斜程湍流大气中激光波束传输及目标回波特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湍流大气中激光波束传输特性作为近代大气光学及其工程应用领域相当活跃的研究内容之一,对地-空路径的激光通信、成像、目标特征的提取与定标、遥感及激光制导和激光武器系统的开发和应用具有重要的指导作用和现实意义。
     本文围绕斜程湍流大气中激光波束传输与目标回波特性开展研究,主要成果如下:
     第一、讨论了斜程路径高斯波束的对数振幅方差随无量纲参量–发射和接收参数的变化关系,分析了高斯波束的光学湍流效应,当大气结构常数为定值时可以退化到水平传输情形的结果。数值计算了不同类型入射波的对数振幅方差随不同接收机高度、Fresnel比及接收机参数的变化关系。
     第二、通过在完全饱和情况高斯解的基础上添加非高斯修正项的方法推导了波在湍流大气中传输时强起伏情况场的(m + m)阶对称矩的解析解。其中高斯项部分可以由二阶矩的乘积和求得;非高斯修正项部分通过求其Rytov近似解得出。利用上述理论框架和解析求解方法导出了波在湍流介质中传播的四阶矩和八阶矩的解析解。高阶对称矩求解过程没有对湍流强度和入射波源作任何限定,所以所得解析解具有通用性。最后给出了平面波入射时的闪烁指数随湍流强度、天顶角以及传输距离的变化关系。
     第三、讨论了从弱到强大气湍流中光波传播闪烁和修正Rytov理论,给出了考虑湍流内、外尺度效应时斜路径高斯波束从弱起伏到强起伏区的闪烁指数统一理论模型。根据ITU-R大气结构常数C n2模型,分析了光波的斜径闪烁指数随Rytov方差的变化关系,其结果和实验的结果相符。该模型可退化到斜路径平面波和球面波的闪烁指数模型,也能在C n2为定值的条件下,简化到均匀湍流的水平传输波束闪烁模型。基于广义Huygens-Fresnel原理,利用Mellin变换技术,推导了激光波束的扩展半径和考虑外尺度效应时的漂移方差,并利用ITU-R湍流大气结构常数模型数值分析了不同接收机高度波束的扩展半径和漂移方差随传输距离的变化关系。
     第四、利用Huygens-Fresnel原理,考虑大气湍流对激光束从发射机到目标和从目标到接收机双程路径的影响,研究了斜程湍流大气中漫射目标和目标上含一个或多个镜反射点(该镜反射点半径远小于束宽)的散射统计特性。导出了考虑对数振幅和相位起伏影响,激光波束在湍流大气中斜程传输时其散射场的互相关函数、强度协方差和强度方差的计算公式,讨论了不同湍流强度、波长、目标高度和传播距离对它们的影响,以及镜反射点的半径和离轴远近对归一化强度方差的影响。
     第五、根据Rytov近似和ABCD传输矩阵表示法,应用Kolmogorov功率谱推导了双程斜路径湍流大气中平面镜和后向反射器回波的互相关函数、平均强度以及闪烁指数。当大气结构常数为一定值时均可以退化到水平传输情况,与以前文献中的结果一致。给出了高斯波束、球面波,平面波入射到平面镜和后向反射器上,反射波的数值计算结果。
Laser propagation in the turbulent atmosphere is one of important research topics of latter-day optics and its engineering application, and is significant for laser satellite-Earth communication, target characteristic extracting and calibrating, laser tracking, controlling and guiding.
     The topic of laser beam propagation on the slant path through the atmospheric turbulence and the characteristics of returned waves by targets have great value.The main topics and results are as follows:
     First, the transmitter and receiver parameters become apparent in the derived analytical expressions for the log-amplitude variance of the Gaussian beam propagation on the slant path. The expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam wave analysis and can be reduced to a Gaussian beam wave model on horizontal sight paths of invariable C_n~2. The numerical results of different form beam log-amplitude variance with the height of receiver, Fresnel zone size and receiver parameters are given.
     Second, by adding a non-Gaussian correction to the Gaussian solution to the m + mth order moment equation under complete saturation case, an analytical solution is deriveded for general strong scattering regime. The Gaussian term is the sum of the product of the second order moment, while the equation for the non-Gaussian part can be treated by Rytov approximate method. Based on the theory frame and the solution method of analytical solution, the fourth and eighth moment are obtained when wave propagation in the turbulent atmosphere.The equation for higher-order moment has been treated without restrictions on both the scattering regimes and incident wave sources, thus the analytical solution is general. Finally, the relation of the plane wave scinllation index with turbulent intensity, zenith angle and propagation distance are discussed.
