薄壁结构流固耦合数值模拟及计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性动态流固耦合问题是目前学术界和工程界最具挑战性的研究内容之一。采用现代数值方法,深入研究结构振动对流场的影响以及非定常流场对结构的激振作用,对于避免流体诱发的共振从而提高结构的可靠性和安全性具有重要意义。本论文从理论角度,提出一种基于压力泊松方程的整体积分紧耦合算法和基于LES流体求解器的预估-校正同步迭代强耦合算法,给出了相关的数值算例,并通过与其它文献计算结果的比较,验证了该方法的有效性和准确性。论文共计六章,其主要研究内容及学术贡献如下:
     首先,构建了流体-结构耦合系统的流体动力学模块和三维固体非线性有限元动力分析模块。结合尺度相似模型和Smagorinsky模型,借鉴动态亚格子模型的构造方法,推导出亚格子动能ksgs满足的输运方程,发展了一种新的一方程混合动态亚格子应力模型。在该模型中,亚格子动能的平方根ksgs1/2作为混合模型中涡粘性部分的速度尺度,并在ksgs的输运方程中包含一些附加的尺度相似部分,较以往的混合模型有较大的提高,既能反映实际的湍流涡结构特征,又具有适当的湍动能耗散特性。有限体积法用来离散大涡模拟的控制方程,SIMPLEC算法实现压力和速度耦合变量的分离求解,TDMA解法用于求解大型离散代数方程组,构建基于LES的CFD求解器。通过2个数值算例考核表明,一方程混合动态亚格子模型不仅具有良好的捕捉湍流涡结构特征能力,而且具有良好的反映小尺度涡结构湍动能耗散的能力,采用的数值方法具有较好的计算收敛性和非定常流动描述能力,同时将数值计算结果与试验结果进行了对比分析,两者较吻合,证明本文建立的CFD求解器是可靠的。基于几何非线性有限元的基本思想,利用非线性的位移-应变几何关系和线弹性的材料本构关系,建立几何非线性的三维实体有限元动力分析模型,采用Newmark-β隐式时间积分格式离散时间项,离散后的代数方程组采用修正的Newton-Raphson迭代方法进行求解,构建CSD求解器。
     其次,建立了基于LES流体求解器的同步迭代强耦合算法。采用提高的弹簧光滑法来更新流体网格,选择满足动态网格几何守恒定律的流体时间积分方法,以消除额外的数值寄生振荡及计算不稳定性。将基于能量守恒的一致插值方法用于非一致界面离散网格的信息交换,以保持耦合系统的能量守恒,并有机地耦合上述的CFD、CSD和流场网格更新三大计算模块,同时在每个时间步内引入预估-校正子迭代程序,让流体与固体模块在时间上整体向前推进,实现同步迭代强耦合算法。采用该方法数值模拟了水轮机导水机构内活动导叶的水弹性振动特性,探讨了流体激振可能诱发的结构共振现象,得到许多具有实际工程价值的结论。
     再次,建立了基于压力泊松方程的整体积分紧耦合算法。采用非线性有限元增量法,引入耦合界面位移和应力协调条件,建立非线性动态流体-结构耦合整体有限元模型。通过预估-校正多步迭代格式,实现整体耦合系统的时间推进。在每一个时间步内,基于流体压力泊松方程,求解与流体控制方程一致的等价耦合动量方程直接得到耦合系统的解,而避免直接求解大型耦合系统方程有效地降低了耦合系统求解的自由度。最后采用该方法数值模拟了处于静止方柱尾迹涡结构内的柔性悬臂梁非线性大变形流固耦合振动问题,捕捉到了一些重要的涡激振动现象,得到与其它文献较一致的计算结果,证明该耦合方法的正确性。
     最后,对考虑动态流固耦合效应的流激振动问题进行试验研究
     刚性方柱放置在试验模型槽道正中央,弹性薄板的一端固定在方柱尾端,弹性薄板上、下端和另一端自由,在弹性板表面上布置一支LL-072-25A型压力传感器和一支DH-201型加速度传感器。上游方柱绕流形成周期性涡脱落,诱发下游弹性薄板的水弹性振动。采用两套独立运作的测试系统,即DH-5935N动态信号测试分析系统,测试流固耦合振动弹性板上代表点的压力和板的加速度,利用全三维的粒子测速仪PIV系统测试流场速度分布,两套独立运作的测试系统在时间上保持同步,既得到流场动态分布特性和弹性板近壁区涡结构演化过程,又同时得到结构涡激振动信息。对试验结果进行全面深入地分析,进一步验证和指导流固耦合数值模型。
Nonlinear dynamic fluid-structure interaction (FSI) is one of the most challenging research issues in academic and engineering fields. A study of the mutual influences between the structure vibration and the flow field by using the state-of-the-art numerical methods is of great significance to avoid the flow-induced resonance of a structure in fluid, and it is quite important to improve the reliability and safety of the structure designs. In this dissertation, a monolithicly coupled model based on the pressure Possion equation (PPE) and a closely coupled model based on the large eddy simulation (LES) solver are presented and verified by several numerical examples. The dissertation is generally outlined into 6 chapters. The main contributions are stated as following.
