基于张量方法研究部分相干光和部分偏振光在大气湍流中的传输特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光场的相干、偏振和光谱特性是现代光学的重要研究内容,对现代光学理论和激光技术的发展具有重要意义。本论文采用简便有效的张量方法避免了大量耗时的积分运算,从部分相干光在大气湍流中的传输理论出发,深入研究了部分相干光和部分偏振的电磁光束在大气湍流中的传输特性和光谱变化。具体研究内容与成果归纳如下:
     (1)基于空间-频率域中的交叉谱密度函数传输理论,研究了扭曲的各向异性的高斯-谢尔模型(TAGSM)光束和椭圆高斯光束(EGB)在大气湍流中传输时的频谱移动特性。通过数值计算和理论分析表明:不满足“定标律”的光束在大气湍流中传输时的频谱移动是由于光束的相干诱导和大气湍流共同作用引起的;通过调控光源的扭曲参数、相干特性以及光斑大小,可以调制光束在大气湍流种传输时的频谱移动大小以及光谱跃迁位置。所得结论对光谱实验和高精度光谱测量具有理论参考价值。部分相干光通过大气湍流中的光谱变化可望在光互连、光通信等方面获得应用。
     从工程应用角度考虑,研究了TAGSM光束的光束参数、离轴TAGSM光束的离轴参数在大气湍流中传输时的变换规律以及具有各种对称形状的部分相干的空心光束(DHB)在大气湍流中的传输变换特性。
     (2)推导了相干合成和非相干合成的径向分布的部分相干平顶光束(FTB)阵列在大气湍流中的传输时的张量形式的解析表达式,并研究了阵列光束的光强和复相干度模的分布。研究表明:大气湍流和光束阵列的单元光束之间的相关性是影响光束阵列传输特性的两大因素;由于大气湍流的影响,阵列光束远距离传输后退化为高斯光束,复相干度模的分布起始于高斯分布,终止于高斯分布,空间相干性会随着传输距离的增大变差。所得结论对部分空间相干光阵列的大气传输相关工作有实际应用意义。
     (3)基于各向异性的随机电磁高斯-谢尔模型(EGSM)光束,提出了具有扭曲特性的各向异性的随机电磁高斯-谢尔模型(ETAGSM)光束的数学-物理模型,基于部分相干偏振统一理论研究了有无光阑限制的随机电磁光束在大气湍流中传输的光谱特性。研究发现:近距离传输时,主要受到光阑衍射的作用,远距离处主要受大气湍流的作用;通过调制光阑孔径参数、光源扭曲参数以及光源相干性参数等可以调制ETAGSM光束在大气湍流中传输时的光谱特性的分布情况。
     本文通过理论分析所得的研究成果对探索和研究部分相干光和部分偏振光在激光空间技术中的应用具有重要的理论及应用价值。研究激光在大气湍流中传输特性,在激光雷达、激光制导、激光通讯等应用领域具有重要意义。
The coherence, polarization and spectral properties of light field are main topics in the laser optics, which play an important role in development of the modern optics theory and laser technologies. Starting from the propagation law of partially coherent light, I present in this dissertation the research results on the propagation and the spectral characteristics of the partially coherent light and the partially coherent partially polarized light propagating in turbulent atmosphere by use of convenient and effective tensor method. The main works of this paper are lasted as follows:
     (1)Start from the propagation law of the cross-spectral density function in the space-frequency domain, the spectral changes of the partially coherent twist anisotropic Gaussian-Schell model(TAGSM) beam and elliptical Gaussian beam(EGB) propagating in turbulent atmosphere are investigated. Nummerical calculations and analysis shows that: the spectral changes of pratially coherent beam which dosen't follow "the scalling low" propagating in turbulent atmosphere are induced by the coherence of the source beam and the diffraction of the turbulent atmosphere; we can modulate the value of the relative spectral changes and the spectral switch through modulating the degree of twist property, the coherence, the spot width of partially coherent beams. The results obtained in this paper would be useful for spectral experiments and the high-precision spectral measurements. The spectral changes of partially coherent beams propagating in turbulent atmosphere would be hopefully applied to the optical interconnection and optical communication, etc.
     Takeing into the consideration of the technology application, the propagation properties of the beams parameters of TAGSM beam, the decentered parameter of decentered TAGSM beam and partially coherent dark hollow beams(DHBs) propagating in turbulent atmosphere have been investigated.
     (2)Analytical expressions of the radial partially coherent flat-topped beam (FTB) array propagating in turbulent atmosphere are derived firstly, where the correlated superposition and uncorrelated superposition are considered. Detailed numerical calculations illustrate the distribution of normalized average intensity and the the modulus of the complex degree of coherence of radial FTB array propagating in turbulent atmosphere. It is shown that the atmospheric turbulence and the correlation of each beamlet are two main factors which affect the propagation of array beams. Because of the influence of the turbulent atmosphere, the normalized average intensity distribution of the correlated and uncorrelated case propagating in turbulent atmosphere tends to Gaussian shape;the distribution of the modulus of the complex degree of coherence of radial FTB array beam starts and ends as Gaussian distribution which resembles the average intensity profile. The spatial coherence of correlated or uncorrelated radial FTB array becomes worse with increasing z in turbulent atmosphere. The results obtained would be useful for partially coherent array beam propagating in atmosphere.
     (3) Based on the isotropic electromagnetic Gaussian-Schell model beam, we introduced the mathematical physics model of stochastic electromagnetic twist anisotropic Gaussian-Schell model (ETAGSM) beam by use of the tensor method. Based on the unified theory of coherence and polariziation, the analytical propagation expressions for the cross-spectral density matrix of ETAGSM beams with aperture or not propagating in turbulent atmosphere are derived, which permits us to study the spectral properties of ETAGSM beams with aperture or not. Detailed numerical caculations show that:the affection of the aperture on the spectral properties of the stochastic ETAGSM beam is obvious in the near field; while in the far field, the atmospheric turbulence plays an important role; we can modulate the distribution the spectral degree of polarization of stochastic ETAGSM beams propagating in turbulent atmosphere through modulating the parameters of aperture, the twist property and the coherence of the source beams.
     The results obtained in this paper would be useful for studying the propagation of partially coherent beams and partially polarized beam propagating through turbulent atmosphere. This thesis emphasizes on the research of the theory and of the laser beam propagation in the atmosphere, which experiments are of great importance in the areas of laser radar, laser missile-guidance and communication etc.