     Third, on slant paths, by applying a modification of the Rytov method, a tractable model is developed for the scintillation index of a Gaussian optical beam wave that is valid under moderate-to-strong irradiance fluctuations considering inner- and outer- scales effects of turbulence. The results agree with experimental scintillation. This scintillation model can be converted into a plane or a sphere wave scintillation index model on slant paths, and also reduced to a Gaussian beam wave model on horizontal sight paths of invariable C n2. According to Huygens-Fresnel and Mellin transform techniques, spreading radius and wander with outer scale effect on the slant path, and applying the ITU-R C_n~2 model which is altitude dependent to calculate the spreading radius and wander covariance with different height of drone in the slant path. These results can be reduced to a Gaussian beam wave model on horizontal sight paths of invariable C_n~2.
     Fourth, the extended Huygens-Fresnel principle is utilized to make analysis of the backscattering of a target in the turbulent atmosphere. The treatment includes the effects of the atmospheric turbulence both on the laser beam as it propagates to the target and on the scattered field as it propagates back to the receiver. The covariance function and variance of the scattering intensity are derived with considering the fluctuation of the log-amplitude and phase, and the numerical results are given. The influence of wavelength and propagating distance on the covariance function and normalized variance of the scattering is discussed. The statistical effects of the atmospheric turbulence on coherent radiation scattering from a diffused target are extended to the target with multiple glint (the glint is small compared with the illuminating beam). The influence of radius of the glint and the distance off the incident beam on these parameters is discussed.
     Finally, based on the Rytov theory and rotationally symmetric ABCD ray matrices, this paper educed the mutual coherence function, mean intensity and scintillation of retuned waves by plane mirror and retroreflector in the turbulent on the slant path, and can be reduced to model on the horizontal path of invariable C n2. The results of Gaussian beam, spherical wave and plane wave incident on plane mirror and retroreflector are discussed respectively.
引文
[1] Degnan, J.J., Satellite Laser Ranging: Current status and future prospects, IEEE Transactions on Geoscience and Remote Sensing, 1985, 23 (4): 398-413.
    [2]杨福民,肖炽琨, and陈婉珍,白天卫星激光测距系统的设计和实测结果,中国科学(A辑), 1998, 28 (11): 1048-1056.
    [3] Karman.von, Progress in the statistical theory of turbulence, Proc.Nation.Acade.Scien, 1948, 34: 530-539.
    [4] Greenwood.D.P, and Tarazano.D.O, A proposed form for the atmospheric microtemperature spatial spectrum in the input range: USAF Rome Air Development Center. Technical Report RADC-TR, 1974.
    [5] Lukin.V.P, and Pokasov.V.V, Optical wave phase fluctuations, App. Opt., 1981, 20 (1): 421-135.
    [6] Tatarskii, V.I., The Effects of the Turbulent Atmosphere on Wave Propagation, Springfield: Va: US Department of Commerce, 1971.
    [7] Chernov, L.A., Wave propagation in random medium, New York: McGraw-Hill, 1960.
    [8] Tatarskii, V.I., Wave propagation in a turbulent medium, New York: McGraw-Hill, 1978.
    [9] ITU-R, Propagation data and prediction methods required for the design of Earth-space telecommunication systems, Radio Communication Study Group Meeting,Budapest, 2001, 206 (3): 618.
    [10] A.石丸,随机介质中波的传播和散射:科学出版社出版, 1986.
    [11] Ishimaru, A., Wave propagation and scattering in random media, New York: Academic Press, 1978.
    [12] Andrew.L.C., Philips, R.L., and Al-Halash.M.A, Theory of optical scintillation J. Opt.Soc.Am.A, 1999, 16 (6): 1417-1429.
    [13] Jakeman, E., Enhanced backscattering through a deep random phase screen, J. Opt.Soc.Am.A, 1988, 5 (10): 1638-1648.
    [14] Korotrova, O., and Andrews, L.C., Speckle propagation through atmospheric turbulence: effects of a random phase screen at the source, SPIE, 2002, 48 (21): 98-109.
    [15] Wolf, D.A., Electromagnetic reflection from an extended turbulent medium: Cumulative forward-scatter single-backscatter approximation, IEEE Trans.Antennas Propag., 1971, 19: 254-262.
