NF-κB反应性d2EGFP报告系统的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核因子-κB(NF-κB)是一类重要的核转录激活因子,它的过度激活是多种疾病发生发展的关键环节。以NF-κB为靶点,筛选、研制其拮抗药物是目前十分活跃的研究领域之一。
     建立灵敏、可靠地监测NF-κB的活性和判定其活化状态程度的方法,是准确抑制NF-κB的过度活化,进行评价NF-κB拮抗药物效果以及研究NF-κB相关信号转导途径所必需的前提条件。通常应用测定报告基因转录表达的方法来反映和监测转录因子及其顺式作用元件的功能。常用的报告基因系统有Cat、Luc、GUS、LacZ、SEAP等,然而这些系统存在一个共同的缺陷,即它们都是酶类报告基因,都需要相应的底物和辅助因子的参与才能够间接监测报告分子,因此检测步骤较繁,实验重复性欠佳,更重要的是不能原位直接观察报告分子的动态表达情况;而正是这一缺陷,对药物筛选鉴定的研究工作来说,其影响往往是致命的。
     绿色荧光蛋白(GFP)基因是目前唯一的蛋白类新型体内分析报告基因。GFP无种属依赖性、不需外源性底物和辅助因子参与、不需设内对照、无毒性、经紫外和蓝光激发产生可量化的绿色荧光,因而具有直观原位、实时全程、分析简单的特征。但野生型GFP及增强型GFP等因半衰期长,稳定性强,对反映一过性转录表达调控的变化不甚理想。新近研制的不稳定型EGFP(d2EGFP),因其半衰期短,蓄积性低,较之EGFP更能灵敏动态反映转录因子及其顺式元件的作用效果的改变,故应用d2EGFP来研究顺反式因子的作用关系,可以一定程度上克服上述报告基因的缺憾。
     以d2EGFP作为报告分子来反映、监测NF-κB活性的研究尚处于起始阶段,构建带有d2EGFP、哺乳动物细胞筛选标记新霉素抗性基因和SV40基本启动子的载体,进而建立可诱导表达d2EGFP报告细胞株的研究尚未
    
    见文献报道。因此本研究拟在含新霉素抗性基因的载体上,以dZEGFP为
    报告基因建立较理想的NF-KB反应性报告系统,进行特异、灵敏、精确地
    反映和监测NFKB的活性,为判定NF七B的活化程度及其相关信号转导
    途径,并进一步为后续研制的新型、高效、专一的NF-KB a抗药物进行高
    重复、大批量筛选鉴定工作,奠定体外、体内实验的基础。
     本研究为获得较理想的NF-KB反应性dZEGFP报告系统,对人工改造
    与天然存在的顺式元件h基序的特异性、增强性以及dZEGFP与EGFP的
    稳定性、灵敏性等进行了对照比较研究,并获得了NF-KB反应性dZEGFP
    报告细胞株。继之在筛选鉴定NF-KB桔抗药物的研究中进行实际应用,进
    一步证明了本系统的效用性。
     本研究主要结果与结论如下:
     1.采用 NFKB的顺式元件KB X 4作为增强于、SV40为基础启动子或
    含有。B X 2的 HIV启动子,分别与报道基因 dZEGFP和 EGFP构建在含有
    新霉素抗性基因的载体上,准确构建了三种NF-KB反应性GFP报告基因
    载体。
     2.三种报告基因载体分别与p65载体瞬时共转染HEK293细胞,通过
    p65蛋白诱导调控三种报告基因载体dZEGFP和EGFP表达的时间效应和
    剂量效应,进行功能比较分析,证明了p4。B刁ZEGFP载体是较理想的
    NF-KB反应性GFP报告基因系统。
     3.将p4。B河 载体稳定转染HEK293细胞,经G418筛选出22
    株克隆细胞,建立了NF-KB反应性dZEGFP报告细胞株HEK-dZEGFP。
     4.应用 NF-KB TFD与 p65瞬时共转染 HEK-dZEGFP,1、Zms/L NF。B
    TFD组明显桔抗了p65蛋白诱导的dZEGFP表达。证明NF-h反应性
    dZEGFP报告系统具有实效性。
NF-icB(nuclear factor kappa B) is an important transactivator, whose overactivation is a key point to cause and develop many kinds of diseases. So, it is one of very important and prospective study to detect and screen antagonistic drugs of NF-KB as a target.
    How to report and detect NF-KB activation and it's activated degree reliably and sensitively is the prerequisite for inhibiting NF-kB overactivation accurately , evaluating it's antagonistic drugs and researching signal transduction pathway related to NF-icB .Usually reporter gene system is applied to report the interaction between transcription factor and it's cis-element by detecting the reporter gene expression, such as Cat, Luc, GUS, LacZ, SEAP, etc. However, those enzyme reporter gene systems have a common defect that the reporter molecules are detected by certain substrate and cofactor to react, so the course is complicated and the results are not easy to be repeated and even the reporter molecules cannot be observed dynamically in cells. Consequently, screening drugs is fatal due to the defects.
    Green fluorescent protein (GFP) gene which is unique, new protein reporter gene analysed in vivo has more advantageous characters than enzyme reporter gene analysed in vitro, such as direct observation in situ, real time and whole kinetics, simple analysis , and so on. But wild type GFP and EGFP are not ideal to detect the transient changes of gene expression regulation. Hopefully, the new product-d2EGFP (destabilized EGFP) is more sensitive to detect the changes of gene transcription regulation than EGFP due to the fact
    
