较正常大鼠右侧尾状核在吸入空气和吸入高浓度CO_2混合气体后CT灌注参数CBV、CBF、PS和MTT的变化有无差异;比较大鼠右侧尾状核区和左侧尾状核区吸入高浓度CO_2混合气体后CBV、CBF、PS和MTT的变化率有无差异;采用Pearson相关分析分别检测大鼠右侧尾状核的SMA阳性血管染色计数与灌注参数CBV和CBF在CO_2分压升高前后的变化率相关性,计算相关系数,并进行t检验。P〈0.05有统计学意义。
     结果:所有大鼠在吸入含10%CO_2和90%空气的混合气体15min后,动脉血CO_2分压均明显升高(t=9.39,P〈0.001),血浆PH值降低(t=13.49,P〈0.001)。正常SD大鼠右侧基底节区CBV、CBF、PS及MTT值(均数±标准差)分别为(10.28±4.01)ml/100g、(304.95±88.77)ml/min.100g、(0.26±0.37)ml/min.100g、(1.48±0.07)s;吸入10%CO_2和90%空气的混合气体后右侧基底节区CBV、CBF值明显增加,分别为(19.25±8.42)ml/100g(t=4.92,P=0.001)和(507.33±167.94)ml/min.100g(t=6.75,P〈0.001);吸入混合气体前后CBV、CBF增加值各为(8.96±5.76)ml/100g、(202.38±94.84)ml/min.100g,CBV、CBF增加百分比分别为(87.14±46.45)%、(65.75±22.05)%;PS及MTT变化不显著(P均大于0.05)。大鼠右侧尾状核的CBV、CBF、PS和MTT与对侧比较无明显差异(P均大于0.05)。吸入高浓度CO_2混合气体后,右侧尾状核的CBV、CBF增加率与左侧尾状核比较无明显差异。大鼠α-SMA抗体免疫组化染色部位在血管的平滑肌细胞,呈现棕褐色散在分布于脑组织内,形态规则,α-SMA阳性染色血管计数为(12.7±3.23)条/高倍视野(×200)。Pearson相关分析显示,正常脑组织的CBV和CBF变化率与其α-SMA阳性计数之间呈显著相关(r分别为0.652和0.890,P均小于0.05)。
     结论:CT灌注技术在改变血液CO_2分压的条件下可以反映脑组织血液动力学变化;大鼠正常脑组织高碳酸血症前后CT灌注参数变化率与成熟血管数量相关。
     第二部分高碳酸血症模型下大鼠C6胶质瘤血管功能反应的CT灌注研究
     目的:研究高碳酸血症前后大鼠脑C6胶质瘤CT灌注参数的变化特征,并与免疫组化α-SMA(平滑肌抗体反应素)、FⅧ(Ⅷ因子)、CD105染色阳性血管计数对照,分析CT灌注参数在评价C6胶质瘤血管生成及血管成熟度中的价值。
     材料与方法:20只雄性SD大鼠,随机分为肿瘤组和正常对照组。肿瘤组大鼠通过立体定向仪于鼠脑右侧尾状核区种植C6胶质瘤细胞复制大鼠脑胶质瘤模型。种植C6胶质瘤细胞3周后,两组大鼠在吸入空气和吸入高浓度CO_2混合气体(10%CO_2和90%空气组成)后15min,分别使用GE 16层Light Speed螺旋CT扫描仪对脑尾状核层面进行CT灌注扫描,原始图像经GE ADW 4.2工作站Perfusion 3.0脑肿瘤灌注软件处理后产生灌注曲线及伪彩图像,两次扫描前均测定大鼠的血液CO_2分压、PH值等血气指标。检查结束后24小时内,处死肿瘤组大鼠并取脑固定,在肿瘤中心层面切片,进行脑组织HE染色及鼠特异性SMA抗体、FⅧ抗体和CD105单抗简免疫组化染色。计算每例大鼠肿瘤组织SMA与FⅧ-MVD计数的百分比(%)[SMA(+)/FⅧ-MVD×100%],作为肿瘤血管成熟指数(vascular maturity index,VMI),肿瘤组织CD105-MVD与FⅧ-MVD计数的百分比为不成熟血管分数。应用SPSS11.5统计学软件进行数据分析。采用配对t检验,比较胶质瘤组大鼠吸入空气和吸入高浓度CO_2混合气体后的CT灌注CBV、CBF、PS和MTT灌注值变化是否有显著性差异;采用成组t检验,比较对照组大鼠右侧尾状核区和肿瘤组大鼠右侧尾状核胶质瘤在吸入高浓度CO_2混合气体前后CT灌注CBV和CBF的变化率有无差异;采用成组t检验分别比较肿瘤组和正常对照组大鼠脑组织内α-SMA阳性染色血管数量有无差异;Pearson相关分析方法分别检测肿瘤实质部分CBV、CBF、PS及MTT和肿瘤微血管的α-SMA、FⅧ和CD105表达阳性血管染色计数行相关性分析;灌注CBV、CBF在吸入高浓度CO_2前后的变化率与胶质瘤微血管的α-SMA、FⅧ和CD105阳性血管计数及血管成熟指数进行相关性分析;计算相关系数,并进行t检验。P〈0.05为有统计学意义。
     结果:肿瘤种植3周后CT显示大鼠脑内均有不同大小的胶质瘤生长。所有大鼠在吸入含10%CO_2和90%空气的混合气体15min后,血液CO_2分压均明显升高(P〈0.05),血浆PH值显著降低(P〈0.05);对照组和肿瘤组血气变化无明显差异(P均大于0.05)。胶质瘤的CBV、CBF、PS及MTT值分别为(均数±标准差)分别为(17.35±6.73)ml/100g、(508.66±158.88)ml/min.100g、(13.92±8.96)ml/min.100g、(1.79±0.44)s;与对照组右侧基底节正常脑组织比较CBV、CBF、PS值有显著性差异(分别为t=2.85,P=0.011;t=3.54,P=0.003;t=4.82,P〈0.001),呈现明显的高灌注特征,MTT有增加趋势,但无统计学显著性差异(t=1.86,P=0.079)。吸入高浓度CO_2混合气体后,肿瘤实质部分的CBV和CBF亦有增加,CBV、CBF增加百分比分别为(41.21±21.28)%、(30.1±14.54)%;但增加率明显低于正常脑组织(分别为t=2.84,P=0.014和t=4.27,P=0.001);PS及MTT变化不显著(t分别为0.16和0.81,P分别为0.321和0.508)。大鼠SMA抗体免疫组化显示肿瘤内SMA阳性染色血管明显少于正常脑组织,分别为(5.8±2.2)条/高倍视野(×200)和(12.7±3.23)条/高倍视野(×200)(t=5.58,P〈0.001)。胶质瘤FⅧ和CD105计数分别为(34.7±7.13)条/高倍视野(×200)、(16.6±4.12)条/高倍视野(×200),VMI为(20.46±10.31)%,不成熟血管分数为(48.03±6.69)%。Pearson相关分析显示,肿瘤实质区的CBV、PS与免疫组化的FⅧ-MVD和CD105-MVD计数之间明显相关(P均〈0.05),CBF与CD105-MVD计数之间相关(P〈0.05),MTT与免疫组化MVD计数之间均无显著相关性;肿瘤实质区的CBV、CBF及PS与血管成熟指数以及不成熟血管分数均无显著相关性(P均大于0.05)。胶质瘤组各灌注参数与SMA阳性血管计数之间均无明显相关性(P均大于0.05)。肿瘤实质区CBV和CBF吸入高浓度CO_2混合气体后的变化率与免疫组化的SMA、FⅧ、CD105阳性血管计数及VMI之间均不存在显著相关性(P均大于0.05)。