    [16] Brown, W.P., Moment equations for waves propagated in random media, J. Opt.Soc.Am.A, 1972, 62 (1): 45-54.
    [17] Fante, R.L., Two-position, two-frequency mutual-coherence function in turbulence, J. Opt.Soc.Am.A, 1981, 71 (12): 1446-1451.
    [18] Lutomirski, R.F., and YURA, H.T., Propagation of a finite optical beam in an inhomogeneous medium, Appl.Opt, 1971, 10 (7): 1652-1658.
    [19] M.Born, and E.Wolf, Principles of Optics, New York: Pergamon, 1975.
    [20] Yeh, K.C., and Liu, C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, 70: 324-360.
    [21] Liu, C.H., Wernik, A.W., and Yeh, K.C., Propagation of pulse trains through a random medium, IEEE Trans. Antennas Propag., 1974, 22: 152-155.
    [22] Shishov, V.I., Theory of wave propagation in random media, Izvestia VUZ. Radiofizika, 1968, 11: 866-875.
    [23] Lee, L.C., Wave propagation in a random medium: A complete set of the moment equations with different wave numbers, J. Math. Phys., 1974, 15: 1431-1435.
    [24] Rino, C.L., On the application of phase screen models to the interpretation of ionospheric scintillation data, Radio Sci, 1982, 17: 855-867.
    [25] Uscinski, B.J., Analytical solution of the fourth-moment equation and interpretation as a set of phase screens, J.Opt.Soc.Am.A, 1985, 2 (12): 2077-2091.
    [26] Andrews, L.C., Propagation of a Gaussion-beam wave through a random phase screen Wave in Random Media, 1997, 7: 229-244.
    [27] Jakeman, E., Enhanced backscattering through a deep random phase screen, J.Opt.Soc.Am.A, 1988, 5 (10): 1638-1648.
    [28] Flatté, S.M., Wave propagation through random media: contribution from ocean acoustics, Proc. IEEE, 1983, 71: 1267-1294.
    [29]吴振森,随机介质中波传播饱和状态的强度相关和闪烁,电波传播学报, 1986, 1 (1): 72-83.
    [30] Codona.J.L, Creamer.D.B, and Flatté.S.M., Solution for the fourth moment of waves propagating in random media, Radio Sci, 1986, 21: 929-948.
    [31] Dashen, R., Path integrals for waves in random media, J. Math. Phys., 1979, 20: 894-920.
    [32] Lee.S.Y, Liu.C.H, and Yeh.K.C, Research Topics in Electromagnetic Wave Theory, New York: John Wiley & Sons, 1980.
    [33] Furutsu, K., Intensity correlation functions of lightwaves in a turbulent medium: anexact version of the two-scale method, Appl. Opt, 1988, 27 (11): 2127-2144.
    [34] Martin, J.M., and Flatté, S.M., Intensity images and statistics from numerical simulation of wave propagation in three-dimensional random media, Appl. Opt., 1988, 27: 277-287.
    [35] Filinov, V.S., Monte Carlo simulation in the theory of wave propagation in random media: II. Scintillation index, second and fourth moments, Wave in Random Media, 1995, 5: 277-287.
    [36] Uscinski, B.J., Numerical simulations and moments of the field from a point source in a random medium, J. Mod. Opt, 1989, 36: 1631-1643.
    [37] Brown, W.P., and JR., Second monment of a wave propagating in a rando medium, J. Opt.Soc.Am.A, 1971, 61 (8): 1051-1059.
    [38] Filinov, V.S., Monte Carlo simulation in the theory of wave propagation in random media:Ⅱ. scintillation index, second and fourth moments, Wave in Random Media, 1995, 5: 277-287.
    [39] Wu, J., Analytic solutions of the two-frequency and two-position mutual coherence function for wave propagating through random media, Chin. J. Electron., 1999, 8 (3): 313-316.
    [40] Jenu, M.Z.M., and Bebbington, D.H.O., Fourth-mement calculation of optical propagation in a turbulent atmosphere with use of the split-step method. I.plane wave, J. Opt.Soc.Am.A, 1994, 11 (11): 2862-2869.
    [41] Brown, W.P., and JR., Fourth moment of a wave propagating in a random medium, J. Opt.Soc.Am.A, 1972, 62 (8): 966-971.