引文
[1]R Bariheau, M. Rioux. Influence of speckle on laser range finders. Appl. Opt.,1991, 30:2873-2878.
    [2]P Ostlund, A. T. Friberg. Radiometry and far-zone polarization for partially coherent electromagnetic planar sources. Opt. Commun,2001,197:1-8.
    [3]J. A. Fleck,J. R Morris, M. D. Feit. Time-Dependent propagation of high energy laser beams through the atmosphere. Appl. Phys.,1976,10:129-160.
    [4]C. Higgs, H. T. Barclay Multibeam laser illuminator approach. SPIE,1999,3706: 206-215.
    [5]J. Wu. Propagation of a Gaussian-Schell beam through turbulent media. J. Mod. Opt., 1990,37:671-684.
    [6]R J. C. Ricklin, F. M. Davidson. Atmospheric turbulence erects on a partially coherent Gaussian beam:implications for free-space laser communication. J. Opt. Soc. Am. A, 2002,19:1794-1802.
    [7]Cz Gbur, E. Wolf. Spreading of partially coherent beams in random media. J. Opt. Soc.Am.A,2002,5:1118-1126.
    [8]M. Salem, T. Shirai, A. Dogariu, E. Wolf. Long-distance propagation of partially coherent beams through atmospheric turbulence. Opt. Commun.,2003,216:261-263.
    [9]DFV. James. Change of polarization of light beams on propagation in free space. J OptSoc Am A,1994,11(5):1641-1643.
    [10]Gori. F,Santarsiero M,Borghi R, et al. Use of the van Cittert-ernike theorem for partially polarized sources.Opt Lett,2000,25 (17):1291-1293.
    [11]杨华勇;吕海宝;胡永明;孟洲;入射光的偏振和强度对分光镜透/反比的影响,光电子·激光,2003,14(4):345-348.
    [12]L. Mandel, E. Wolf. Optical coherence and Quantum Optics[M].New York: Cambridge University Press,1995.
    [13]Gori. F. Matrix Treatment for Partially Polarized,Partially coherent Beams, Opt.Lett.,1998,23(4):241-243.
    [14]Gori. F, Santarsiero. M, Vicalvi S, et al. Beam Coherence-Polarization Matrix, Pure and Appl. Opt.,1998,7:941-951.
    [15]Martinez-Herrero R, Mejias P M, Movilla J M, Spatial Characterization of General Partially Polarized Beams, Opt.Lett.,1997,22(4):206-208.
    [16]GP. Agraval, E. Wolf. Proagation-Induced Polarization Changes in Partially coherent Optical Beams[J], J.Opt.Soc.Am.A,2000,17(11):2019-2023.
    [17]E. Wolf. Invariance of spectrum of light on propagation. Phys. Rev. Lett.1986,56: 1370-1372.
    [18]G. M. Morris, D. Faklis. Effects of source correlation on the spectrum of light [J]. Opt. Commun.1987,62:5-11.
    [19]D. Faklis, G. M. Morris. Spectral shifts produced by source correlations [J]. Opt. Lett. 1988,13:4-6.
    [20]C. Palma, G. Cincotti, et al.. Spectral shift of a Gaussian Schell-model beam beyond a thin lens [J].IEEE J. Quantum Electron.1998,34:378-383.
    [21]C. Palma, G. Cincotti. Spectral shifts of a partially coherent field after passing through a lens. Opt.Lett.1997,22:671-672.
    [22]H.C. Kandpal, A. Wasan, J.S Vaishya. Spectroscopy of partially coherent fields at geometrical-image plane and Fourier transform plane of a lens. Opt. Commun.1998, 149:1-7.
    [23]E. Wolf. Redshifts and blueshifts of spectral lines caused by source correlation. Opt. Commun.1987,62:12-16.
    [24]F. Gori, G. Guattari, et al.. Observation of optical redshifts and blueshifts produced by source correlations [J]. Opt. Commun.1988,67:1-4.
    [25]E. Wolf. Correlation-induced Doppler-like frequency shifts of spectral lines. Phys. Rev. Lett.1989,63:2220-2223.
    [26]H.C. Kandpal, J.S. Vaishya, K.C. Joshi. Simple experimental arrangement for observing spectral shifts due to source correlation. Phys. Rev A 1987,41:4541-4542.
    [27]M.F. Bocko, D.H. Douglass, R.S. Knox. Observation of frequency shifts of spectral lines due to source correlations. Phys. Rev. Lett.1987,58:2649-2651.
    [28]Z. Dacic, E. Wolf. Changes in the spectrum of partially coherent light propagating in free space. J.Opt. Soc. Am. A 1988,5:1118-1126.
    [29]H.C. Kandpal, J.S. Vaishya, K.C. Joshi. Wolf shift and its application in spectroradiometry [J]. Opt.Commun.1989,73:169-172.
    [30]E. Wolf, D.F.V. James. Correlation-induced spectral changes [J]. Rep. Prog. Phys. 1996,59:771-818.
    [31]Y. Cai, Q. Lin. Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space. Opt Commun 2002,204:17-23.
    [32]D.F.V. James, E. Wolf. Some new aspects of Young's interference experiment [J]. Phys. Lett. A 1991,157:6-10.
    [33]M. Santarsiero, F. Gori. Spectral changes in a Young's interference pattern. Phys. Lett. A 1992,167:123-128.
    [34]S. Vicalvi, S.G Schirripa, et al.. Experimental determination of the size of a source from spectral measurements. Opt. Commun.1996,130:241-244.
    [35]S.A. Ponomarenko, E. Wolf. Coherence properties of light in Young's interference pattern formed with partially coherent light. Opt. Commun.1999,170:1-8
    [36]H.C. Kandpal, J.S. Vaishya. Experimental study of coherence properties of light fields in the region of superposition in Young's interference experiment. Opt. Commun. 2000,186:15-20.
    [37]J. Pu, H. Zhang, Nemoto S. Spectral shifts and spectral switches of partially coherent light passing through an aperture. Opt. Commun.1999,162:57-63.
    [38]B. Lu, L. Pan, Spectral switching of Gaussian-Schell model beams passing through an aperture lens, IEEE J. Quantum Electron 2002,38:340-344.
    [39]J.T. Foley. The effect of an aperture on the spectrum of partially coherent light. Opt. Commun.1990,75:347-352.