    
    that d2EGFP has a short fluorescence half-life of 2h, and low accumalation in cells . This characters give important hints on d2EGFP is an ideal reporter gene to study and detect NF-KB activation accurately. However, this study is in the early stage. The vector containing neor gene and SV40 minimal promoter and the stable transfected clonal cell lines have been not reported until now.
    In order to establish an ideal NF-KB activation-responsive d2EGFP reporter system, this experiment compared the-.enhancer ability of the man-made KB motif with that of the wild one, the fluorescent stability and sensibility of d2EGFP with that of EGFP , cultured clonal cell lines, and applied in screening drugs.
    The main results and conclusions were as follows:
    1. Three types of NF-KB-responsive GFP reporter gene vectors were constructed successfully with NF-KB cis-element KBx4 as enhancer , SV40 as mininal promoter or HIV with KBx2 motif as promoter ,d2EGFP and EGFP as reporter gene ,neor gene as selective gene.
    2. The time and dose effects of d2EGFP and EGFP induced by p65 protein were analysed after p65 vector transient contransfected with the three vectors respectively. It was demonstrated that p4KB-d2EGFP was the best NF-KB-responsive GFP reporter gene system among the three vectors.
    3. Stablely transfected p4KB-d2EGFP into HEK 293 cells and harvested positive clonal cell lines by G418 selection . The NF-KB-responsive d2EGFP clonal cell line named HEK-d2EGFP was established successfully.
    4. With the contransfection of NF-KB TFD(transcription factor decoy) and p65 vector into HEK-d2EGFP cells , the results showed the groups of 1 mg/L and 2mg/L TFD could antagonized the d2EGFP expression induced by p65 protein significantly. It was demonstrated that NF-KB-responsive d2EGFP reporter system had the specificity and actual effect.
    5. It was suggested that the NF-KB-responsive d2EGFP reporter systems
    
    could report and detect NF-KB activation and screen it's antagonistic drugs in certain degree, and might lay the model foundations for studying relevant transcription factors' activation.
引文
1. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-κB. Annu Rev Cell Biol, 1994;10:405-455
    2. Glazner GW, Mattson MP. Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp Neurol, 2000;161(2):442-452
    3. Sharma HW, Narayanan R. The NF-kappaB transcription factor in oncogenesis. Anticancer Res, 1996;16(2):589-596
    4. Tomita T, Takeuchi E, Tomita N, Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappaB oligodeoxynucleotides as a gene therapy. Arthritis Rheum, 1999;42(12):2532-2534
    5. Jacqueline W P, Michael L, David B. Oligonuleotide that binds nuclear factor NF-κB acts as a lymphoid-specific and inducible enhancer element. Pro Natl Acad Sci USA, 1988;85:1482-1486
    6. Shaw WV. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol, 1975;43:737-755.
    7. Pazzagli M, Devine JH, Peterson DO, et al. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal Biochem, 1992;204(2):315-323
    8. Feuillard J, Memet S, Goudeau B, et al. In vivo identification of lymphocyte subsets exhibiting transcriptionally active NF-kappaB/Rel complexes. Int Immunol, 2000;12(5):613-621
    9. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994;263(5148):802-805
    10. Li X Q, Zhao X N, et al. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 1998;273(52):34970-34975
    