    [42] Majumdar,A.K., Higher-order statistics of laser-irradiance fluctuation due to turbulence, J. Opt.Soc.Am.A, 1984, 1 (11): 1067-1074.
    [43]吴健,刘瑞源,前向多重散射矩方程的解及其在电离层闪烁中的应用,中国科学(A辑), 1989, 19 (12): 1322-1332.
    [44] Wang, Z.-S., Wave propagation in a radom medium: The solution of the m-nth moment equation with different wavenumbers, Lett.Math.Phys, 1987, 13: 261-271.
    [45] Wang, Z.-S., Analytical solutions in differential form for the m-nth moment equations of waves in inhomogeneous random media, Physica Scripta, 1987, 36: 577-581.
    [46] Xu, Z.-W., Wu, J., and Wu, Z.-S., Analytical Solution to the n-nth Moment Equation of Wave Propagation in Continuous Random Media, IEEE Trans. Antennas Propag., 2007, 55 (5): 1407-1415.
    [47] Ito, S., and Furutsu, K., Theoretical analysis of the high-order irradiance mementsof light waves observed in turbulent air, J. Opt.Soc.Am.A, 1982, 72 (6): 760-764.
    [48]李桂珍,吴健,黄际英,适合随机电离层介质双频、双点互相干函数的解,电波科学学报, 2003, 18 (2): 157-160.
    [49] Xu, Z.W., Wu, J., and Wu, Z.S., Solution for the Fourth Moment Equation of Waves in Random Continuum Under Strong fluctuations: General Theory and Plane Wave Solution, IEEE Trans. Antennas Propag., 2007, 55 (6): 1613-1621.
    [50] Tur, M., Numerical solutions for the fourth moment of a plane wave propagating in a random medium, J. Opt.Soc.Am.A, 1982, 72 (12): 1683-1690.
    [51] Baykal, Y., Plonus, M.A., and Wang, S.J., The scintillations for a weak katmospheric turbulence using a spatially partially coherent source, Radio Science, 1998, 18 (4): 551-556.
    [52] Ponomarenko, S.A., Greffett, J.J., and Wolf, E., The diffusion of partially coherent beams in turbulent media, Optics Communications, 2002, 20 (8): 1-8.
    [53] Shirai, T., Dogariu, A., and Wolf, E., Mode analysis of spreading of partially coherent beams propagation through atmospheric turbulence, J. Opt.Soc.Am.A, 2003, 20 (6): 1094-1102.
    [54]刘维慧,吴健,多高斯-榭尔光束通过强湍流对光强闪烁的影响,应用光学, 2005, 26 (1): 25-28.
    [55]季小玲,吕百达,湍流对部分相干光光谱移动的影响,中国激光, 2005, 32 (4): 506-510.
    [56]王华,王向朝,曾爱军,大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响,物理学报, 2008, 57 (1): 634-638.
    [57] Lin, Q., and Cai, Y.J., Fourier transform for partially coherent Gaussian Schell–model beams, Optics Letters, 2002, 27 (19): 1672-1674.
    [58] Pu, J.X., and Nemoto, S., Spectral shifts of partially coherent beams focused by a lens with chromatic aberration Opt Commun, 2002, 20 (7): 1-5.
    [59] Agrawal, G.P., Propagation-induced polarization changes in partially coherent optical beams, J. Opt.Soc.Am.A, 2000, 17 (11): 2019-2023.
    [60] Gori, F., Matix treatment for partially polarized partially coherent beams, Optics Letters, 1998, 23 (4): 241-243.
    [61] Gori, F., Santarsiero, M., and Borghi, G., Use of the van Cittert-Zernike theorem for partially polarized sources, Optics Letters, 2000, 25 (17): 1291-1293.
    [62] Salem, M., Shirai, T., and Dogariu, A., Long-distance propagation of partially coherent beams through atmosphere turbulence, Opt Commun, 2003, 216 (4-6): 261-265.
    [63] Roychow, d.H., Ponomarenko, S.A., and Wolf, E., Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere, Journal of Modern Optics, 2005, 52 (11): 1611-1618.
    [64] Salem, M., Korotkova, O., and Dogariu, A., Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere, Waves in Random Media, 2004, 14 (4): 513-523.
    [65] Korotkova, O., Salem, M., and Wolf, E., The far-zone behavior of the degree of polarization of partially coherent beams propagating through atmospheric, Opt Commun, 2004, 233 (4-6): 225-230.
