微波辅助的酸催化纤维素水解和非晶态NiB合金催化的木质素氢解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境的可持续发展是当今社会最重要和突出的两大问题,生物质作为可再生资源,其能源化是开发利用生物质中非常重要的研究课题。对于我国这样能源相对稀缺,人均资源能源远远低于世界水平,但生物质资源丰富的农业大国显得尤为重要。
     本文以开发利用生物质资源中含量最为丰富的两大资源纤维素和HBS(highboiling solvents)木质素为研究目的,分为以下两个部分:
     第一部分是微波辅助的酸催化纤维素水解性能的研究,考察分别以金属氯化物(CuCl_2·2H_2O、AlCl_3、FeCl_3·6H_2O、LaCl_3)和质子酸(HCl、H_2SO_4、HNO_3、(COOH)_2)为催化剂,微波辐射下反应温度、反应时间、微波功率以及催化剂的量等因素对纤维素酸催化水解性能的影响,同时比较微波辐射与传统加热方式下纤维素水解性能,水解产物的定性和定量分析采用高效液相色谱法。实验研究发现微波辐射作用能有效提高酸催化纤维素水解效果,升温提高纤维素转化率但会降低葡萄糖选择性。纤维素水解反应需要在一定时间下才能水解完全,反应时间过短水解不完全而生成低聚糖,反应时间过长则葡萄糖降解加剧,更多地生成小分子化合物如5-HMF,1,6-葡糖酐等高价值的化工产品而导致葡萄糖选择性下降。相对于质子酸来说,金属氯化物对C-C键断裂有明显的催化作用,能更好的促进水解反应,并且较高的pH值对后续糖发酵制乙醇也十分关键。
     第二部分是非晶态NiB合金催化的木质素水相重整制氢与氢解耦合反应。有机溶剂法提取木材中木质素得到HBS木质素,分别以木材和HBS木质素为原料,以乙醇-水为供氢溶剂,在氮气氛下的高压反应釜中,考察反应温度、催化剂非晶态NiB合金的负载量以及反应时间对氢解反应转化率、甲苯相可溶物和乙醇-水相可溶物的收率、以及甲苯相可溶物中物质的组成和相对含量的影响。实验发现HBS木质素在乙醇-水中的水相重整制氢与木质素氢解反应发生耦合作用。
Energy resources shortage and environmental pollution are two of the most important and emergent problems faced by our society today. As renewable resources, the investigation of exploration and utilization of biomass into energy has become one of the most important tasks. As a country of shortage energy, the per capita amount of energy is much lower than the level of the world, and as an agricultural country with plenty of biomass resource, the investigation is obviously important.
     The main purpose of this paper is focused on exploratory investigation of catalytic conversion of biomass materials: cellulose and HBS (high boiling solvents) lignin. The paper is divided into two parts:
     In the first part, microwave-assisted acid hydrolysis of cellulose for glucose and chemicals production has been carried out. Compared with conventional heating method, the process using microwave irritation has been proven to enable acceleration the hydrolysis of cellulose with good selectivity to glucose. Effects of reaction temperature, reaction time, microwave power, type of the catalyst (metal chlorides such as CuCl_2·2H_2O, AlCl_3, FeCl_3·6H_2O, LaCl_3 and proton acids such as HCl, H_2SO_4, HNO_3, (COOH)_2) and the amount of catalyst on the cellulose hydrolysis. High reaction temperature can speed up cellulose conversion but decreases the selectivity of glucose. A suitable reaction time length is important for achieving higher cellulose conversion under optimal reaction temperature and microwave power. Hydrolysates would be polysaccharides using a shorter reaction time length. Small molecular compounds such as 5-HMF and 1,6-anhydroglucose would be formed with degradation of the selectivity of glucose, if using too long reaction time length, of course, the products of 5-HMF and 1,6-anhydroglucose are high-valued chemicals yet. In addition, metal chlorides (Lewis acids) provide better catalysis for cellulose hydrolysis since they facilitate the C-C bond cracking, compared with the proton acids.