     结论:CT灌注参数CBV、CBF和PS可以反映胶质瘤血管生成状况;但不能完全反映胶质瘤血管的成熟度和变异度。
     第三部分CT灌注成像评价大鼠C6脑胶质瘤抗血管生成治疗的初步研究
     目的:利用大鼠C6胶质瘤模型,观察重组人内皮抑制素治疗前后肿瘤血管生成的变化;探索CT灌注成像评价抗血管生成的疗效以及与肿瘤血管成熟度的关系。
     材料和方法:12只雄性SD大鼠,通过立体定向仪于鼠脑右侧尾状核区移植C6胶质瘤细胞复制大鼠脑胶质瘤模型,随机分为对照组(胶质瘤未治疗组)和治疗组(重组人内皮抑制素治疗组)各6只,治疗组大鼠于肿瘤接2周后行重组人内皮抑制素皮下注射治疗1周,剂量10mg/kg天,连续用药7天,对照组大鼠给予等量的生理盐水皮下注射7天。两组大鼠于肿瘤移植3周后进行CT灌注检查。吸入空气和吸入高浓度CO_2混合气体(10%CO_2和90%空气组成)后15min,分别使用GE 16层Light Speed螺旋CT扫描仪对肿瘤进行CT灌注扫描,原始图像经GE ADW 4.2工作站Perfusion 3.0脑肿瘤灌注软件处理后产生灌注曲线及伪彩图像,两次扫描前均测定大鼠的血液CO_2分压、PH值等血气分析指标。检查结束后24小时内,处死肿瘤组大鼠并取脑固定,在肿瘤中心层面切片,进行脑组织HE染色及鼠特异性SMA抗体、FⅧ抗体和CD105单抗免疫组化染色。应用SPSS11.5统计学软件进行数据分析。采用两样本成组t检验,比较对照组和治疗组大鼠胶质瘤CT灌注参数的变化,比较两组大鼠胶质瘤免疫组化FⅧ-MVD、CD105-MVD和SMA计数之间的差异性。计算每例大鼠肿瘤组织SMA与FⅧ-MVD计数的百分比(%)[SMA(+)/FⅧ-MVD×100%],作为肿瘤血管成熟指数(vascular maturity index,VMI);采用两样本成组t检验,比较对照组和治疗组大鼠胶质瘤血管成熟指数间有无差异,比较治疗组与胶质瘤组CT灌注参数CBV、CBF在吸入高浓度CO_2前后的变化率有无差异。采用Pearson相关分析方法分别检测治疗组胶质瘤CT灌注参数CBV、CBF在吸入高浓度CO_2前后的变化率与胶质瘤微血管的α-SMA、FⅧ和CD105阳性血管计数及VMI进行相关性分析,计算相关系数,并进行t检验。P〈0.05为有统计学意义。
     结果:肿瘤种植3周后CT显示大鼠脑内均有不同大小的胶质瘤生长。所有大鼠在吸入高浓度CO_2混合气体15min后,血液CO_2分压均明显升高(P〈0.05),血浆PH值降低(P〈0.05),对照组和治疗组两组之间没有显著性差异(P均〉0.05)。对照组大鼠右侧尾状核C6胶质瘤CBV、CBF及PS值(均数±标准差)分别为(19.19±5.83)ml/100g、(519.31±36.35)ml/min、(15.14±9.62)ml/min.100g。治疗组大鼠在抗血管生成治疗一周后,CT灌注显示肿瘤实质部分CBV、CBF和PS分别为(均数±标准差)(12.65±3.05)ml/100g、(468.97±109.15)ml/min.100g、(5.08±3.83)ml/min.100g,治疗组CBV、PS值与对照组相比明显降低(t值分别为2.43和2.38,P值分别为0.043和0.039);CBF在两组间比较无统计学差异(t=1.07,P=0.31)。吸入高浓度CO_2混合气体后,治疗组的肿瘤CBV和CBF的变化率较对照组明显升高[对照组分别为(34.08±11.65)%、(27.3±14.77)%;治疗组分别为(53.81±10.29)%、(58.94±26.23)%](t=3.11,P=0.011;t=2.58,P=0.033)。SMA染色阳性血管计数,治疗组高于对照组,但两组之间统计学无显著性差异(t=1.42,P=0.187)。胶质瘤组FⅧ-MVD和CD105-MVD计数分别为(30.17±8.71)条/高倍视野、(15.5±8.76)条/高倍视野;治疗组肿瘤实质FⅧ-MVD(19.17±2.64)条/高倍视野,CD105-MVD(5.67±4.18)条/高倍视野,均低于对照组(t=2.42,P=0.036;t=2.48,P=0.041)。对照组VMI为(20.30±11.70)%,治疗组VMI为(46.01±17.65)%。两组间VMI比较有显著性差异(t=2.98,P=0.016);治疗组VMI明显高于对照组。Pearson相关分析显示,治疗组高碳酸血症模型下CBV增加率与VMI呈正相关(r=0.841,P=0.036),与SMA染色计数正相关(r=0.812,P=0.050),与CD105-MVD负相关(r=0.824,P=0.044);胶质瘤组高碳酸血症下CBV增加率与VMI、SMA计数及CD105-MVD均无相关性;治疗组高碳酸血症下CBF增加率与VMI及MVD均无显著相关(P均〉0.05)。
     结论:重组人内皮抑制素可以明显抑制大鼠C6胶质瘤的新生血管生成,成熟血管对抗血管生成治疗不敏感;CT灌注成像可以判断抗肿瘤血管生成治疗后的效果。CT灌注成像在改变CO_2分压条件下一定程度上反映抗肿瘤血管生成血管成熟度的变化。
PartⅠExperimental Studies on Functional Response in Normal Rat Brain toHypercarbia Using Perfusion CT
     PURPOSE:To investigate CT perfusion value changes in normal rat brain tissue athypercarbia and analyze correlations between perfusion CT and the results ofα-SMAimmunohistochemical staining.