    [66] Booker, H.G., The use of radio stars to study irregular refraction of radio waves in the ionosphere, Proc. IRE, 1958, 46: 298-314.
    [67] Aarons, J., Global morphology of ionospheric scintillation, Proc. IEEE, 1982, 70: 360-379.
    [68] Hey, J.S., Parsons, S.J., and Philips, J.W., Fluctuations in cosmic radiation at radio frequencies, Nature (Lodon), 1946, 158: 247.
    [69] Andrew.L.C., L., P.R., and Week.A.R., Propagation of a Gaussian-beam wave through a random phase screen, J. Opt.Soc.Am.A, 1999, 21 (1): 229-244.
    [70] Gisele, W., and Ronald, P., Simulation of enhanced backscatter by a phase screen, J. Opt.Soc.Am.A, 1990, 7 (4): 578-584.
    [71] Gracjeva, M., Gurvich, A., and Kallistrova, M., Dispersion of strong atmospheric fluctuations in the intensity of laser radition Radiophys, 1970, 13: 40-42.
    [72] R.S.Lawrence, and J.W.Strohbehn, A survey of clear-air propagation effects relevant to optical communications, Proc. IEEE, 1970, 58 (11): 1523-1545.
    [73] Andrews, L.C., Philips, R.L., Al-Halash,M.A., Theory of optical scintillation J. Opt.Soc.Am.A, 1999, 16 (6): 1417-1429.
    [74]郭立新,骆志敏,吴振森,湍流大气中的光波闪烁研究,西安电子科技大学学报(自然科学版), 2001, 28 (3): 273-277.
    [75] Gou, L.X., Luo, Z.M.,., and Wu, Z.S., A study of optical scintillation in the atmospheric turbulence by using modification of the Rytov method, Chin of Electronic, 2001, 10 (3): 300-304.
    [76] Andrews, L.C., Phillips, R.L., Hopen, C.Y., et al., Theory of optical scintillation: Gaussian-beam wave model, Wave Random Media, 2001, 11 (2): 271-291.
    [77] Consortini, A., Cochetti, F., Churnside, J.H., et al., Inner scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation, J. Opt.Soc.Am.A, 1993, 10 (11): 2354-2362.
    [78] Hopen, C.Y., and Andrews, L.C., Optical scintillation of a Gaussian beam in moderate-to-strong irradiance fluctuations, SPIE, 1999, 3706: 142-150.
    [79] Fante, R.L., Inner-scale size effect on the scintillations of light in the turbulent atmosphere, J. Opt.Soc.Am.A, 1983, 73 (3): 277-281.
    [80] Miller, W.B., Ricklin, J.C., and Andrews, L.C., Effect of the refractive index spectral model on the irradiance variance of a Gaussian beam, J. Opt.Soc.Am.A, 1994, 11 (12): 2719-2726.
    [81]骆志敏,湍流大气中的波传播及散射问题研究,西安电子科技大学, 2002.
    [82]杨瑞科,对流层地-空路径电磁(光)波传播的若干问题研究,西安电子科技大学, 2003.
    [83]吴振森,韦宏艳,杨瑞科等,关于斜程湍流大气中激光波束闪烁指数研究的综述,大气与环境光学学报, 2007, 2 (5): 321-330.
    [84] Kiasaleh, K., Scintillation index of a multiwavelength beam in turbulent atmosphere Kamran Kiasaleh, J. Opt.Soc.Am.A, 2004, 21 (8): 1452-1454.
    [85] Phillips, R.L., and Andrews, L.C., Measured statistics of laser-light scattering in atmospheric turbulence, J.Opt.Soc.Am.A, 1981, 71 (12): 1440-1445.
    [86] Consortini, A., and cochetti, E., Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation, J. Opt.Soc.Am.A, 1993, 10 (11): 2354-2362.
    [87] M.Flatte, S., wang, G.-Y., and Martin, J., Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment, J. Opt.Soc.Am.A, 1993, 10 (11): 2363-2370.
    [88] Charles, A.D., and Walters, D.L., Atmospheric inner-scale effects on normalized irradiance variance, App.Opt., 1994, 33 (36): 8406-8411.
    [89] M.S.Belen’kii, Effect of the inner-scale of turbelence on the atmospheric modulation transfer function, J. Opt.Soc.Am.A, 1996, 13 (5): 1078-1082.