    [40]J.T. Foley. The effect of an aperture on the spectrum of partially coherent light. J. Opt. Soc.Am.A1991,8:1099-1105.
    [41]A. Wasan, H.C. Kandpal, D.S. Mehta, J.S. Vaishya, K.C. Joshi. Correlation-induced spectral changes on passing partially coherent light through an annular aperture. Opt. Commun.1995,121:89-94.
    [42]D.F.V. James, E. Wolf. Determination of the degree of coherence of light from spectroscopic measurements. Opt. Commun.1997,145:1-4.
    [43]Z. Lin, Z. Gu. Angular spectrum redistribution from a real image of a light as a secondary source.Opt. Lett.2001,26:663-665
    [44]Tatarskii V I, Wave propagation in a turbulent medium. McGraw-Hill [M], New York 1961
    [45]Chernov L A., Wave propagation in a random medium. McGrav-Hill[M], New York 1960。
    [46]A.Ishimaru. Wave propagation and scattering in random media[M], Academic Press. New York.1978.
    [47]V I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (trans. for NOAAby Israel Program for Scientific Translations, Jerusalem,1971)
    [48]V L. Mironov and V V Nosov, On the theory of spatially limited light beam displacements in a randomly inhomogeneous medium, J. Opt. Soc. Am.1977, G7,1073-1080
    [49]VI. Klyatskin and A.I. Kon, On the displacement of spatially bounded light beams in a turbulent medium in the Markovian-random-process approximation, Radiophys. Quantum. Electron.1972,15,1056-1061.
    [50]R.P. Feynman.The theory of positrons, Phys. Rev.1949 76:749-759.
    [51]R.P.Feynman, Space-Time Approach to Quantum Electrodynamics, Phys.Rev. 1949,76,769-789.
    [52]S. M. Flatte and J.S. Gerber, Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence, J. Opt. Soc. Am. A 17,2000,1092-1097.
    [53]R.J.Hill, Theory of saturation of optical scintillation by stronb turbulence:plane-wave variance and covariance and spherical-wave covariance, J. Opt. Soc. Am.1982,72, 212-222.
    [54]R. J. Hill and S. F. Clifford, Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra, J. Opt. Soc. Am.1981,71,675-686.
    [55]R. Simon, ECG.Sudarshan, Mukunda N. Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants. Phys Rev A,1985,31(4): 2419-2434.
    [56]R. Simon, N. Mukunda. Twisted Gaussian Schell-model beams. Opt Soc Am A, 1993,10(1):95-109.
    [57]R. Simon, N. Mukunda. Optical phase space, Wigner representation, and invariant quality parameters. Opt. Soc. Am. A,2000,17(12):2440-2463.
    [58]D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, "Twisted Gaussian Schell-model beams:a superposition model," J. Mod. Opt.1994,41,1391-1399.
    [59]Ari T. Friberg, Eero Tervonen, and Jari Turunen, "Interpretation and experimental demonstration of twisted Gaussian Schell-model beams," J. Opt. Soc. Am. A.1994,11, 1818-1826.
    [60]Q. Lin, Y. Cai.,Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model, beams. Opt. Lett.2002,27,216-218.
    [61]Y. Cai and S. He. Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express,2006,14:1353-1367.
    [62]Y. Cai and L. Hu, Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system. Opt. Lett,2006, 31:685-687.
    [63]Y. Cai and S. He. Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere. Appl. Opt. Lett.2006,89(4):041117
    [64]Y. Cai, D. Ge, Propagation of various dark hollow beams through an apertured paraxial ABCD optical system. Phys. Lett. A,2006,357:72-80.
    [65]Y. Cai and S. He, Propagation of hollow Gaussian beams through apertured paraxial optical systems. J.Opt.Soc.Am.A.2006,23(6):1410-1418.
    [66]Y. Yuan, Y. Cai, J. Qu, Halil T. Eyyuboglu, and Yahya Baykal. Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent Atmosphere. Opt. Express,2009,17(13):11130-11139.
    [67]X. Li and X. Ji, Angular spread and directionality of the Hermite-Gaussian array beam propagating through atmospheric turbulence. Appl. Opt.2009, 48(22):4338-4347.
    [68]X. Lu, Y. Cai. Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system. Opt. Commun.2007,269: 39-46.
    [69]Y. Gao, B. Zhu, D. Liu, and Z. Lin. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.Opt.Express,2009,17(15):12573-12766.
    [70]J. Yin, W. Gao, and Y. Zhu, Generation of dark hollow beams and their applications, in Progress in Optics,44, E. Wolf, ed., (North-Holland, Amsterdam,2003,119-204.
    [71]D. Deng, H. Yu, S. Xu, J. Shao and Z. Fan. Propagation and polarization properties of hollow Gaussian beams in uniaxial crystals, Opt. Commun.2008,281:202-209.
    [72]Y. Cai and L Zhang, Propagation of a hollow Gaussian beam through a paraxial misaligned optical system, Opt. Commun..2006,265:607-615.
    [73]M. Alavinejad, B. Ghafary, and F. D. Kashani, Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere, Opt. Lasers. Eng.2008.46:1-5.
    [74]H. T. Eyyuboglu, Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence, Optic. Laser. Tech.2008,40:156-166.
    [75]X. Lu, Y. Cai, Partially coherent circular and elliptical dark hollow beams and their paraxial propagations, Phys. Lett. A.2007,369:157-166.
    [76]Y. Cai and L. Zhang, Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties, J. Opt. Soc. Am. B.2006, 23:1398-1407.
    [77]Y. Cai, Propagation of various flat-topped beams in a turbulent atmosphere, J. Opt. A, Pure Appl. Opt.2006,8:537-545.
    [78]Y. Cai, Q. Lin, Partially coherent flat-topped multi-Gaussian-Schell-model beam and its propagation, Opt. Commun.2004,239:33-41.
    [79]S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, Solid state laser unstable resonators with tapered reflectivity mirrors:the super-Gaussian approach, IEEE J. Quantum Electron.1992,24,1172-1177.
    [80]A. Parent, M. Morin, and P. Lavigne, Propagation of super-Gaussian field distributions, Opt. Quantum Electron.1992,24:1071-1079.
    [81]F. Gori, Flattened Gaussian beams, Opt. Commun..l994,107:335-341.
    [82]Y. Li, New expressions for flat-topped light beams, Opt. Commun.2002,206: 225-234.