     In the second part, chemical production from wood and HBS lignin has been explored by coupling the aqueous steam reforming of ethanol with the hydrogenolysis of wood and HBS lignin in the presence of NiB amorphous alloy catalysts in water phase. The products are extracted from wood by organic solvents including methanol and toluene. The effects of reaction parameters such as reaction temperature, reaction time and catalysis dosage on the conversion and product distribution were investigated. GC-MS has been employed to quantitatively and qualitatively identify the products that can be solved in toluene. The coupling of the hydrogen production reaction and hydrogenolysis of linin has been proven to occur in the presence of NiB amorphous alloy catalysts.
引文
[1]第一讲新能源与可再生能源,节能与环保,2004,2,50-51.
    [2]王长责,新能源和可再生资源的含义、特点及种类,知识窗,2004,10,100-101.
    [3]任芳,新能源和可再生能源,制冷与空调,2004,2,5,11-16.
    [4]陈强,宋朝霞,我国未来新能源和可再生能源发展前景,能源科学进展,2006,2,2:5-10.
    [5]开发生物质资源 实现可持续发展,国际枝术经济研究,1995,2,2,29-34.
    [6]蒋剑春,生物质能源应用研究现状与发展前景,林产化学与工业,2002,22,2,75-80.
    [7]肖军,段菁春,王华,庄新国,生物质利用现状,安全与环境工程,2003,10,1,11-14.
    [8]周善元,21世纪的新能源—生物质能,江西能源,2001,4,34-37.
    [9]但卫华,曾睿,生物质与生物质工程,中国皮革,2002,31,11,31-35.
    [10]朱清时,阎立峰,郭庆祥,生物质洁净能源,化学工业出版社,北京,2002.
    [11]Reddy,B.S.;Biomass energy for India:an overview.Energy Conversion and Management,1994,35,4,341-361.
    [12]阴秀丽,吴创之,徐冰嬿,陈勇,生物质气化对减少CO_2排放的作用,太阳能学报,2000,21,1,40-44.
    [13]Demibas A.Biomass resource facilities and biomass conversion processing for fuels and chemicals.Energy Conversion and Management,2001,42,1357-1378.
    [14]Koufopanos,G.M.;Lucchesi,A.Pyrolysis,a promising route for biomass utilization.Bioresource Technology,1992,42,3,219-231.
    [15]杨立忠,杨钧锡,别义勋,新能源技术,中国科学技术出版社,北京,1994.
    [16]Wolfgang,P.新能源与可再生能源在未来能源系统中的地位,能源工程,1997,1,35-38.
    [17]杨亚平,蔡落,南方地区秸秆气化技术应用特点,中国能源,2001,6,31-33.
    [18]中国农业部/美国能源部项目专家组,中国生物质资源可获得性评价,中国环境科学出版社,北京,1998.
    [19]金辉,赵亚平,王大璞,纤维素超临界水解反应技术,现代化工,2001,21,12,56-59.
    [20]Allan,G.W.;Bradbury,Y,S.;Fred,S.A Kinetic Model for Pyrolysis of Cellulose,Journal of Applied Polymer Science,1979,23:3271-3280.
    [21]Hajallgol,M.R.;Howard,J.B.;Longwell,J.P.;Peters,W.A Product composition and kinetics for rapid pyrolysis of cellulose.Industrial and Engineering Chemistry Process Design and Development,1982,21,457-465.
    [22]朱跃钊,卢定强,万红贵,贾红华,木质纤维素预处理技术研究进展,生物加工过程,2004,2,4,11-16.
    [23]王树荣,廖艳芬,刘倩,酸洗预处理对纤维素热裂解的影响研究,燃料化学学报,2006,34,2,179-183.
    [24]李沅,孙衍宁,班卫平,纤维素在酸及酶催化作用下的降解特性,大连轻工业学院学报,2000,19,3,169-171.
    [25]罗鹏,刘忠,木质生物质资源的水解,林产化学与工业,2006,26,2,99-104.
    [26]Banyasz,L.;Li,S.;Lyons-Hart,J.;Shafer,K.H.Gas evolution and the mechanism of cellulose pyrolysis.Fuel,2001,80,1757-1763.
    [27]Volker,S.;Rieckmarm,T.Thermokinetic investigation of cellulose pyrolysis-impact of initia 1 and final mass on kinetic results.Journal of Analytical and Applied Pyrolysis,2002,62,165-177.