    [90] Whitman, A.M., and Beran, M.J., Beam spread of laser light proagting in a random medium, J.Opt.Soc.Am.A, 1970, 60 (12): 1595-1602.
    [91] Poirier, J.L., Beam spreading in a turbulent medium, J.Opt.Soc.Am.A, 1972, 62 (7): 893-898.
    [92] Andrews, L.C., and Phillips, R.L., Laser Beam Propagation Through Random Media, Bellingham: SPIE OPTICAL ENGING PRESS, 1998.
    [93]范承玉,高斯束状波斜程传输的大气湍流效应,量子电子学报, 1999, 16 (6): 519-525.
    [94] Wei, H.Y., and Wu, Z.S., Study on the effect of laser beam propagation on the slantpath through atmospheric turbulence, J.of Electromagn. Waves and Appl, 2008, 22: 787-802.
    [95]韦宏艳,吴振森,大气湍流中激光波束斜程传输的展宽、漂移特性,电波传播学报, 2008, 23 (4): 611-615.
    [96]张德良,姜文汉,水平均匀大气中多束照明光在目标上形成光斑的漂移,光电工程, 1998, 25 (12): 1-6.
    [97]饶瑞中,王世鹏,湍流大气中激光束漂移的实验研究,中国激光, 2000, 27 (11): 1011-1015.
    [98] Sasiela, R.J., and Shelton, J.D., Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism, J. Opt.Soc.Am.A, 1993, 10 (6): 646-660.
    [99]高宠,于思源,马晶等,强湍流区的光束漂移,强激光与粒子束, 2006, 18 (10): 1597-1601.
    [100] Bennett, H.E., Specular reflectance of aluminized ground glass and the height distribution of surface irregularities, J. Opt.Soc.Am.A, 1963, 53 (7): 1389-1393.
    [101] Porfens, J.O., Relation between the hight distribution of a rough surface an d the reflection at normal incidence, J. Opt.Soc.Am.A, 1963, 53 (7): 1394-1399.
    [102] Greemwood, D.P., The scattering from curved rough surfaces of an EM wave transmitted through a turbulent medium, IEEE IEEE Trans. Antennas Propag., 1972, AP-20: 19.
    [103] Sparague, R.A., Surface roughness measurement using white light speckle, App.Opt., 1972, 11: 2811.
    [104] Kurtz,C.N., Transmitted characteristics of suface and the design of nearly band-limited binary diffusers, J. Opt.Soc.Am.A, 1972, 62 (8): 982-989.
    [105] Goldfischer, L.I., Autocorrelation Function and Power Spectral Density of Laser-Produced Speckle Patterns, J. Opt.Soc.Am.A, 1965, 55 (3): 247-253.
    [106] Miller, M.G., Schneiderman, A.M., and Kellen, P.F., Second-order statistics of Laser speckle pattern, J. Opt.Soc.Am.A, 1975, 65 (7): 779-785.
    [107] Deitz, P.H., Image information by means of speckle-pattern processing J. Opt.Soc.Am.A, 1975, 65 (3): 279-285.
    [108] Estes, D.E., and Boucher, R., Temporal and spatial intensity-interferometer imaging through a random medium, J. Opt.Soc.Am.A, 1975, 65 (7): 760-768.
    [109] Lahart, M.J., and Maratay, A.S., Image speckle patterns of weak diffusers, J. Opt.Soc.Am.A, 1975, 65 (7): 769-778.
    [110] Goodman, J.W., Dependence of image speckle contrast on surgace roughness, Opt.Commun, 1975, 14: 324-327.
    [111] Lee, M.H., Holmes, J.F., and kerr,J.R., statistics of speckle propagation through the turbulent atmosphere, J. Opt.Soc.Am.A, 1976, 66 (11): 1164-1172.
    [112] Holmes,J.F., Myung, H.L., and kerr,J.R., Effect of the log-amplitude covariance function on the statistics of speckle propagation through the turbulent atmosphere, J. Opt.Soc.Am.A, 1979, 70 (4): 355-360.
    [113] Bugnolo, D.S., Laser radar cross section of objects immersed in the Earth's atmosphere: theory and numerical results for a disk, SPIE, 1986, 663: 65-69.
    [114] Tateiba, M.. An approach to scalar wave scattering from a conducting target surrounded by random media. Proc. Proceeding of the Int. Symposium on Antenna and Propagation, ISAP Japan1989 85-88.