    [83]Y. Li, Flat-topped beam with non-circular cross-sections, J. Mod. Opt.2003, 50:1957-1966.
    [84]H. T. Eyyubog lu, C. Arpali, and Y. Baykal, Flat topped beams and their characteristics in turbulent media, Opt.Express.2006,14:4196-4207.
    [85]H Li, Y. Cai, Analytical formula for a circular flattened Gaussian beam propagating through a misaligned paraxial ABCD optical system, Physics Letters A.2006, 360:394-399.
    [86]M. Alavinejad, B. Ghafary, and D. Razzaghi, Spectral changes of partially coherent flat-topped beam in turbulent atmosphere, Opt. Commun.2008,281:2173-2178.
    [87]M. Alavinejad and B. Ghafary, Turbulence-induced degradation properties of partially coherent flat-topped beams, Opt. Lasers Eng.2008,46:357-362.
    [88]Y. Dan, B. Zhang, and P. Pan, Propagation of partially coherent flat-topped beams through a turbulent atmosphere, J. Opt. Soc. Am. A.2008,25(9):2223-2231.
    [89]Y. Dan, B. Zhang, Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere, Opt. Express.2008,16(20):15563-15575.
    [90]X. Ji, E. Zhang, and B. Lu, Superimposed partially coherent beams propagating through atmospheric turbulence, J. Opt. Soc. Am. B.2008,25:825-833.
    [91]H. T. Eyyuboglu, Y. Baykal, and Y. Cai, Scintillations of laser array beams, Appl. Phys. B.2008,91:265-271.
    [92]B. He, Q. Lou, W. Wang, J. Zhou, Y. Zheng, J. Dong, Y. Wei, W. Chen, Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator, Appl. Phys.Lett.2008,92:251115.
    [93]Y. Cai, Y. Chen, ht Eyyubog lu, and Y. Baykal, Propagation of laser array beams in a turbulent atmosphere, Appl. Phys. B.2007,88:467-475.
    [94]Y. Cai, Y. Zhang, Scintillation properties of a rectangular dark hollow beam, Mod. Opt.2009,56 (4):502-507.
    [95]P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere, Appl. Opt,2009,8 (28):5251-5258.
    [96]P. Zhou, Z. Liu, X. Xu and X. Chu, Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere, Opt. Lasers. Eng.2009, 47:1254-1258.
    [97]P. Zhou, Z. Liu, X. Xu and X. Chu, Propagation of coherently combined flattened laser beam array in turbulent atmosphere, Optic. Laser. Tech.2009,41:403-407.
    [98]张逸新,朱拓.Propagation of Helmholtz-Gauss beams in weak turbulent atmosphere[J]. Chinese Optics Letters,2008,(02).
    [99]张逸新,弱大气湍流中Mathieu-Gauss束的传输,激光与红外,2008,38(2):112-114.
    [100]钱仙妹,朱文越,饶瑞中.非均匀湍流路径光传播数值模拟中相位屏间Cn2的选取,2008(10),1856-1860.
    [101]AlanM.Whitman,M arkJ.Beran,T wo-scales olutionf orat mospherics cintillation from a po intso urce[J],J.Opt.Soc.Am.A,l 993,5 (5):735-737.
    [102]Beran M J, Whitman A M, Scintillation index calculation using an altitude depend en tstr uctureco nstant[J],Appl.Opt,1988,27 (11):2178-2182.
    [103]郭立新,骆志敏,吴振森, 大气湍流中光波传播强度起伏的特性研究, 西安电子科技大学学报[J],2001,28(3):273-277.
    [104]骆志敏,吴振森,郭立新,赵振维.考虑内尺度效应时光波闪烁的斜程传输研究.西安电子科技大学学报.2002,29(4):455-460.
    [105]杨瑞科,吴振森,赵振维.大气湍流中高斯波束地-空传播闪烁研究.电波科学学报.2005,20(3):306-310.
    [106]吴振森,骆志敏,郭立新,赵振维. 大气湍流中光波闪烁的斜程问题研究.电波科学学报.2002,17(3):254-257.
    [107]王华,王向朝,曾爱军,杨坤.大气湍流对斜程传输准单色高斯-谢尔光束时间相干性的影响.光学学报.2007,27(9):1548-1552.
    [108]王华,王向朝,曾爱军,杨坤.大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响.物理学报.2008,57(1):634-638.
    [109]Pu J, Nemoto S. Spectral shifts and spectral in diffraction of partially coherent light by a circular aperture. IEEE J. Quant. Electron.2000,36:1407-1411。
    [110]Wang W J, Wolf E propagation of Gaussian Schell-model beams in dispersive and absorbing media. J M Optics 1992,39(10):2007-2021
    [111]陈宏平,林强等介质折射率对部分相干光透射谱的影响杭州大学学报(自然科学版)1995,22(4):365-371
    [112]X. Ji, En. Zhang, B. Lu, Changes in the spectrum of Gaussian Schell-model beams propagating through turbulent atmosphere. Opt. Commun.2006,259,1-6.
    [113]Y. Cai, Q. Lin. Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space. Opt Commun 2002,204:17-23.
    [114]Pu. J, Zhang H, Nemoto S. Spectral shifts and spectral switches of partially coherent light passing through an aperture. Opt Commun 1999,162:57-63.
    [115]LU B., Pan, L. Spectral switching of Gaussian-Schell model beams passing through an aperture lens, IEEE J. Quantum Electron 2002,38:340-344.
    [116]Pu J, Zhang H, Nemoto S. Spectral shifts and spectral switches of twist Gaussian Schell-model beams passing through an aperture. Opt. Commun.2007; 274(11):100-104.
    [117]Gbur G, Visser T D, Wolf E. Anomalous behavior of spectra near phase singularities of focused waves. Phys Rev Lett 2002; 88(1):013901,1-4.
    [118]Popescu G, Dogariu A. Spectral anomalies at wave-front dislocations. Phys. Rev. Lett 2002; 88:183902,1-4.
    [119]Yadav BK, Kandpal HC. Experimental observation of spectral changes of partially coherent light in Young's experiment. J. Opt. A:Pure Appl. Opt 2006; 8:72-76.
    [120]Eyyuboglu HT, Baykal Y. Reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere. Opt. Express 2004; 12:4659-4674.
    [121]Baykal Y. Log-amplitude and phase fluctuations of higher-order annular laser beams in a turbulent medium. J. Opt. Soc. Am. A 2005; 22:672-679.