     MATERIALS AND METHODS:Total 10 male SD rats,weighting 250-300g.Perfusion CT was performed pre- and post-(15 minutes delay) inhalation of a mixture of10% CO_2 and 90% air.Perfusion CT values(CBV,CBF,PS and MTT) were measured atthe right nucleus caudatus in rat brain tissue.The rats were killed and their brains wereremoved within 24 hours after perfusion CT,the samples at nucleus caudatus in rat braintissue were examined histologically using HE and immunohistochemical staining forα-SMA.Paired t testing was used to determine differences in perfusion CT values at rightnucleus caudatus in normal rat brain pre- and post- hypercarbia.The differences in thechanging rate(%) of CBV,CBF,PS and MTT between rat right caudate nucleus and theleft caudate nucleus inhaled 10% CO_2 mixture gas were determined using paried t test.Pearson correlation coefficients were used to investigate relationships between number ofSMA positively stained vessels and changing rate(%) of CBV and CBF at right nucleuscaudatus in normal rat brain tissues.
     RESULTS:Normal SD rat right caudate nucleus area CBV,CBF,PS and MTT values(mean±SD) were (10.28±4.01) ml/100g,(304.95±88.77) ml/min.100g,(0.26±0.37)ml/min.100g,(1.48±0.07) s,respectively.After inhalation of a mixture of 10% CO_2 and90% air,rat right caudate nucleus area CBV,CBF values were significantly higher thanthose before hypercarbia (t=4.92,P=0.001 and t=6.75,P〈0.001).The increasing rates ofCBV,CBF were (87.14±46.45)%,(65.75±22.05)%,respectively.However,no significantdifferences were detected for changes of PS and MTT after hypercarbia (P〉0.05 for both). The changs of CBV,CBF,PS and MTT of right caudate nucleus area were not significantcompared with those of contralateral brain tissues (P〉0.05 for all).Immunohistochemicalstaining of normal SD rat brain tissues for SMA all positively expressed in smoothmuscles of vessels which present brown regular loops or tubes.The number for SMApositively stained vessels (mean±SD) were (12.7 vessels per field±3.23).Significantcorrelations were observed between the number for SMA positively stained vessels andchanging rates of CBV and CBF after hypercarbia in rat normal brain tissues (r=0.652and r=0.89,respectively; P〈0.05 for both).
     CONCLUSION:Perfusion CT in the change in blood PaCO_2 can reflect thehemodynamic changes in normal rat brain tissues.These results demonstrate thatchanging rates of CBV and CBF correlate well with the number of mature vessels bymeans of changing blood PaCO_2 in normal rat brain tissues.
     PartⅡExperimental Studies on Functional Response of Tumoral Vascular tohypercarbia in Rat Brain C6 Glioma Model Using Perfusion CT
     PURPOSE:To investigate CT perfusion paremeter changes in a C6 rat glioma model athypercarbia,analyze correlations between perfusion CT and the results ofα-SMA,FⅧand CD105 immunohistochemical staining and evaluate the tumoral vascular maturity usingperfusion CT.
     MATERIALS AND METHODS:Total 20 male SD rats,weighting 250-300g,weredivided into glioma group and control group at random.Rats in glioma group wereimplanted C6 glioma cells at right eaudate nucleus of rat brain through stereotaxicapparatus to establish a rat brain glioma model.After three weeks,perfusion CT wasperformed pre- and post-(15 minutes delay) inhalation of a mixture of 10% CO_2 and 90%air.Perfusion CT values(CBV,CBF,PS and MTT) were measured at the right nucleuscaudatus in rat brain tissue.The rats were killed and their brains were removed within 24hours after perfusion CT,the samples at nucleus caudatus in rat brain tissue wereexamined histologically using HE and immunohistochemical staining forα-SMA,FⅧand CD105.SMA(+)/FⅧ-MVD(%) of each rat glioma was caculated as tumoral vascularmaturity index(VMI),and CD105-MVD/FⅧ-MVD(%) of each rat glioma was caculated as tumoral vascular immaturity fraction(VIF).Paired t testing was used to determinedifferences in perfusion CT values of C6 gioma at right nucleus caudatus pre- and post-hypercarbia.The differences in the changing rate(%) of CBV and CBF between gliomagroup and control group inhaled 10% CO_2 mixture gas were determined usingindependent samples t test.The differences between the number of SMA positivelystaining vessels within gliomas and that of normal brain tissues in control group weredetermined using independent samples t test.Pearson correlation coefficients were usedto investigate relationships between perfusion CT parameters (CBV,CBF,PS,MTT) andimmunohistochemical parameters (FⅧ-MVD,CD105-MVD,number of SMA positivelystained vessels),and changing rate(%) of CBV and CBF at right nucleus caudatus innormal rat brain tissues.Correlation coefficients were calculated between the changingrate(%) of CBV and CBF in hypercarbia and tumoral immunohistochemical parametersin rat gliomas by Pearson correlation analysis.