    [115]王贞松,在随机介质中传播的反射波,第四届全国电波传播学术讨论会, 1991: 196-200.
    [116] Andrews, L.C., and Miller, W.B., The mutual coherence function and the backscatter amplification effect for a reflected Gaussian-beam wave in atmospheric turbulence, Wave in Random Media, 1995, 5: 167-182.
    [117] Andrews, L.C., Coherence properties of a reflected optical wave in atmospheric turbulence, J. Opt.Soc.Am.A, 1996, 13 (4): 851-861.
    [118] Andrews, L.C., Phillips, R.L., and Miller, W.B., Mutual coherence function for a double-passage retroreflected atmospheric turbulence, App.Opt., 1997, 36 (3): 698-708.
    [119]张逸新,地物散射和大气湍流导致的激光闪烁统计,光学学报, 1996, 16 (5): 666-670.
    [120]张逸新,湍流大气中激光回波到达角起伏,激光技术, 1997, 21 (1): 25-29.
    [121]郭立新,湍流大气中含镜反射点漫射目标的电磁散射,电波传播学报, 2000, 15 (1): 7-12.
    [122]郭立新,湍流大气中漫射目标光散射特性研究,电子与信息学报, 2001, 23 (4): 388-395.
    [123]刘明娜,王小强, and吴毅,湍流大气中激光聚焦光束后向散射的数值模拟,强激光与粒子束, 2005, 17 (12): 1799-1802.
    [124]韦宏艳,吴振森,彭辉,斜程大气湍流中漫射目标的散射特性,物理学报, 2008, 57 (10): 6666-6672.
    [125]张逸新,光波在随机介质中的传播和成像,北京:国防工业出版社, 2002.
    [126] ITU-R, On propagation data and prediction methods required for the desigh of space-to-earth and earth-to-space optical communication systems, RadioCommunication Study Group Meeting,Budapest, 2001
    [127] Wheelon.A.D, Electronmagnetic scintilllationⅠ. Geometrical Optics. 1th ed., Cambridge: Cambridge University press, 2001.
    [128] Coulman.C.E, Vernin.J, and Coqueugniot.y, Out scale of turbulence approprite to modeling refractive-index structure profiles, App. Opt., 1988, 27: 155-160.
    [129] Miller, W.B., Ricklin, J.C., and Andrews, L.C., Log-amplitude variance and wave structure function: a new perspective for Gaussian beams, J. Opt.Soc.Am.A, 1993, 4 (10): 661-672.
    [130] Grodshteyn, I.S., and Ryzhik, I.M., Table of integrals, series, and and products, New York: ACADEMIC PRESS, INC, 1980.
    [131] Ishimaru, A., Laser beam propagation in the atmosphere, New York: Springer, 1978.
    [132] Watson, P.A., Prediction of attenuation on satellite-earth links in the European region, IEE Proceeding, 1987, 134 (6): 583-596.
    [133] Kozu, T., Rain attenuation ratios on 30/20- and 14/12-GHz satellite-to-earth paths, Radio Science, 1988, 23 (3): 409-418.
    [134] W.P.Brouwn, and JR., Second monment of a wave propagating in a rando medium, J. Opt.Soc.Am.A, 1970, 61 (8): 1051-1059.
    [135]许正文,电离层对卫星信号传播及其性能影响的研究,西安电子科技大学, 2005.
    [136]马淑英,电离层中的电波闪烁,电波与天线, 1984, 3: 87-151.
    [137] Tatarskii, V.I., Wave propagation in a turbulent medium, New York: McGraw-Hill, 1961.
    [138] Cynthia, Y.Y., Aarons, J.M., and Fredrick, T., Phase fluctuations in moderate to strong turbulence, SPIE, 2003, 4976: 141-148.
    [139] Fabrizio, C., Microwave attenuation measurements in satellite-ground links: the potential of spectral analysis for water vapor profiles retrieval, IEEE Transactions on Geoscience and Remote Sensing, 2001, 39: 645-654.
    [140] Gurvich, A., Four-point field coherence function in a turbulent medium, Opt. Acta., 1979, 26: 543-553.
    [141] Flatté, S.M., Bernstein, D.R., and Dashen, R., Intensity moments by path integral techniques for wave propagation through random media, with application to sound in the ocean, Phys. Fluids, 1983, 26: 1701-1713.