    
    11.颜子颖,王海林译.精编分子生物学实验指南.第一版,北京科学出版社,1998.
    12.王承兴,李晓艳,曹亚,等.EB病毒潜伏膜蛋白1通过结合TRAFs调控NF-κB.生物化学与生物物理进展.2001;28(2):240-244
    13.金冬雁,黎孟枫译.分子克隆实验指南.第二版,科学出版社,2000.
    14.黄培堂,俞炜源,陈添弥译.PCR实验技术指南.第一版,科学技术出版社,1998.
    15.李永明,赵玉琪主编.实用分子生物学方法手册.第一版,科学出版社,1998.
    16.朱平主编.PCR基因扩增实验操作手册.中国科学技术出版社,1992.
    17.田丁等译.PCR技术—DNA扩增的原理及应用.第一版,北京医科大学、协和医科大学出版社,1991.
    18.卢圣栋主编.现代分子生物学实验技术.第一版,北京高等教育出版社,1992
    19. Kiss-Toth E, Guesdon FM, Wyllie DH, et al. A novel mammalian expression screen exploiting green fluorescent protein-based transcription detection in single cells. J Immunol Methods, 2000;239(1-2):125-13517.
    20.黄培堂等译.细胞实验指南.第一版,科学出版社,2001.
    21. Luisa M B, Amaya P K, et al. Identification of a functional NF-κB site in the platelet endothelial cell adhesion molecule-1 promoter. J Immunol, 2000;164(3):1372-1378
    22. Zhang Q Y, Tiersch T R, Cooper R K. Inducible expression of green fluorescent protein within channel catfish cells by a cecropin gene promoter. Gene, 1998;216:207-213
    23. Levenson V V, Transue E D E, Roninson I B. Internal ribosomal entry site-containing retroviral vectors with green fluorescent protein and drug resistance markers. Human Gene Therapy, 1998;9:1233-1236
    24. Steven J B, et al. Trends in Genetics, 1990;2:36
    
    
    25. Yamamoto Y, Gaynor R B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest, 2001;107(2):135-142
    26. Mattson M P, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest, 2001;107(3):247-254
    27. Tomita N, Morishita R, Lan H Y. In vivo administration of a nuclear transcription factor-kappaB decoys suppresses experimental crescentic glomerulonephritis. J Am Soc Nephrol, 2000;11(7):1244-1251
    28. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity, Annu Rev Immunol, 2000;18:621-663
    29. Latimer M, Ernst M K, Dunn L L, et al. The N-Terminal domain of IκB_α masks the nuclear location signal(s) of p50 and c-Rel homodimers. Mol Cell Bio, 1998;18:2640-2649
    30. Briskin M, et al.. Mol Cell Bio, 1990;10:422
    31. Paunesku T, Chang-liu C M, et al. Indentification of genes regulated by UV/salicylic acid. Int J Radiat Biol, 2000;76:189-198
    32. Hess D C, Howard E, Cheng C, et al. Hypertonic mannitol loading of NF-κB transcription factor decoys in human brain microvascular endothelial cells blocks upregulation of ICAM-1. Stroke, 2000;31:1179-1186
    33. Carmielli T, Garber N, Gilboa-Garber N. Proceedings: Synthesis of chloramphenicol acetyltransferase coded by bacteriophage-carried bacterial R factor DNA in extracts of human blood platelets. J Med Sci. 1975;11(11):1200.
    34. Jacqueline W P, Michael L, David B. Oligonuleotide that binds nuclear factor NF-κB acts as a lymphoid-specific and inducible enhancer element. Pro Natl Acad Sci USA, 1988;85:1482-1486
    35. Williams TM, Burlein JE, Ogden S, et al. Advantages of firefly luciferase as
    