    [28]Antal,M.J.;Friedmant,H.L.;Rogers,F.E.Kinetics of Cellulose Pyrolysis in Nitrogen and Steam.Combustion Science and Technology,1980,21,141-152.
    [29]张毅民,杨静,吕学斌,马沛生,木质纤维素类生物质酸水解研究进展,世界科技研究与发展,2007,29,1,48-54.
    [30]庄新姝,王树荣,骆仲泱,纤维素低浓度酸水解试验及产物分析研究,太阳能学报,2006,27,5,5 19-524.
    [31]Aliyu,M.;Hepher M.J.Effects of ultrasound energy on degradation of cellulose material,Ultrasonics Sonochemistry,2000,7,4,265-268.
    [32]高洁,汤烈贵,纤维素科学,科学出版社,1996,183-189.
    [33]章克昌,酒精与蒸馏工艺学,中国轻工业出版社,北京,1995,2.
    [34]Farone,W.A.;Cuzens,J.E.Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials.US 556277,1996-10-08.
    [35]Lee,Y.Y.;Iyer P.;Toget,R.W.Advances in Biochemical Engineering Biotechnology,1999,65,93.
    [36]杜风光,史吉平,张龙,徐志剑,纤维质生产燃料乙醇产业化研究进展,中国麻业科学,2007,29,72-73.
    [37]Mosier,N.S.;Sarikaya,A.;Ladisch,C.M.Characterization of Dicarboxylic acid for Cellulose Hydrolysis.Biotechnology Progress,2001,17,3,474-480.
    [38]Nguyen,Q.A.;Tucker,M.P.Dilute acid/metal salt hydrolysis of lignocellulosics.US 6423145,2002-07-23.
    [39]颜涌捷,任铮伟,纤维素连续催化水解研究,太阳能学报,1999,20,1,55-57.
    [40]Hamelinck,C.N.;Hooijdonk,G.;Faaij,P.Ethanol from lignocellulosic biomass.Techno-economic perfpormance in short-,middle-,and long-term.Biomass and Bioenergy,2005,28,384-410.
    [41]Matuba,Y.;Wakai,C.;Nakahara M.Structural study of supercritical water.Ⅱcomputer simulations.Journal of Chemical Physics,1999,110,16,8000-8011.
    [42]汪利平,吕惠生,张敏华,纤维素超临界水解反应的研究进展,林产化学与工业2006,26,4,117-120.
    [43]陈晋阳,郑海飞,曾贻善,超临界水理论研究的进展.化学进展,2002,19,3,285-289.
    [44]洪树楠,刘明华,范娟,木质素吸附剂研究现状及进展,造纸科学与技术,2004,23,2,38-43.
    [45]Gosselink,R.J.A.;Snijder,M.H.B.;Kranenbarg,A.Characterisation and application of NovaFiber lignin,Industrial Crops and Products,2004,20,191-203.
    [46]邱卫华,陈洪章,木质素的结构、功能及高价值化利用,纤维素科学与技术,2006,14,1,52-59.
    [47]蒋挺大.木质素,化学工业出版社,北京,2001.
    [48]姜春艳,黄峰,木质素的研究进展,山东林业科技,2006,165,78-81.
    [49]陶用珍,管映亭,木质素的化学结构及其应用,纤维素科学与技术,2003,11,1,42-55.
    [50]高洁编,纤维素科学,科学出版社,北京,1999.
    [51]Cheng,H.M.;Cowling,E.B.;Brown,W.,Adler E.And Miksche,D.Holzforschung,1975, 29,153.
    [52]Schmidt,J.A.;Rye,C.S.;Gurnagul,N.Lignin inhibits autoxidative degradation of cellulose[J].Polymer Degradation.Stability.1995,49,291-297.
    [53]Gosselink,R.J.A.;Abacherli,A.;Semke,H.et al.Analytical protocols for characterisation of sulphur-free lignin.Industrial Crops and Products,2004,19,271-281.
    [54]谢宝东,邱学青,王卫星,木质素改性与木质素水煤浆添加剂,造纸科学与技术,2003,22,6,120-124.
    [55]Ramirez,F.;Gonzalez,V.;Crespo,M.;Meier,D.;Faix,O.;zuniga,V.Ammoxidized kraft lignin as slow-release fertilizer tested on sorghum vuIgare.Bioresourse Technology,1997,61,43-46.