    [142] Tatarskii, V.I.I., A, and Zavorotny, V.U., Wave Propagation in Random Media (Scintillation), Bellingham, WA: SPIE Press and Bristol: IOP Publishing, 1993.
    [143] Fante, R.L., Some physical insights into beam propagation in strong turbulence, Radio Sci., 1980, 15: 757-762.
    [144] Lee, S.Y., Liu, C.H., and Yeh, K.C., Waves in random continuum described by path intergrals New York, 1981.
    [145] Ishimaru, A., Kuga, Y., Liu, J., et al., Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz, Radio Sci., 1999, 34: 257-268.
    [146] Davies, K., Ionospheric Radio, London: Peter Peregrinus, 1990.
    [147]朱太平,王椿年, 4GHz卫星电视信号低纬电离层闪烁特性,电波科学学报, 1994, 9 (1): 83-86.
    [148] Booker, H.G., The use of radio stars to study irregular refraction of radio waves in the ionosphere, Proc. IRE, 1958, 46: 298-314.
    [149]张东和,萧佐,利用GPS计算TEC的方法及其对电离层扰动的观测,地球物理学报, 2000, 43 (4): 451-458.
    [150] Rino, C.L., and Fremouw, E.J., The angle dependence of singly scattered wavefields, J. Atmos. Terr. Phys, 1977, 39: 859-868.
    [151]吴振森,骆志敏,郭立新,湍流大气中光波闪烁的斜程问题研究, 2002, 17 (3): 254-268.
    [152]骆志敏,吴振森,郭立新,考虑内尺度效应时光波闪烁的斜程传输研究, 2002, 29 (4): 455-460.
    [153] Yang.R.K, Wu, Z.S, and Zhang.P.R, International Journal of Infrared and Millimeter Waves, 2004, 25
    [154] Yang.R.K, Sun.X.H, and Wu, Z.S, Analysis of inner-scale effect on atmosphere scintillatin for infrared laser beam propagation on earth-space paths, International Journal of Infrared and Millimeter Waves 2005, 26 (3): 467-481.
    [155] Miller, W.B., Ricklin, J.C., and Andrew.L.C., Scintillation of initially convergent Gaussian beams in the vicinity of the geometric focus, App. Opt., 1995, 34: 7066-7073.
    [156] Ricklin, J.C., Miller, W.B., and Andrew.L.C., Effective beam parameters and the turbulent beam waist for intially convergent Gaussian beam App. Opt., 1995, 34: 7059-7065.
    [157] Young.C.Y., and Andrew.L.C., Effects of a modified spectral model on the spatial coherence of a laser beam Wave in Random Media, 1994, 4: 385-397.
    [158] Sasiela, R.J., Electromagnetic wave propagation in turbulence, New York: Springer-Verlag, 1994.
    [159]宋正方,应用大气光学基础,北京:气象出版社, 1990.
    [160] ITU-R. Propagation data required for the design of Earth-space systems operating between 20 THz and 375 THz. Proc. ITU-R Recommendations, Geneva2005 1621.
    [161]崔索民,吴振森,波束入射时大气湍流中漫射目标的散射,电波科学学报, 1993, 8 (4): 22-28.
    [162] Wang, T.I., Clifford, S.F., and Ochs, G.R., Wind and refractive-turbulence sensing using crossed lase beams, App.Opt., 1974, 13: 2602.
    [163] Clifford, S.F., and Yura, H.T., Equivalence of two theories of strong optical scintillation, J. Opt.Soc.Am.A, 1974, 64: 1641-1644.
    [164] Lutomirski, R.F., and Warren, R.E., Atmospheric distortions in a retro-reflected laser signal, App.Opt., 1975, 14: 840-846.
    [165] Clntyre, C.M.M., Kerr, J.R., and Lee, M.H., Enhanced variance of irradiance from target glint, Appl.Opt., 1979, 18 (19): 3211-3212.
    [166]Andrews, L.C., Single-pass and double-pass propagation through complex paraxial optical systems J. Opt.Soc.Am.A, 1995, 12: 137-150.
    [167] Banakh.V.A, and Mironov.V.L, LIDR in a turbulent atmosphere, Dedham,MA: Artech House, 1987.
    [168] Belen'kii, M.S., Effect of residual turbulent scintillation and a remotesensing technique for simultaneous determination of turbulence and scattering parameters of the atmosphere, J.Opt.Soc.Am.A, 1994, 11: 1150-1158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700