     Firstly, a fluid flow and a structure dynamics solvers are constructed, respectively. For the fluid numerical model in the FSI system, a dynamically mixed one-equation subgrid-scale (SGS) model is modeled on the scale-similarity model and Smagorinsky eddy-viscosity model. In the proposed SGS model, the square root of the SGS kinetic energy,(?), is used to obtain the velocity scale for the eddy-viscosity to be applied in the model. The modeled ksgs equation is derived and some of the additional scale-similarity parts are incorporated to compare the ksgs equation with the previous studies. It shows that the suggested model has the capability of capturing the details of the flow structures and the dissipation of the turbulent kinetic energy. Finite volume method (FVM) is used to be discrete of the LES governing equations. The SIMPIEC algorithm is applied to solve of the coupled equation of the velocity and pressure. Tri Diagonal Matrix Algorithm (TDMA) is adopted to solve the algebraic discrete equations. For the structure numerical model in the FSI system, a nonlinear relation between strain and displacement and a linear elastic model are used respectively, and a three dimensional nonlinear finite element model for the structure dynamics is thus constructed. A Newmark-βimplicit time integration algorithm is used, and the Newton-Raphson iterative scheme is adopted to solve the algebraic equations.
     Secondly, a closely coupled approach is constructed based on the LES flow solver. A moving mesh algorithm based on smooth spring analogy is used and a geometrically conservative implicit numerical scheme for the flow computations on the moving mesh is established. A load and motion transfer algorithm with non-matching discrete interface based on the momentum and energy conservation is introduced. It paves a coupling way to use the different solvers for the fluid, the structure and the mesh motion models for the complex nonlinear FSI problems. As an example, the hydro-elasticity vibration of the guide vane of a Francis hydro turbine is simulated. Three different materials for this guide vane are adopted respectively in this working example. The different dynamic behaviors of the fluid and the structure are discussed in detail. The numerical results show the validity of the proposed approach.
     Thirdly, a monolithic approach based on the fluid pressure Poisson equation (PPE) and predictor-multi-corrector algorithm (PMA) is created to solve the interactions between incompressible viscous fluid and an elastic body. The PPE is derived so as to be consistent with the coupled equations for the FSI system. Based on this approach, the fluid pressure is implicitly derived to satisfy the incompressibility constraint, and the other unknown variables are explicitly derived. In the consistent fluid equation, the momentum and the continuity equations are included in the same fluid domain. A consistent fluid equation is established by the substructure procedure for the structural equation to reduce degrees of freedoms (DOFs) in the structural domain. To demonstrate the performance of the proposed approach, a working example, a beam immersed in the incompressible fluid, is simulated. The results show that the approach developed is a powerful tool in solving the FSI problems of the flexible structures.