     RESULTS:All rat brain gliomas,three weeks after C6 glioma cells implanted,wereviewed as significantly enhanced mass on contrast enhancement CT scan.Rat gliomas atright caudate nucleus area CBV,CBF,PS and MTT values (mean±SD) were(17.35±6.73) ml/100g,(508.66±158.88) ml/min.100g,(13.92±8.96) ml/min.100g,(1.79±0.44) s,respectively.CBV,CBF and PS values in glioma group were significanthigher than those in control group (t=2.85,P=0.011; t=3.54,P=0.003; t=4.82,P〈0.001respectively).After inhalation of a mixture of 10% CO_2 and 90% air,CBV,CBF valueswithin tumors were higher than those before hypercarbia.The increasing rates of CBVand CBF within tumors were (41.21±21.28)% and (30.1±14.54)% respectively,whichwere lower than the increasing rates of CBV and CBF in normal rat brain tissues (t=2.84,P=0.014; t=4.21,P=0.001; respectively).However,no significant differences weredetected for changes of PS and MTT after hypercarbia in glioma group (P〉0.05 for both).The number for SMA positively stained vessels (mean±SD) in glioma group was (5.8vessels per field±2.2),as was statistically less than that in control group (t=5.58,P〈0.001).The number of FⅧ-MVD and CD105-MVD in glioma group was (34.7vessels per field±7.13) and (16.6 vessels per field±4.12) respectively.VMI and vascularimmaturity fraction in glioma group was (20.46±10.31)% and (48.03±6.69)%respectively.Significant correlations were observed between the number for FⅧ-MVD,CD105-MVD and CBV,PS in glioma group,CBF correlated well with the number for CD 105-MVD,while MTT was not significant correlation with MVD in glioma group.Nosignificant correlation was observed between perfusion CT parameters and the numberfor SMA positively stained vessels,VMI and VIF (P〉0.05 for all) in glioma group.Thechanging rates of CBV and CBF after hypercarbia in glioma group were not significantcorrelation with immunohistochemical parameters and VMI (P〉0.05 for all).
     CONCLUSION:Perfusion CT can reflect tumoral angiogenesis within C6 rat braingliomas.However,the changing rates of CBV and CBF in hypercarbia don't correlatewell with the number of mature vessels,VMI and VIF.
     PartⅢA Pilot Study of Antiangiogenic Therapy in Rat Brain C6 Glioma ModelUsing Perfusion CT
     PURPOSE:To investigate MVD changes in a C6 rat glioma model and to study thefeasibility that CT perfusion evaluates the therapeutic effect and maturity of tumorvessels atter antiangiogenic therapy.
     MATERIALS AND METHODS:Total 12 male SD rats,weighting 250-300g,wereimplanted C6 glioma cells at the right nucleus caudatus of rat brain through stereotaxic apparatusto establish a rat brain glioma model.Rats were divided into glioma group and treatmentgroup at random.Rats in treatment group were injected with Recombinant Human Endostatin (rhEndostatin) at a dose of 10 mg/kg/d for 7 days S.C.,and those in glioma group were injected only withthe diluent after two weeks of glioma cells implantation.Three weeks later,perfusion CT wasperformed pre- and post-(15 minutes delay) inhalation of a mixture of 10% CO_2 and 90%air.Perfusion CT parameters (CBV,CBF and PS) were measured at the right nucleuscaudatus in rat brain tissue.The rats were killed and their brains were removed within 24hours after perfusion CT,the samples at nucleus caudatus in rat brain tissue wereexamined histologically using HE and immunohistochemical staining forα-SMA,FⅧand CD105.SMA(+)/FⅧ-MVD(%) of each rat glioma was caculated as tumoral vascularmaturity index(VMI).The differences in the changing rate(%) of CBV and CBF betweenglioma group and treatment group inhaled 10% CO_2 mixture gas were determined usingindependent samples t test.The differences in CT perfusion parameters,immunohistochemical parameters and VMI between glioma group and treatment group were determined using independent samples t test.Pearson correlation coefficients wereused to investigate relationships between the changing rate(%) of CBV and CBF andimmunohistochemical parameters (FⅧ-MVD,CD105-MVD,number of SMA positivelystained vessels and VMI) after hypercarbia in treatment group.
     RESULTS:All rat brain gliomas,three weeks after C6 glioma cells implanted,wereviewed as significantly enhanced mass on contrast enhancement CT scan.In gliomagroup,CT parameters CBV,CBF and PS values (mean±SD) were (19.19±5.83) ml/100g,(519.31±36.35) ml/min.100g,(15.14±9.62) ml/min.100g,respectively.CBV,CBF andPS values in treatment group were (12.65±3.05)ml/100g,(468.97±109.15)ml/min,(5.08±3.83)ml/min.100g,respectively.CBV and PS values in treatment group weresignificantly lower than those in glioma group (t=2.43,P=0.043; t=2.38,P=0.039,respectively),nevertheless,no significant difference for CBF was detected betweenglioma group and treatment group (t=1.07,P=0.31).The increasing rates of CBV andCBF in treatment group were (53.81±10.29)% and (58.94±26.23)% respectively,whichwere remarkably higher than the increasing rates of CBV and CBF in glioma group [CBV:(34.08±11.65)%,CBF:(27.3±14.77)%] aider hypercarbia (t=3.11,P=0.011; t=2.58,P=0.033; respectively).The number for SMA positively stained vessels in glioma groupwas less than that in treatment group,but no significantly statistical difference was foundbetween two groups (t=1.42,P=0.187).The number of FⅧ-MVD and CD105-MVD inglioma group was (30.17 vessels per field±8.71) and (15.5 vessels per field±8.76)respectively.The number of FⅧ-MVD and CD 105-MVD intreatment group was (19.17vessels per field±2.64) and (5.67 vessels per field±4.18) respectively,as weresignificantly lower than those in glioma (t=2.42,P=0.036 and t=2.48,P=0.041).VMI intreatment group was significantly higher compared with that in glioma group[(46.01±17.65)% vs (20.3±11.7)%,P=0.016].The changing rates of CBV afterhypercarbia in treatment group were significant correlation with CD105-MVD and VMI(P〈0.05 for both).No significant correlation was observed between the changing rates ofCBF after hypercarbia and immunohistochemical parameters and VMI (P〉0.05 for all) intreatment group.The changing rates of CBV and CBF after hypercarbia in glioma groupwere not significant correlation with immunohistochemical parameters and VMI (P〉0.05for all).
     CONCLUSION:Tumoral angiogenesis in C6 rat brain glioma can be inhabited using rh Endostatin.Perfusion CT can predict the effect of antiangiogenic therapy in C6 rat braingliomas model and the changing rates of CBV in hypercarbia may reflect VMI afterantiangiogenic therapy.