    [56]Felipe,R.C.Slow-release of N-functionalized kraft lignin tested with sorghum over two growth periods.Bioresource Technology,2001,76,71-73.
    [57]朱兆华,廖宗文,王德汉,改性造纸黑液木质素氮素释放规律,农业环境保护,2002,21,2,140-142.
    [58]曹玲,全金英,李忠正,木质素在肥料中的应用,中华纸业,1998,2,68-70.
    [59]漆辉,木质素对复合肥中钾的保持作用,绵阳经济技术高等专科学校学报,2000,4,17,17-1.
    [60]姜洪涛,李会泉,张懿,生物质高压液化制生物原油研究进展,化工进展,2006,25,1,8-13
    [61]Pepper,J.M.;Steck,W.The effect of time and temperature on the hydrogenation of aspen lignin.Candian Journal of chemistry,1963,41,2867-2874.
    [62]Cortright,R.D.;Davda,R.R.;Dumesic,J.A.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.Nature,2002,418,964-967.
    [63]Huber,G.W.;Shabaker,J.W.;Dumesic J.A.Raney Ni-Sn Catalyst for H_2 Production from Biomass-Derived Hydrocarbons.Science,2003,300,2075-2077.
    [64]Nimz H.Chemische Berichte,1965,98:533,538,3160;1966,99:469,2638;1967,100:181,2633.
    [65]Lundquist,K.Acta Chemica.Scandinavica,1964,18,1316.
    [66]Gierer,J.Wood Science Technology,1986,20,1.
    [67]Kovaydov,E.I.;Smimov,V.A.Zhurnalprikladnoi khimii,1977,50,8,1741.
    [68]Kovaydov,E.I.and Shfron,E.M.Biophysical Chemistry,8th,1973,24.
    [69]张桂梅,廖双泉,蔺海兰,廖建和,木质素的提取方法及综合利用研究进展,热带农业科学,2005,25,1,67-70.
    [70]廖俊和,罗学刚,木质素、纤维素高效分离技术,纤维素科学与技术,2003,11,14,60-64.
    [71]夏祖学,刘长军,闫丽萍,杨晓庆,微波化学的应用研究进展,化学研究与应用,2004,16,4,441-444.
    [72]陈默,微波化学,化学教育,2002,7-8,10-11.
    [73]王峰,王安英,周立娟,微波加热技术的发展概况,佛山陶瓷,1998,1,33-34.
    [74]杨波,微波加热技术及其应用,电子节能,1998,2,14-17.
    [75]卢凯,微波的原理及特点,农来机械化与电气化,2007,1,61-62.
    [76]牟群英,李贤军,微波加热技术的应用与研究进展,物理学和高新技术,2004,33,6,438-442.
    [77]李永红,李跃明,沈玲,微波促进有机反应原理及微波有机合成仪,化工技术与开发,2006,35,3,14-16.
    [78]扬洲,段吉利,微波干燥及其发展,粮油加工与食品机械,2000,267,3,5-6.
    [79]Illescas,B.;Martin,N.;Seoane,C.et al.Tetrahedron Letters,1995,36,45,8307-8310.
    [80]Giguere,R.J.;Bray,T.L.;Duncan,S.M.;Majetich,G.Tetrahedron Letters,1986,27,41,4945-4948.
    [81]Banik,B.K.;Manhas,M.S.;Kaluza,Z.Tetrahedron Leterst,1992,33,25,3603.
    [82]Kim,J.K;Kwon,P.S.;Kwon,T.W.;et al.Synthetic Commonuications,1990,26,535.
    [83]Dayal,B.;Rapole,K.R.;Salen,G.;et al.Synlett,1995,861.
    [84]Bose,A.K.;Manhas,M.S.;Banik,B.K.;et al.Research on Chemical Intermediates,1994,20,1.
    [85]Loupy,A.;Petit,A.;Ramdani,M.;et al.Canadian Journal of Chemistry,1993,71,90.
    [86]Jinxian,W.;Manli,Z.;Zhilang,X.;et al.Synthetic Commonuications,1996,26,301.
    [87]Majdoub,M.;Loupy,A.;Petit,A.et al.Tetrahedron,1996,52,2,617.