    [122]Eyyuboglu HT, Cai Y and Baykal Y. Spectral shifts of general beams in turbulent media. J. Opt. A:Pure Appl. Opt 2008; 10:015005,1-6.
    [123]Pu J, Zhang H, Nemoto S, Spectral shifts and spectral switches of twist Gaussian Schell-model beams passing through an aperture. Opt. Commun.(2007), doi: 10.1016/j. optcom.2007.01.070.
    [124]Y. Cai,Spectral shift of partially coherent twisted anisotropic Gaussian-Schell model beams focused by a thin lens [J]. J. Opt. A:Pure Appl. Opt.2003,5:397-401.
    [125]Agrawal G P. Propagation-induced polarization changes in partially coherent optical beams[J]. J Opt S oc Am A,2000,17 (11):2019-2023.
    [126]Gori F, Santarsiero M, Borghi G, et al. Use of t he van Cittert2Zernike t heorem for partially polarized sources. Opt. L ett.2000,25(17):1291-1293.
    [127]Roychowdhury H, Ponomarenko S A, Wolf E. Change in t he polarization of partially coherent elect romagnetic beams propagating t hrough the turbulent atmosphere. J. Mod.Opt.,2005,52 (11):1611-1618.
    [128]Salem M, Korotkova O, Dogariu A, et al. Polarization changes in partially coherent elect romagnetic beams propagating t hrough turbulent atmosphere. Waves in Random Media,2004,14 (4):513-523.
    [129]Korot kova O, Salem M, Wolf E. The far-zone behavior of t he degree of polarization of partially coherent beams propagating through atmospheric [J]. Opt Commun,2004,233 (426):225-230.
    [130]E. Wolf. Unified t heory of coherence and polarization of random elect romagnetic beams. Phys Lett A,2003,312 (526):263-267.
    [131]X.Ji, En. Zhang, B. Lu,Changes in the spectrum and polarization of polychromatic partially coherent electromagnetic beams in the turbulent atmosphere, Opt. Commun. 2007,275:292-300.
    [132]石丽芬,蒲继雄,陈子阳,部分相干电磁光束在湍流介质中传输的偏振变化,强激光与粒子束,2006,18(8):1271-1276。
    [133]J. Pu, O. Korotkova, E. Wolf, Invariance and noninvariance of the spectrl of stochastic electromagnetic beams on propagation,Opt. Lett 2006,31:2097-2099.
    [134]W. Gao, Changes of polarization of light beams on propagation through tissue, Opt. Commun.2006,260:749-754.
    [135]H. Roychowdhury, G.P. Agrawal, E. Wolf, Changes in the spectrum,in the spectral degree of polarization and in the spectral degree of choherence of a partially coherent beam propagating through a gradient-index fiber J. Opt. Soc. Am. A 2006,23: 940-948.
    [136]O. Korotkova, Scintillation index of a stochastic electromagnetic beam propagating in random media, Opt. Commun 2008; 281:2342-2348.
    [137]X. Du, D.Zhao,Propagation of random electromagnetic beams through axially nonsymmetrical optical systems, Opt. Commun 2008,281:2711-2715.
    [138]L. Pan. Far-field behavior of partially polarized Gaussian Schell-model beams diff racted t hrough an aperture. ActaOptica Sinica,2006,26 (8):1250-1255
    [139]X. Du, D. Zhao, and O. Korotkova, Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere, Opt. Express,2007,15:16909-16915.
    [140]O. Korotkova and G. Gbur, Propagation of beams with any spectral, coherence and polarization properties in turbulent atmosphere, Proc. of SPIE.2007,6457, 64570J1-64570J12.
    [141]H. T. Eyyuboglu, Y. Baykal, and Y. Cai, Complex degree of coherence for partially coherent general beams in atmospheric turbulence, J. Opt. Soc. Am. A.2007.24:2891-2901.
    [142]X. Chu, Y. Ni, and G. Zhou, Variations of on-axis average intensity along the propagation path in turbulent atmosphere for plane wave excitation limited by a circular aperture, Opt. Commun.2006,267:32-35.
    [143]X. Chu, Y. Ni, and G. Zhou, Propagation analysis of flattened circular Gaussian beams with a circular aperture in turbulent atmosphere, Opt. Commun.2007. 274:274-280.
    [144]X. Chu, Y. Ni, and G. Zhou,"Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere, Appl. Phys. B:Lasers Opt.2007. 87:547-552.
    [145]X. Du, D. Zhao, Statistical properties of correlated radial stochastic electromagnetic array beams on propagation, Opt. Commun.2009,282:1993-1997.
    [146]D. Zhao and Y. Zhu, Generalized formulas for stochastic electromagnetic beams on inverse propagation through nonsymmetrical optical systems. Opt.Lett,2009, 34(7):884-886.
    [147]Y. Zhu, D.Zhao, and X.Du. Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere. Opt. Express,2009,16(22):18437-18442.
    [148]X.Du and D. Zhao. Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere. Opt. Express,2009,17(6):4257-4262.
    [149]Y. Zhu and D. Zhao. Propagation of a random electromagnetic beam through a misaligned optical system in turbulent atmosphere.J.Opt.Soc.Am.A.2008, 25(10):2408-2414.
    [150]X. Du, D. Zhao. Propagation characteristics of stochastic electromagnetic array beams. Appl Phys B.2008,93:901-905.
    [151]X. Du, D. Zhao. Propagation of random electromagnetic beams through axially nonsymmetrical optical systems.Opti.Commun.2008,281:2711-2715.
    [152]D. Zhao, E. Wolf.Light beams whose degree of polarization does not change on propagation.Opt.Commun.2008,281:3067-3070.
    [153]X. Ji and Zh. Pu. Effects of atmospheric turbulence on the polarization of apertured electromagnetic Gaussian Schell-model beams. J. Opt. A:Pure Appl. Opt.2009,11 045701 (7pp).
    [154]J. Li,, B. Lu,Sh. Zhu. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence. Opt. Express, 2009,17(14):11399-11408
    [155]Y. Gu, Olga Korotkova, and Greg Gbur, Scintillation of nonuniformly polarized beams in atmospheric turbulence. Optics Letters.2009,34(15):2261-2263.