    a reporter gene: application to the interleukin-2 gene promoter. Anal Biochem 1989;176(1):28-32
    36. Bueuerle P A, et al. The hormonal control regulation of geng transcription, Elsevier/North-Aollemal Biomedical Press, 1991;409-432
    37. Suthanthiran M, et al. Proc Natl Acad Sci USA 1990;87:3343
    38. Zabel, et al. J Biol Chem 1991;266:2527.
    39. Ollivier V, Party G C N, Cobb R R, et al. Elevated cyclic AMP inhibits NF-κB-mediated transcription in human monocytic cell and endothelial cells. J Biol Chem, 1996;271(34):20828-20835
    40. Indraccolo S, Roni V, Zamarchi R, et al. Expression from cell type-specific enhancer-modified retroviral vectors after transduction: influence of marker gene stability. Gene. 2002;283(1-2):199-208.
    41. Kamat A, Mendelson CR. Identification of the regulatory regions of the human aromatase P450 (CYP19) gene involved in placenta-specific expression. J Steroid Biochem Mol Biol 2001;79(1-5):173-80
    42.于丽莉,陈诗书.绿色荧光蛋白GFP在转化细胞和肿瘤细胞中的表达.上海第二医科大学学报,2000;20(5):408-411 Yu L L, Chen S S. Acta Universitatis medicinalis secondae Shanghai, 2000;20(5):408-411
    43. Massimo mallardo, Emilla Dragonetti, et al. An NF-κB site in the 5'-untranslated leader region of the human immunodeficiency virus type 1 enhances the viral expreesion in response to NF-κB-activating stimuli. J Bio Chem, 1996;271(34):20820-20827
    44. Andreatta C, Nahreini P, Hovland A R, et al, Use of short-lived green fluorescent protein for the detection of proteasome inhibition. Biotechniques, 2001;30(3):656-660
    45. Wahlers A, Schwieger M, Li Z, et al. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells. Gene Ther, 2001;8(6):477-486
    
    
    46.孙晗笑,陆大祥,刘飞鹏主编.转基因技术理论与应用.河南医科大学出版社,2000
    47. Koen Verhoef, Rogier W S, et al. Evolution pof the human immunodeficiency virus tyoe 1 long terminal repeat promoter by conversiom of an to NF-κB enhancer elemant into a GABP binding site. J viro, 1999;73(2):1331-1340
    48. Francesco G, Todd K, Amedea M, et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescent protein. Cancer Res, 1998;58:14-19
    49. Mexander N G, Bindu R, et al. Long-term, stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res commun, 1997;236:347-350
    50. Yin L, Hubbard A K, Giardina C. NF-κB regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem, 2000; 275(47):36671-36675
    51. Timothy R, Christine W, Alistair F, et al. Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immun, 2002;168:44-50
    52.张灵芝,汤健,唐朝枢.脂质体作为基因载体的研究进展.国外医学.分子生物学分册,1993;15(1):10-12
    53. Takeshi H, Hiroaki T, Yoshiyuki K, et al. Sequence-specific inhibition of a transcription factor by circular dumbbell DNA oligonucleotides. FEBS lett, 1999;461:136-1407
    54. Blackwell TS, Christman JW. Sepsis and cytokines: current status. Br J Anaesth, 1996;77(1):110-117
    55. Kupatt C, Habazettl H, Goedecke A, et al. Tumor necrosis factor-alpha
    
    contributes to ischemia- and reperfusion-induced endothelial activation in isolated hearts. Cirs. Res, 1999;4(4):392-400
    56. Mann M J, Whittemore A D, Donaldion M C, et at. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoys: the prevent single-center, randomized, controlled trail. The Lancet, 1999;354(9189):1493-1498
    57. Park Y G, Nesterova M, Agrawal S, et al. Dual blockade of cydic AMP response element-(CRE) and Ap-1-directed transcription by CRE-transcription factor decoy oligonucleotide. J Biol Chem, 1999;274(3):1573-1580

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700