    [88]Villemin,D.;Martin,B.;Garfigues,B.Synthetic Commonuications,1993,23,2251.
    [89]Beldjoudi,N.;Bouazizi,A.;Boribi,D.;et al.European Polymer Journal,1988,24,1,49.
    [90]Chen,S.T.;Chiou,S.H.;Wang,K.T.Peptide Protein Research,1987,30,572.
    [91]Baghurst,D.R.;Cooper,S.R.;Gerene,D.L.et al.Polyhedron,1990,9,6,893.
    [92]Hwang,D.R.;Moerlein,S.M.;Lag,L.et al.Journal of the Chemical Society Chemical Communications,1987,1799.
    [93]Gedye,R.N.;Smith,F.E.;Westaway,K.C.Canadian Journal of Chemistry,1988,66,17.
    [94]李利军,李跃斌,李世芳,微波加热技术在化学反应中的应用,太原科技,1999,2,30-31.
    [95]Murphy,M.Chemical feedstocks:early success in HMF to cellulose process.Chemistry and Industry,2007,12,10.
    [1]Murph,M.Chemical feedstocks:early success in HMF to cellulose process.Chemistry and Industry,2007,12,10.
    [2]朱跃钊,卢定强,万红贵,贾红华,木质纤维素预处理技术研究进展[J],生物加工过程,2004,2,4,11-16.
    [3]Nassar,R.;Chou S.T.Stochastic analysis of stepwise cellulose degradation.Chemical Engineering Science,1991,46,7,1651-1657.
    [4]Seri K.;Sakaki T.;Shibata,M.Lanthanum(Ⅲ)-catalyzed degradation of cellulose at 250℃.Bioresource Technology,2002,81,3,257-260.
    [5]Tsuyoshi,S.;Masao,S.;Toshiharu,M.;Hideharu,H.Docomposition of cellulose in Near-critical Water and Fermentability of the Products.Energy & Fuels,1996,10,684-688.
    [6]左承基,钱叶剑,何建辉,何勇,木质生物质直接液化产物的红外光谱分析,Renewable energy,2006,1,10-13.
    [7]姚新生,有机化合物波谱分析,中国医药科技出版社,北京,2004,40-96.
    [8]Pretsch,E.(著),荣国斌(译),朱十正(校),波谱数据表-有机化合物的结构解析,华东理工大学出版社,上海,2002,245-312.
    [9]廖双泉,马凤国,邵自强,不同预处理对剑麻纤维组分和结构的影响,纤维素科学与技术,2002,10,2,37-42.
    [10]贺锋嘎,哈森其木格,芥菜多糖的研究,光谱学与光谱分析,2006,26,2,321-323.
    [11]丁玉强,陈春英,Elmahadi,E.A.,李焰,周井炎,徐辉碧,箬叶水溶性多糖的色谱研究,色谱,1996,14,6,470-472.
    [12]颜涌捷,任铮伟,纤维素连续催化水解研究[J],太阳能学报,1999,20,1,55-58.
    [13]庄新姝,王树荣,骆仲泱,纤维素低浓度酸水解试验及产物分析研究[J],太阳能学报,2006,27,5,519-524.
    [14]Sakaki T,Shibata M,Miki T,et al.Decompsition of Cellulose in Near-Critical Water and Fermentability of the Products.Energy & Fuels,1996,10,684-688.
    [15]罗鹏,刘忠,木质生物资源的水解,林产化学与工业,2006,26,2,99-104.
    [16]安宏,王树荣,庄新姝,方梦祥,骆仲泱,岑可法,纤维素稀酸水解的试验研究,新能源及工艺,2005,2,22-25.
    [17]李沅,孙衍宁,班卫平,纤维素在酸及酶催化作用下的降解特性,大连轻工业学院学报,2000,19,3,169-171.
    [18]李利军,李跃斌,李世芳,微波加热技术在化学反应中的应用,太原科技,1999,2,30-31.
    [19]卢凯,微波的原理及特点,农业机械化与电气化,2007,1,61-62.
    [20]熊犍,叶君,梁文芷,范佩明,微波对纤维素Ⅰ超分子结构的影响,华南理工大学学报,2000.28.3.84-89.
    [21]Shafizadeh,F.;Lai,Y.Z.Thermal degradation of 1,6-anhydro-β-D-glucopyranose[J].Journal of Organic Chemistry,1972,37,2,278-284.