引文
1.Reich T,RusinekH.Cerebral corticaland white matter reactivity to carben dioxide.Stroke,1989,20(4):453-457.
    2.王敏,周卫东,贾建平.脑血管反应性的临床应用及其评估价值.中国临床康复,2003,7(28):3862-3863.
    3.Julien C,Payen JF,Tropres I,et al.Assessment of vascular reactivity in rat brain glioma by measuring regional blood volume during graded hypoxic hypoxia.British Journal of Cancer,2004,91(2):374-380.
    4.Nevo U,Hauben E,Yoles E,et al.In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation:Validation by intravital microscopy.Magn Reson Med,2001,45(5):887-898.
    5.Baudelet C,Cron GO,Ansiaux R,et al.The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors.NMR in Biomedicine,2006,19(1):69-76.
    6.Robinson SP,Rijken PF,Howe FA,et al.Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry.Journal of Magnetic Resonance Imaging,2003,17(4):445-454.
    7.Abramovitch R,Dafni H,Smouha E,et al.In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal:magnetic resonance imaging of C6 rat glioma in nude mice.Cancer Research,1999,59(19):5012-5016.
    8.Chhal G,Serrati C,Rioux R,et al.PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke:relation to outcome.Lanct,1993,341(8850):925-927.
    9.Cenic A,Nabavi DG,Craen RA,et al.A CT method to measure hemodynamics in brain tumors:validation and application of cerebral blood flow maps.American Journal of Neuroradiology,2000,21(3):462-470.
    10.Weidner N.Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors.Breast Cancer Research & Treatment,1995,36(2):169-180.
    11.Rostrup E,Larsson HB,Toft PB,et al.Functional MRI of CO2 induced increase in cerebral perfusion.NMR Biomed,1994,7(1):29-34.
    12.Gross D J,Reibstein I,Weiss L,et al.The antiangiogenic agent linomide inhibits the growth rate of Von-Hippel-Lindau paraganglioma xenografts to mice.Clin Cancer Res,1999,5(11):3669-3675.
    13.Neeman M,Dafni H,Bukhari O,et al.In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation:validation by intravital microscopy.Mag Res Med,2001,45(5):887-898.
    14.刘明勇,周立春,王拥军,等.灌注CT联合CO_2吸入测定症状性大脑中动脉缺血患者脑血流储备.中华医学杂志,2008,88(3):171-173.
    15.Grossmann WM,Koeberle B.The dose-response relationship of acetazolamide on the cerebral blood flow in normal subjects.Cerebrovasc Dis,2000,10(1):65-69.
    16.Lee TY,Nabavi DG,Craen R,et al.A review of method for the calculation of cerebral blood flow,cerebral blood volume and mean transit time in contrast enhanced dynamic CT scanning.Radiology,1999,213:1305.
    17.Steiger HJ,Aaslid R,Stooss R.Dynamic computed tomographic imaging regional cerebral blood flow and blood volume.A clinical pilot study.Stroke,1993,24(4):591-597.
    18.Rim NJ,Kim HS,Shin YS,et al.Which CT perfusion parameter best reflects cerebrovascular reserve?:correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients.AJNR,2008,29(9):1658-1663.
    19.陈军,周义成,丁晖,等.磁共振灌注成像在术前星形细胞瘤血管形成在体研究中的价值.武汉大学学报(医学版),2005,26(6):760-765.
    20.姜新雅,仇斌,王维.星形细胞瘤相对脑血容量与肿瘤血管生成的相关性研究.中国医学影像技术,2006,22(3):401-404.
    21.康立清,张云亭,孙世梅.兔VX2脑瘤血管生成的灌注CT研究.中华放射学杂志,2006,40(6):650-654.
    22.Behrem S,Zarkovic K,Eskinja N,et al.Endoglin is a better marker than CD31 in evaluation of angiogenesis in glioblastoma.Croatian Medical Journal,2005,46(3):417-22.
    23.张清波,冯晓源,梁宗辉,等.高CO_2分压下大鼠神经胶质瘤肿瘤血管的MR灌注成像特点.中华放射学杂志,2008,42(4):321-325.
    24.Seon BK,Matsuno F,Haruta Y,et al.Long lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res, 1997,3(7): 1031-1044.
    25. Tanaka F, Otake Y, Yanagihara K, et al. Evaluation of angiogenesis in non - small cell lung cancer: comparison between anti - CD34 antibody and anti - CD105 antibody.Clin Cancer Res, 2001, 7(11):3410-3415.
    26. Fonsatti E , Jekunen AP, Kairemo KJ, et al. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res, 2000,6(5):2037.
    27. Wikstrom P, Lissbrant LF, Stattin P, et al. Endoglin (CD105) is expressed on immature blood vessels and is a maker for survival in prostate cancer. Prostate, 2002,51(4):268-275.
    28. Schimming R, Marme D. Endoglin (CD 105) expression in squamous cell carcinoma of the oral cavity. Head Neck, 2002,24(2): 151-156.
    29. Brewer CA, Setterdahl JJ, Li MJ, et al. Endoglin expression as a measure of microvessel density in cervical cancer. Obstet Gynecol, 2000, 96(2): 224-228.
    30. Dales JP, Garcia S, Bonnier P, et al. CD105 expression is a maker of high metastatic risk and poor outcome in breast carcinomas. Correlation between immunohistochemical analysis and long - term follow- up in a series of 929 patients. Am J Clin Pathol, 2003,119(3):374-380.
    31. Akagi K , Ikeda Y , Sumiyoshi Y , et al. Estimation of angiogenesis with anti -CD105 immnostaing in the p rocess of colorectal cancer development. Surgery, 2002,131 (1 Suppl):S109.
    32. Duff SE, Li C, Garland JM, et al. CD105 is important for angiogenesis: evidence and potential applications. FASEB, 2003,17(9): 984-992.
    33. Cimpean AM, Raica M, Suciu C. CD105/smooth muscle actin double immunostaining discriminate between immature and mature tumor blood vessels.Romanian Journal of Morphology & Embryology, 2007,48(1):41-45.
    34. Gohary YM. Silverman JF. Olson PR, et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. American Journal of Clinical Pathology, 2007,127(4):572-579.
    35. Yao Y, Kubota T, Takeuchi H, et al. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors:comparison with an anti-CD31 monoclonal antibody. Neuropathology, 2005, 25(3):201-206.