    [156]J.Shu, Z. Chen, J. Pu. Polarization Changes of Partially Coherent Electromagnetic Vortex Beams Propagating in Turbulent Atmosphere.Chin. Phys Lett.2009, 26(2):024207_l-024207_4
    [157]X. Chu, Y. Ni, and G. Zhou, Propagation analysis of flattened circular Gaussian beams with a circular aperture in turbulent atmosphere, Opt. Commun.2007,274: 274-280.
    [158]R. Dorn, S. Quabis, and G Leuchs, Sharper Focus for a radially polarized light beam, Phys. Rev. Lett.2003,91:233901.
    [159]K. S. Young worth and T. G. Brown, Focusing of high numerical aperture cylindrical-vector beams, Opt.Express.2000,7:77-87.
    [160]Q. Zhan, Trapping metallic Rayleigh particles with radial polarization, Opt. Express. 2004,12:3377-3382.
    [161]B. Sick, B. Hecht, and L. Novotny, Orientational imaging of single molecules by annular illumination,Phys. Rev. Lett.2000,85:4482-4485.
    [162]L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett.86,5251-5254 (2001).
    [163]A.A.Tovar,Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams, J.Opt. Soc. Am. A.1998,15:2705-2711.
    [164]R. Oron, S. Blit, N. Davidson, and A. A. Friesem, The formation of laser beams with pure azimuthal orradial polarization, Appl. Phys. Lett.2000,77:3322-3324.
    [165]J. Li, K. I. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, Generation of radially polarized mode in Yb fiber laser by using a dual conical prism, Opt. Lett.2006,31: 2969-2971.
    [166]E. Y. S. Yew and C. J. R. Sheppard, Tight focusing of radially polarized Gaussian and Bessel-Gauss beams, Opt. Lett.2007,32:3417-3419.
    [167]D. Deng, Nonparaxial propagation of radially polarized light beams, J. Opt. Soc. Am. B.2006,23:1228-1234.
    [168]Y. Cai, Q.Lin, H. T.Eyyuboglu, Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Opt.Express.2008,. 16(11):7665-7673.
    [169]O. Korotkova, T. D. Visser, E. Wolf, Polarization changes of stochastic beams on propagation, Opt. Commun.2008,281:515-520.
    [170]Xiao, X.; Ji, X.L.; Lu, B.D. The influence of turbulence on propagation properties of partially coherent sinh-Gaussian beams and their beam quality in the far field, Optic. Laser. Tech.2008,40:129-136.
    [171]X. Pu, X. Y. Liu, and S. Nemoto, Partially coherent bottle beams, Opt. Commun.2005,252:7-11.
    [172]H.Lin, J.P, Propagation properties of partially coherent radially polarized beam in a turbulent atmosphere, J.Mod.Opt,2009,56(11):1296-1303.
    [173]T. Shiral and E.Wolf, Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization. Opt. Commun. 2007,272:289-292.
    [174]吴健,乐时晓.随机介质中的光传播理论.成都电讯土程学院出版社.1985.
    [175]胡非.湍流、间歇性与大气边界层.北京:科学出版社,1995.
    [176]肖黎明,马成胜,翁宁泉,张骏,曾宗泳.对流湍流发生池的设计与性能.量子电子学报.1999,16(1):86-89.
    [177]曾宗泳,张骏,翁宁泉,对流湍流池光学湍流的空间和时间结构分析.光学学报.1999,19(12):1630-1633.
    [178]袁任民,曾宗泳,肖黎明,马成胜.湍流池湍流特征研究.力学学报,2000.32(3):257-262.
    [179]袁任民,曾宗泳,马成,肖黎明.大气对流边界层光传输的实验室模拟.光学学报.2001.21(5):518-521.
    [180]袁任民,孙鉴泞,姚克亚,曾宗泳,蒋维媚.大气边界层的室内模拟研究-夹卷层温度场结构分析.大气科学,2002,26(6):773-780.
    [181]袁纵横,张文涛.大气湍流对激光信号传输影响的分析研究.激光与红外,2006,4:272-274
    [182]袁仁民,曾宗泳,肖黎明,马成胜,翁宁泉,吴晓庆.不同方法测量折射率结构常数的比较.光学学报,2000,20(6):755-761.
    [183]饶瑞中.光在大气湍流中的传播.安徽:安徽科学技术出版社,2005.
    [184]Andrews LC, Phillips Ronald L. Laser beam propagation through random media(M), Bellingham:SPIE Optical Engineering Press,1998.123-192.
    [185]Martin J M, Flatte S M. Intensit images and statistics from numerical simulation of wave propagation in 3-D random media[J], Appl. Opt.,1998,27(11):2111-2116.
    [186]Martin J M, et al. Simulation of point-source scintillation through three-dimensional random media[J],J. Opt. Soc. Am,1990,7(5):838-847.
    [187]Flatte S M, Wang Guangyu, Martin Jan. Irradiance variance of optical waves through atmosphere turbulence by mumerical simulation and comparision with experiment[J],J.Opt.Soc.Am,1993,10(11):2363-2370.
    [188]Huang Yibo, Wang Yingjian, Rao Ruizhong,et al. Numerical calculation of the scalling parameter for adaptive optics compensation for thermal blooming effects[J],Acta Optica Sinica,2002,22(12):1461-1464.
    [189]钱仙妹,朱文越,饶瑞中,地空激光大气斜程传输湍流效应的数值模拟分析,红外与激光工程,2008,37(5):787-792.
    [190]钱仙妹,饶瑞中,高斯光束大气闪烁空间分布的数值模拟研究,量子电子学报,2006,23(3):320-324.
    [191]刘明娜,王小强,吴毅等,大气湍流中激光聚焦光束后向散射的数值模拟,强激光与粒子束,2005,17(12):1799-1802.
    [192]A.T. Friberg, J. Turunen. Imaging of Gaussian Schell-model sources. J. Opt. Soc. Am. A1988,5:713-719.
    [193]N.B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Mechanical eduivalence of spin and orbital angular momentum of light:an optical spanner, Opt. Lett. 1997,22:52-54.
    [194]J. M.Goodman, Introduction to Fourier Optics, (Hardcover,1968).
    [195]J. J. Wen and M. A. Breazeale, A diffraction beam field expressed as the snperposition of Ganssian beams, J. Acoust. Soc. Arner,1998,83:1752-1756.
    [196]M. Bom, E. Wolf. Principles of Optics,7th (expanded). Cambridge University Press,Cambridge,1999.