    [22]Donald F Arseneau.Competitive reaction in the thermal decomposition of cellulose[J].Canadian Journal of Chemistry,1971,49,632-638.
    [23]王树荣,廖艳芬,文丽华,骆仲泱,岑可法,钾盐催化纤维素快速热裂解机理研究,燃料化学学报,2004,32,6,695.698.
    [1]Jose C.del Rio,Angel T.Martinez,Aria Gutie rrez,Presence of 5-hydroxyguaiacyl units as native lignin constituents in plants as seen by Py-GC/MS.Journal of Analytical and Applied.Pyrolysis,2007,79,33-38.
    [2]邱卫华,陈洪章,木质素的结构、功能及高值化利用[J],纤维素科学与技术,2006,14,1,52-59.
    [3]姜春艳,黄峰,木质素的研究进展,山东林业科技,2006,4:78-81.
    [4]陶用珍,管映亭,木质素的化学结构及其应用[J],纤维素科学与技术,2003,11,1,42-55.
    [5]叶结旺,方桂珍,杜添川,Pd/C催化下麦草碱木质素与氢气的还原反应[J],中国造纸学报,2006,21,1,73-76.
    [6]衣守志,石淑兰,李翠珍,制浆废液中木质素的分离与利用新进展[J],国际造纸,2001,20,6,5.
    [7]王海洋,陈克利,木质素的氢解及其合成环氧树脂探索[J],化工时刊,2004,18,3,27-30.
    [8]Lewis N.G..;Yamamoto E.Lignin:occurrence,biogenesis and biodegradation.Annual Review of Plant Physiology.and Plant Molecular.Biology,1990,41:455-496.
    [9]方华书,陈跃先,陈云平,李勉钧,陈为健,程贤甦,高沸醇溶剂法制备纤维素和木质素[J],闽江学院学报,2002,23,2,67-69.
    [10]程贤甦,方华书,陈跃先,陈云平,陈为健,高沸醇法HBS法制备稻草制浆和木质素[J],闽江学院学报,2003,24,2,82-84.
    [11]Faix,O.Holzforschung,1991,45:21-2.
    [12]Sehultz,T.P.Holxzforschung,1986,40:371.
    [13]陈方,陈嘉翔,按木木质素的付立叶变化变换红外光谱研究,纤维素科学与技术[J],1994,2,2,14-20.
    [14]姚新生,有机化合物波谱分析,北京:中国医药科技出版社,2004,40-96.
    [15]Pretsch,E.(著),荣国斌(译),朱十正(校),波谱数据表—有机化合物的结构解析,华东理工大学出版社,上海,2002,245-31.
    [16]谢益民,伍红,赖燕明,桉木CTMP法制浆过程中化学成分的变化,中国造纸学报,1999,14,20-25.
    [17]杜甫佑,张晓显,王宏勋,白腐菌降解木质纤维素顺序规律的研究,纤维素科学与技术2005,13,1,17-25.
    [18]Sun.R.C.;Sun.X.F.;Fowler,P.et al.Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw[J].European Polymer Journals,2002,38,1399-1470.
    [19]李坚,木材波谱学[M],北京科学出版社,2003,109-110.
    [20]卢娴,刘明友,李友明,差示红外光谱技术在木素化学结构研究中的应用[J],黑龙江造纸,1999,3,3-5.
    [21]Samir,H.;Ahmed,B.;Fre'de'rique,H.P.;Aziz,N.;Alain,C.;Adding value to Alfa grass (Stipat enacissima,L)soda lignin as phenolic resins 1.Lignin characterrizaiton[J],Polymer degradation and Stability,2002,75,259-264.
    [22]孔晓英,武书彬,唐爱民,谢国辉,吴创之,赵增立,麦草管式炉热解液化产物及其特征,造纸科学与技术,2002,21,5,38-40.
    [23]李改云,秦特夫,黄洛华,酸催化下苯酚液化木材的制备与表征[J],木材工业,2005,19,2,28-31.
    [24]王树荣,刘倩,郑赟,文丽华,骆仲泱,岑可法,基于热重红外联用分析的生物质热裂解机理研究[J],工程热物理学报,2006,27,2,351-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700