    36.Bodey B,Bodey B Jr,Siegel SE,et al.Up regulation of endoglin(CD105) expression during childhood brain tumor-related angiogenesis.Anti-angiogenic therapy.Anti-cancer Res,1998,18(3A):1485-1500.
    37.Leon SP,Folkerth RD,Blank PM.Microvessel density is a progostic indicator for patients with astrocytic brain tumor.Cancer,1996,77(2):362-363.
    38.Miebach S,Grau S,Hummel V,et al.Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades.J Neurooncol,2006,76(1):39-48.
    39.姚东晓,赵洪洋,张方成,等.胶质瘤中CDl05与VEGF、Ki-67表达的相关性.中国临床神经外科杂志,2006,11(9):527-530.
    40.Kumar S,Ghellal A,L i C,et al.Breast carcinoma:vascular density determined using CD105 antibody correlates with tumor prognosis.Cancer Res,1999,59(4):856-861.
    41.Hoeffner EG,Case I,Jain R.Cerebral Perfusion CT:Technique and Clinical Applications.Radiology,2004,231(3):632-644.
    42.Machein MR,Plate KH.VEGF in brain tumors.J Neurooncol,2000,50(1-2):109-120.
    43.Aronen HJ,Gazit IE,Louis DN.Cerebral blood volume maps of gliomas:comparision with tumor grade and histologic findings.Radiology,1994,191(1):41-51.
    44.Cha S,Johnson G,Wadghiri YZ,et al.Dynamic,contrast-enhanced perfusion MRI in mouse gliomas:Correlation with histopathology.Magn Reson Med,2003,49(5):848-855.
    45.杨本强,田建明,周丽娟,等.神经胶质瘤相对性脑血容积与血管内皮生长因子蛋白表达及微血管密度的相关性研究.中华放射学杂志,2003,37(4):327-330.
    46.Roberts HC,Roberts TP,Lee TY,et al.Dynamic,contrast-enhanced CT of human brain tumors:quantitative assessment of blood volume,blood flow,and microvascular permeability:report of two cases.AJNR,2002,23(5):828-832.
    47.张家文,冯晓源,刘斌,等.64层螺旋CT灌注成像血管表面通透性在胶质瘤术前分级中的价值.中国医学计算机成像杂志,2008,14(1):1-5.
    48.Pollard RE,Garcia TC,Stieger SM,et al.Quantitative evaluation of per fusion and permeability of peripheral tumors using contrast-enhanced computed tomography.Invest Radiol,2004,39(6):340-349.
    49.Eastwood JD,Provenzale JM.Cerebral blood flow,blood volume,and vascular permeability of cerebral glioma assessed with dybamic CT perfusion imaging.Neuroradiology,2003,45(6):373-376.
    50.Bondestam S,Halavaara JT,Jaaskelainen JE,et al.Perfusion CT of the brain in the assessment ofmeningioma.Acta Radiol,1999,40(5):469-473.
    51.Aksoy FG,Lev MH.Dynamic contrast-enhanced brain perfusion imaging:technique and clinical applications.Semin Ultrasound CT MR,2000,21(6):462-477.
    52.Verhoye M,Sanden BP,Rijken PF,et al.Assessment of the neovascular permeability in glioma xenografts by dynamic T1 MRI with Gadomer-17.Magn Reson Med,2002,47(2):305-313.
    53.Goh V,Hailigan S,Daley F,et al.Colorectal tumor vascularity:quantitative assessment with multidetector CT--do tumor perfusion measurements reflect angiogenesis? Radiology,2008,249(2):510-517.
    54.魏里,雷振,蒋永红.CT灌注成像研究颅脑疾病的进展.中国医学影像学杂志,2005,13(4),297-300.
    55.Packard SD,Mandeville JB,Ichikawa T,et al.Functional Response of Tumor Vasculature to P_aCO_2:Determination of Total and Microvascular Blood Volume by MRI.Neoplasia,2003,5(4):330-338.
    56.Folkman J.Tumor angiogenesis:therapeutic implications.N Engl J Med,1971,285(21):1182-1186.
    57.Padhani AR,Husband JE.Dynamic contrast-enhanced MR/studies in oncology with an emphasis on quantification,validation and human studies.Clinical Radiology,2001,56(8),607-620.
    58.Irene P,Nadeen J,Mary S.Antiangiogenic activity of endostatin inhibita C6 glioma growth.Int J Cancer,2002,97(6):839-845.
    59.余永强,钱银锋,陈骏,等.大鼠C6胶质瘤抗血管生成治疗的MR灌注研究.中华放射学杂志,2004,38(7):762-766.
    60.Ling Y,Yang Y,Lu N,et al.Endostar,a novel recombinant human endostatin,exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells.Biochemical & Biophysical Research Communications,2007,361(1):79-84.
    61.Folkman J.Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action.Experimental Cell Research,2006,312(5):594-607.
    62.Yamanaka R,Tanaka R.Gene therapy of brain tumor with endostatin.Drugs of Today,2004,40(11):931-934.
    63.Kan Z,Phongkitkarun S,Kobayashi S,et al.Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model.Radiology,2005,237(1):151-158.
    64.Schmainda KM,Rand SD,Joseph AM,et al.Characterization of a first-pass gradient-echo spin-echo method to Predict brain tumor grade and angiogenesis.AJNR,2004,25(9):1524-1532.
    65.赵改平,高昊,吴洁,等.抗血管生成因子Angiostatin与Endostatin作用下肿瘤血管生成的二维数值模拟.医用生物力学,2006,21(4):272-279.
    66.O'Reilly MS,Boehm T,Shing Y,et al.Endostatin:an endogenous inhibitor of angiogenesis and tumor growth.Cell,1997,88(2):277-285.
    67.Boehm T,Folkman J,Browder T,et al.Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.Nature,1997,390:404-407.
    68.Schmidt NO,Ziu M,Carrabba G,et al.Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model.Clin Cancer Res,2004,10(4):1255-1262.
    69.Peroulis I,Jonas N,Saleh M.Antiangiogenic activity of endostatin inhibits C6 glioma growth.Int J Cancer,2002,97(6):839-845.
    70.Jain RK.Normalizing tumor vasculature with anti-angiogenic therapy:A new paradigm for combination therapy.Nature medicine,2001,7(9):987-989.
    71.Benjamin LE,Golijanin D,Itin A,et al.Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.The Journal of Clinical Investigation,1999,103(2):159-165.