    [197]E. Wolf, E. Collett. Partially coherent sources which produce the same far-field intensity distribution as a laser. Opt. Commun.1978,25:293-296.
    [198]M. P. MacDonald, L. Patcrson, J. Arlt; W. Sibbctt, K. Dholakia, Revolving intcrerence patterns for the rotation of optically trapped particles, Opt. Commun.2002, 201:21-28.
    [199]H. Ito, K. Sakaki, W. Jhe and M. Ohtsu, Atomic funnel with evanescent light, Phys. Rev. A.1997,56:712-718.
    [200]T. Kuga; Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, Novel optical trap of atoms with a doughnut beam, Phys. Rev. Lett.1997,78:4713-4716.
    [201]E. Wolf, E. Collett. Partially coherent sources which produce the same far-field intensity distribution as a laser. Opt. Commun.1978,25:293-296.
    [202]T. Shirai, E. Wolf. Spatial coherence properties of the far.field of a class of partially coherent which have the same directionality as a fully coherent laser beam. Opt. Commun.,2002.204:25-31.
    [203]E. Tervonen, A.T. Friberg, J. Turunen. Gaussian Schell-model beams generated with synthetic acousto-optic holograms. J. Opt. Soc. Am. A 1992,9:796-803.
    [204]A.T. Friberg, R.J. Sodol. Propagation parameters of Gaussian Schell-model beams. Opt. Commun.1982,41:383-387.
    [205]Ding Guilin, Yuan Xiao, LU Baida. Propagation characteristic of the ten-parameter family of partially coherent general anisotropic Gaussian Schell-model (AGSM) beams passing through first-order optical systems. J. Mod. Opt.,2000,47 (9):1483-1499。
    [206]蔡阳健,林强,“部分相干光的张量ABCD定律”,光学学报,2002,22(5):542-547.
    [207]K.T.Gahagan,an dG.A.Swartzlander,Jr.Optical vortex trapping of particles.Opt. Lett,1996,21(11):827-829.
    [208]Taro Hasegana,Tadao Shimizu,Frequency-doubled Hermite-Gaussian beam and the mode conversion to the Laguerre-Gaussian beam,Optics Comm.1999,160:103-108.
    [209]G.A.Turubule,D.A.Robertsovb,G,M.Smith.The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate[J],Opt.Comm.1996,127:183-188.
    [210]J.Courtial,M J.Padget. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser models, Opt. Commun.1999,159:13-18.
    [211]X. Lu, Y. Cai, Partially coherent circular and elliptical dark hollow beams and their paraxial propagations, Phys. Lett. A.2007,369:157-166.
    [212]A. Parent, M. Morin, P. Lavigne, Propagation of super-Gaussian field dis trib ut ions,Opt.&Quant Electron.,1992,24:1071-1079.
    [213]F. Gori, Flattened gaussian beams,Opt.Commun,1994,107:335-341.
    [214]V. Bagini, R. Borghi, F. Gori, A M. Pacileo, Santarsiero M, Ambrosini D,Schirripa Spagnolo G. Propagation of axially symmetric flattened Gaussian beams. O pt.Soc.Am.A,1996,13:1385-1394
    [215]B.Lu,, S.Luo, B.Zhang, Propagation of flatened Gaussian beams with rectangular symmetry passing through a paraxial opticalA BCD system with and without apertuer.Opt.Commun.,1999,164:1-6.
    [216]罗时荣,吕百达,张彬,平顶高斯光束的传输特性.光学学报,2000,20(9):1213-1217.
    [217]A.A Tovar, Propagation of flat-topped multi-Gaussian laser beams, J. Opt. So c. A m.A,2001,18:1897-1904.
    [218]Y. Li, Light beams with flat-topped profiles,O pt.L et.2002,27(12):1007-1009.
    [219]Y. Li, Propagation and focusing of Gaussian beams generated by Gaussian mirror resonators.J.Opt.So c.Am.A,2002,19 (9):1832-1843.
    [220]B. Lu, Sh. Luo,X. Ji, A further comparative study of flatened Gaussian beams and super-Gaussian beams.J.M od.O pt.,2001,48(2):371-377.
    [221]Y. Cai, Q. Lin, Partially coherent flat-topped multi-Gaussian-Schell-model beam and its propagation, Opt. Commun.2004,239:33-41.
    [222]D. Ge, Y. Cai, and Q. Lin, Partially coherent flat-topped beam and its propagation Appl. Opt.2004,43(24):4732-4738.
    [223]E. Wolf. Coherence and radiometry. J. Opt. Soc. Am.1978,68:6-17.
    [224]E. Wolf, E. Collett. Partially coherent sources which produce the same far-field intensity distribution as a laser. Opt. Commun.1978,25:293-296.
    [225]J.T. Foley, M.S. Zubairy. The directional of Gaussian-Schell-model beams. Opt. Commun.1978,26:297-300.
    [226]A.T. Friberg, T.D. Visser, E. Wolf. A reciprocity inequality for Gaussian Schell-model beams and some of its consequences Opt. Lett.2000,25:366-368.
    [227]F. Gori, M. Santarsiero, G. Piquero et al.. Partially polarized Gaussian Schell-model beams. J Opt. A:Pure Appl. Opt.2001,3:1-9.
    [228]Y. Cai, Q. Lin, Y. Baykal, and H. T. Eyyuboglu, Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere, Opt. Commun..2007,278:157-167.
    [229]J. C. Leader. Atmospheric propagation of partially coherent radiation, J. Opt. Soc. Am.1978,68:175-185.
    [230]S. C. H. Wang, M. A. Plonus, C. F. Ouyang, Irradiance scintillation of a partially coherent source in extremely strong turbulence, Applied Optics,1979,18:1133-1135.
    [231]M. S. Belen'kif and V. L. Mironov, Coherence of the field of a laser beam in a turbulent atmosphere, Sov. J. Quantum Electron.1980,10(5):595-597.
    [232]J. Wu and A. D. Boardman, Coherence length of a Gaussian-Schell model beam and atmospheric turbulence, J. Mod. Opt.1991,38:1355-1363.
    [233]A. S. Ponomarenko, J. J. Greffet, E. Wolf, The diffusion of partially coherent beams in turbulent media, Opt. Commun.2002,208:1-8.
    [234]Aristide Dogariu, Stefan Amarande, Propagation of partially coherent beams: turbulence-induced degradation. Opt. Lett.2003,28,(1):10-12.