    72.Akella NS,Twieg DB,Mikkelsen T,et al.Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging:quality and analysis results of a phase I trial.J Magn Reson Imaging,2004,20(6):913-922.
    73.Fox SB.Tumor angiogenesis and prognosis.Histopathology,1997,30(3):294-301
    74.Purdie TG,Henderson E,Lee TY.Functional CT imaging of antiangiogenesis in rabbit VX2 soft-tissue tumor.Phys Med Biol,2001,46(12):3161-3175.
    75.Miles KA,Chamsangavej C,Lee FT,et al.Application of CT in the investigation of angiogenesis in oncology. Acad Radiol, 2000, 7(10):840-50.
    76. Willett CG, Boucher Y, Di Tomaso E, et al. Direct evidence that the VEGF specifi c antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 2004,10(2):145-147.
    77. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of heman-gioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA, 1997,94(16):8761-8766.
    78. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 1998,125(9): 1591-1598.
    79. Gee MS, Procopio WN, Makonnen S, et al. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol, 2003,162(1):183-193.
    80. Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res, 2004,64(11):3731-3736.
    81. Hansen-Algenstaedt N, Stoll BR, Padera TP, et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockage, hormone ablation, and chemotherapy. Cancer Res, 2000,60(16):4556-4660.
    82. Lee CG, Heijn M, di Tomaso E, et al. Antivascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions.Cancer Res, 2000,60(19):5565-5570.
    83. Vajkoczy P, Menger MD, Vollmar B, et al. Inhibition of tumor growth, angiogenesis,and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multifluorescence videomicroscopy. Neoplasia, 1999, 1(1):31-41.
    84. Fischer I, Cunliffe CH, Bollo RJ, et al. High-grade glioma before and after treatment with radiation and Avastin: Initial observations. Neuro Oncol, 2008,10(5):700-708.
    1.Aronen HJ,Gazit IE,Louis DN.Cerebral blood volume maps of gliomas:comparision with tumor grade and histologic findings.Radiology,1994,191(1):41-51.
    2.Cenic A,Nabavi DG,Craen RA,et al.ACT method to measure hemodynamics in brain tumors:validation and application of cerebral blood flow maps.American Journal of Neuroradiology,2000,21(3):462-470.
    3.Roberts HC,Roberts TP,Lee TY,et al.Dynamic,contrast-enhanced CT of human brain tumors:quantitative assessment of blood volume,blood flow,and microvascular permeability:report of two cases.AJNR,2002,23(5):828-832.
    4.张家文,冯晓源,刘斌,等.64层螺旋CT灌注成像血管表面通透性在胶质瘤术前分级中的价值.中国医学计算机成像杂志,2008,14(1):1-5
    5.Miles KA,Chamsangavej C,Lee FT,et al.Application of CT in the investigation of angiogenesis in oncology.Acad Radiol,2000,7(10):840-50.
    6.Lee TY,Nabavi DG,Craen R,et al.A review of method for the calculation of cerebral blood flow,cerebral blood volume and mean transit time in contrast enhanced dynamic CT scanning.Radiology,1999,213:1305.
    7.Folkman J.Tumor angiogenesis:therapeutic implications.N Engl J Med.1971,285(21):1182-1186.
    8.Machein MR,Plate KH.VEGF in brain tumors.J Neurooncol,2000,50(1-2):109-120.
    9.余永强,钱银锋,陈骏,等.大鼠C6胶质瘤抗血管生成治疗的MR灌注研究.中华放射学杂志,2004,7(38):762-766.
    10.Padhani AR,Husband JE.Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification,validation and human studies.Clinical Radiology,2001,56(8),607-620.
    11.Leon SP,Folkerth RD,Blank PM.Microvessel density is a progostic indicator for patients with astrocytic brain tumor.Cancer,1996,77(2):362-363.
    12.Wikstrom P,Lissbrant LF,Stattin P,et al.Endoglin( CD105 ) is expressed on immature blood vessels and is a maker for survival in prostate cancer.Prostate,2002,51(4):268-275.
    13.邱虹,韩依轩,阚志生,等.CD105、CD34在人脑胶质瘤中的表达及其临床意义.中国临床医学,2007,.14(1):40-42.
    14.Yao Y,Kubota T,Takeuchi H,et al.Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors:comparison with an anti-CD31 monoclonal antibody.Neuropathology,2005,25(3):201-206.
    15.姚东晓,赵洪洋,张方成,等.胶质瘤中CD105与VEGF、Ki-67表达的相关性.中国临床神经外科杂志,2006,11(9):527-530.
    16.Gohary YM.Silverman JF.Olson PR,et al.Endoglin(CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma.American Journal of Clinical Pathology,2007,127(4):572-579.
    17.Behrem S,Zarkovic K,Eskinja N,et al.Endoglin is a better marker than CD31 in evaluation of angiogenesis in glioblastoma.Croatian Medical Journal,2005, 46(3):417-422.
    18.Fox SB.Tumor angiogenesis and prognosis.Histopathology,1997,30(3):294-301.
    19.陈军,周义成,丁晖,等.磁共振灌注成像在术前星形细胞瘤血管形成在体研究中的价值.武汉大学学报(医学版),2005,26(6):760-765.
    20.姜新雅,仇斌,王维.星形细胞瘤相对脑血容量与肿瘤血管生成的相关性研究.中国医学影像技术,2006,22(3):401-404
    21.Ricci PE,Dungan DH.Imaging of intermediate-grade gliomas.Semin Radiat Oncol,2001,11(2):103-112.
    22.Aksoy FG,Lev MH.Dynamic contrast-enhanced brain perfusion imaging:technique and clinical applications.Semin Ultrasound CT MR,2000,21(6):462-477.
    23.武洪林,钱农,陈君坤,等.胶质瘤MR灌注成像与分子病理学的对照研究.临床放射学杂志,2006,25(2):112-116.
    24.Maia AC,Jr.,Malheiros SM,da Rocha A J,et al.MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas.AJNR,2005,26(4):777-783.
    25.Ellika SK,Jain R,Patel SC,et al.Role of Perfusion CT in Glioma Grading and Comparison with Conventional MR Imaging Features.AJNR,2007,28(10):1981-1987.