    [235]Tomohiro Shirai. Aristide Dogariu, Emil Wolf, Mode analysis of spreading of partially coherent beams propagation through atmospheric turbulence, J. Opt. Soc. Am. A,2003,20:1094-1102.
    [236]Riccardo Borghi and Giorgiio Guattari,Evaluation of the spatial coherence of alight beam through transverse intensity measurements, J. Opt. Soc. Am. A,2003,20: 1763-1770.
    [237]A. Dogariu, S. Amarande, Opt.Lett.2003,28:10-16.
    [238]X. Tao, N. Zhou, B. Lu. Recurrence Propagation Equation of Hermite-Gaussian Beams Through a ParaxialOp tical ABCD System With Hard-Edge. Optik,2003,114 (3):113-118.
    [239]Y. Cai and D.Ge. Analytical formula for a decentered elliptical Gaussian beam propagating in a turbulent atmosphere. Opt. Commun.2007,271:509-516.
    [240]T. Shirai, A. Dogariu, and E. Wolf, Directionality of Gaussian Schell-model beamspropagating in atmospheric turbulence. Opt. Lett.2003,28:610-612.
    [241]H. T. Eyyuboglu and Y. Baykal,. Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere. Appl. Opt.2005,44:976-983.
    [242]Y. Cai, S. He. Average intensity and spreading of an elliptical Gaussian beam propagating in turbulent atmosphere. Opt. Lett.2006; 31(5):568-570.
    [243]Arnaud JA, Kogelnik H. Gaussian light beams with general astigmatism. Appl. Opt 1969; 8:1687-1693.
    [244]Alda J, Wang S and Bernabeu E. Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams. Opt. Commun 1991.80:350-352.
    [245]C. Zheng. Fractional Fourier transform for off-axis elliptical Gaussian beams. Opt. Commun 2006; 259:445-448.
    [246]Y. Cai, L. Zhang. Propagation of a decentered elliptical Gaussian beam through apertured aligned and misaligned paraxial optical systems. Appl. Opt 2006; 45:5758-5766.
    [247]Y. Cai, Y. Chen, HT. Eyyuboglu and Y. Baykal. Scintillation index of elliptical Gaussian beam in turbulent atmosphere. Opt. Lett.2007; 32:2405-2407.
    [248]Y. Cai, Q. Lin. Decentered elliptical Gaussian beam. Appl. Opt 2002; 41(2):4336-4340.
    [249]Y. Cai, Q. Lin. Fractional Fourier transform for elliptical Gaussian beam in spatial-frequecny domain. Optik 2003; 114(10):433-436.
    [250]Q. Lin, S. Wang, J. Alda and E. Bernabeu. Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law. Optik Stuttgart 1990; 85:67-72.
    [251]Y. Baykal.The correlation and structure functions of Hermite-sinusoidal-Gaussian laser beams in a turbulent atmosphere. J. Opt. Soc. Am. A 2004; 21:1290-1299.
    [252]C. Zheng, Fractional Fourier transform for partially coherent off-axis Gaussian Schell-model beam, J. Opt. Soc. Am. A.2006,23:2161-2165.
    [253]J. C. Ricklin and F. M. Davidson, Atmospheric optical communication with a Gaussian Schell beam, J. Opt. Soc. Am. A.2003,20:856-866.
    [254]X. Ji, X. Chen, S. Chen, X. Li, and B. Lu, Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams, J. Opt. Soc. Am. A,2007,24(11):3554-3563.
    [255]H. Wang, X. Wang, A. Zeng and W. Lu, Changes in the coherence of quasi-monochromatic electromagnetic Gaussian Schell-model beams propagating through turbulent atmosphere, Opt.Commun.2007,276:218-221.
    [256]O. Korotkova, L. C. Andrews, R. L. Phillips, A Model for a Partially Coherent Gaussian Beam in Atmospheric Turbulence with Application in Lasercom, Opt. Eng. 2004,43:330-341.
    [257]H. Roychowdhury and E.Wolf, Invariance of Spectrum of Light Generated by a Class of Quasi-homogeneous Sources on Propagation through Turbulence, Opt. Commun.2004,841:11-15.
    [258]E. Wolf, Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation, Opt. Lett.2003,28:1078-1080.
    [259]H. Roychowdhury and E. Wolf, Determination of the electric cross-spectral density matrix of a random electromagnetic beam, Opt. Commun..2003,226:57-60.
    [260]Y. Cai, Q. Lin and D. Ge, Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media, J. Opt. Soc. Am. A.2002,19.2036-2042.
    [261]D.Ge, Y. Cai and Q. Lin, Propagation of partially polarized Gaussian Schell-model beams in dispersive and absorbing media, Opt. Commun..2004,229:93-98.
    [262]S.A.Collins, Jr., Lens-System Diffraction Integral Written in Terms of Matrix Optics, J. Opt. Soc. Am.1970,60:1168-1177.
    [263]D. Ding, X. Liu. Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture [J]. J. Opt. Soc. Am. A,1999,16(6):1286-1293.
    [264]H. Wang, X.Li, Propagation properties of a partially polarized electromagnetic twist anisotropic Gaussian Schell-model beam in turbulent atmosphere, Optik, Doi:10.1016/j.ijleo.2009.01.028.
    [265]X. Pu, X. Y. Liu, and S. Nemoto, Partially coherent bottle beams, Opt. Commun.2005,252:7-11.
    [266]J. X. Pu, S. Nemoto, and X. Y. Liu, Beam shaping of focused partially coherent beams by use of spatial coherence effect, Appl. Opt.2004,43:5281-5286.
    [267]X. Ji and G. Ji, Effect of turbulence on the beam quality of apertured partially coherent beams, J. Opt. Soc. Am. A.2008,25:1246-1252.
    [268]X. Chu, Propagation of a Cosh-Gaussian beam through an optical system in turbulent atmosphere, Opt. Express 2007,15:7613-7618.
    [269]ITU-R Document 3J/31-E, On propagation data and prediction methods required for the design of space-to-earth and earth-to-space optical communication systems, Presented at the adio-Communication Study Group meeting, Budapest,2001.
    [270]X. Chu, Z.Liu, and Y. Wu, Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path, J. Opt. Soc. Am. A.2008,25(1):74-79.
    [271]ITU-R.Propagation data required for the design of Earth-space systems operating between 20 THz and 375 THz.Proc.ITU-R Recommendations,Geneva2005 1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700