    26.Terada T,Nambu K,Hyotani G,et al.Cerebral blood flow:a method for quantitative measurement of cerebral vascular permeability using X-ray CT and iodinated contrast medium.Neuroradiology,1992,34(4):290-296.
    27.Cha S,Johnson G,Wadghiri YZ,et al.Dynamic,contrast-enhanced perfusion MRI in mouse gliomas:Correlation with histopathology.Magn Reson Med,2003,49(5):848-855.
    28.高思佳,徐克,刘静红,等.多层螺旋CT灌注成像在星形细胞瘤术前分级中的应用价值及与肿瘤血管生成的相关性研究.中国医科大学学报,2006,35(4):412-414.
    29.Purdie TG,Henderson E,Lee TY.Functional CT imaging of antiangiogenesis in rabbit VX2 soil-tissue tumor.Phys Med Biol,2001,46(12):3161-3175.
    30.Jain R,Ellika SK,Scarpace L,et al.Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade.AJNR,2008,29(4):694-700.
    31.Bellomi M,Petralia G,Sonzogni A,et al.CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma:initial experience. Radiology,2007,244(2):486-93.
    32.Kan Z,Phongkitkarun S,Kobayashi S,et al.Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model.Radiology,2005,237(1):151-158.
    33.Zima A,Carlos R,Gandhi D,et al.Can Pretreatment CT Perfusion Predict Response of Advanced Squamous Cell Carcinoma of the Upper Aerodigestive Tract Treated with Induction Chemotherapy? AJNR,2007,28(2):328-334.
    34.Wong JC,Provenzale JM,Petrella JR,et al.Perfusion MR imaging of brain neoplasms.A JR,2000,174(4):1147-1157.
    35.Pollard RE,Garcia TC,Stieger SM,et al.Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography.Invest Radiol,2004,39(6):340-349.
    36.Eastwood JD,Provenzale JM.Cerebral blood flow,blood volume,and vascular permeability of cerebral glioma assessed with dybamic CT perfusion imaging.Neuroradiology,2003,45(6):373-376.
    37.Ellika SK,Jain R,Patel SC,et al.Role of perfusion CT in glioma grading and comparison with conventional MR imaging features.AJNR,2007,28(10):1981-1987.
    38.Miles KA.Tumor angiogenesis and its relation to contrast enhancement on computed tomography:a review.Eur J Radiol,1999,30(3):198-205.
    39.张建华,漆剑频,黄文华,等.脑胶质瘤的CT灌注成像与VEGF表达的对照研究.中国医学影像技术,2007,23(7):982-985.
    40.关丽明,徐克,戚喜勋,等.CT灌注扫描对脑胶质瘤的血流量和血管通透性及其与VEGF表达相关性的实验研究.中国临床医学影像杂志,2008,19(8):547-550.
    41.康立清,张云亭,孙世梅.兔VX2脑瘤血管生成的灌注CT研究.中华放射学杂志,2006,40(6):650-654.
    42.Makad Y,Yasuda T,Doki Y,et al.Correlation between tumor blood flow assessed by per fusion CT and effect of neoadjuvant therapy in advanced esophageal cancers.Journal of Surgical Ontology,2007,96(3):220-229.
    43.Fuss M,Wertz F,Scholdei R,et al.Radiation-induced rCBV changes in normal brain and low-grade astracytomas:Quantification and time and dose-dependent occurrence.Int J Radia Onco,Biol Phys,2000,48(1):53-58.
    44.高思佳,刘静红,郭敏,等.兔VX2种植瘤放疗前后CT灌注成像与组织学对照研究.中国医学影像技术,2006,22(8):1135-1139.
    45. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol, 1995, 147(1):9-19.
    46. Vermeulen PB, Libura M, Libura J, et al. Influence of investigator experience and microscopic field size on microvessel density in node-negative breast carcinoma. Breast Cancer Res Treat, 1997,42(2): 165-172.
    47. Hansen S, Grabau DA, Rose C, et al. Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density. Lab Invest, 1998,78(12):1563-1573.
    48. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature medicine, 2001, 7(9):987-989.
    49. Hansen-Algenstaedt N, Stoll BR, Padera TP, et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockage, hormone ablation, and chemotherapy. Cancer Res, 2000,60(16):4556-4660.
    50. Lee CG, Heijn M, di Tomaso E, et al. Antivascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions.Cancer Res, 2000, 60(19):5565-5570.
    51. Vajkoczy P, Menger MD, Vollmar B, et al. Inhibition of tumor growth, angiogenesis,and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multifluorescence videomicroscopy. Neoplasia, 1999, 1(1):31-41.
    52. Abramovitch R, Dafhi H, Smouha E, et al. In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res, 1999, 59(19):5012-5016
    53. 魏里,雷振,蒋永红.CT 灌注成像研究颅脑疾病的进展.中国医学影像学杂志,2005,13(4):297-300.
    54. Norden AD, Drappatz J, Wen PY. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurology, 2008, 7(12):1152-1160.
    55. Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Experimental Cell Research, 2006, 312(5):594-607.
    56. Ling Y, Yang Y, Lu N, et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochemical & Biophysical Research Communications.2007, 361(1): 79-84.
    57. Gossmann A, Helbich TH, Kuriyama N, et al. Dynamic contrast - enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiformity. J Magn Reson Imaging, 2002, 15 (3) 233-240.
    58. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of heman-gioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA, 1997,94(16):8761-8766.
    59. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 1998,125(9): 1591-1598.
    60. Gee MS, Procopio WN, Makonnen S, et al. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol, 2003,162(1):183-193.
    61. Benjamin LE, Golijanin D, Itin A, et al. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of Clinical Investigation, 1999,103(2):159-165.
    62. Gillies RJ, Evelhoch JL, Karczmar GS. Application of magnetic resonance in model systems: tumors biology and physiology. Neoplasia, 2000,2(2):139-151.
    63. 张菁,漆剑频,黄文华,等.脑肿瘤的多层螺旋CT灌注成像初步研究.中华放射学杂志, 2006,40(8):826-829.
    64. Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res, 2004,64(11):3731-3736.
    65. Ellis LM, Takahashi Y, Liu W, et al. Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist, 2000, 5(suppl 1):11-15.
    66. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev, 1999,13(9): 1055-1066.
    67. Hoeffner EG, Case I, Jain R, et al. Cerebral Perfusion CT: Technique and Clinical Applications. Radiology, 2004,231(3):632-644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700