     Finally, we have performed an experiment on the vibration of an elastic thin plane due to being induced by the vortex shedding of the flow through a square body. The fixed square rigid body is submerged in the incompressible fluid and a thin elastic plane is attached to the rigid body in the centre of the downstream face. The pressure sensor that is manufactured by Kulite company, LL-072-25A, was mounted on the surfaces of the elastic plane, and a acceleration sensor provided by DongHua company, DH-201 is embedded in the free end of the elastic plane. The vortices, which separate from the corners of the rigid body, generate a lift force which excites oscillation of the thin elastic plane. Two independent measuring systems, are used in experiment. One is the dynamical test system to pick up the signals from the sensors, and other is of a 3D particle image velocimetry (PIV) to measure the flow fields. The measurements obtain findings on the vibration induced by the vortex shedding and the evolution of the vortex near the vibrating wall surfaces.
引文
[1]Bungartz HJ, Schafer M, Eds. Fluid-structure interaction:modeling, simulation, optimization. New York:Springer,2006.
    [2]Kennedy JM, Belytschko T. A survey of computational methods for fluid-structure analysis of reactor safety. Nuclear Engineering and Design,1982,69:379-398.
    [3]Thomas JP, Dowell EH, Hall KC. Nonlinear Inviscid Aerodynamic Efects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations. AIAA Journal,2002, 40(4):638-646.
    [4]Breard C, Vahdati M, et al. An Integrated Time-Domain Aeroelasticity Model for the Prediction of Fan Forced Response due to Inlet distortion.Transactions of the ASME, 2002,124(1):196-208.
    [5]谢浩.三维非线性动态流体-结构耦合数值方法及其应用研究:[博士学位论文].西安:西安交通大学,2003.
    [6]张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析.工程力学,2007,24(8):143-150.
    [7]Han C. A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine blade rows at design and off-design conditions. ASME Journal, Engineering for gas turbine and power,1984,106:421-428.
    [8]Moin P and Mahesh. Direct numerical simulation:a tool in turbulence research. Annual Review of Fluid Mechanic,1998,30:539-578.
    [9]杨自丰,王晓宇,孙晓峰.有限长壁面处理对叶片气动弹性稳定性的影响.航空动力学报,2006,21(6):1027-1032.
    [10]包日东,闻邦椿.水下悬跨管道动力响应分析.振动与冲击,2007,26(8):140-143.
    [11]Karmakar D, Bhattacharjee J, Sahoo T. Expansion formulae for wave structure interaction problems with applications in hydroelasticity. International Journal of Engineering Science,2007,45(10):807-828.
    [12]Dubini G, Pietrabissi R, Montevecchi FM. Fluid-structure interaction problems in bio-fluid mechanics:a numerical study of the motion of an isolated particle freely suspended in channel flow. Medical Engineering & Physics,1995,17(8):609-617.
    [13]Vierendeels J, Dumont K, Verdonck PR. A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics, Journal of Computational and Applied Mathematics,2008,215(2):602-609.
    [14]郑效忠.模态分析在水轮机中的应用.大电机技术,1993,3:15-17.
    [15]Hermod Brekke. A discussion on losses dynamic behaviour and cavitation in Francis turbines.20th Lahr Symposium charlotte, North Carolina, U.S.A,2000.
    [16]Jacob T, Prenat JE, Buffet G. Improving the stability of operation of a 90 MW Francis Turbine. Hydropower into the Next Century, Barcelona,1995,5:124-127.
    [17]吕延光.混流式水轮机稳定性研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [18]何东.流体诱发失稳现象探讨.东方电气评论,2001,15(1):40-46.
    [19]王珂仑.水力机组振动.北京:水利电力出版社,1984.
    [20]魏先导.涡列引起的水轮机叶片振动.水力发电学报,1989,4:12-15.
    [21]刘小兵.水轮机压力脉动及水力振动的理论研究与数值预测:[博士后学位论文].成都:四川大学,2004.
    [22]美国国家理论与应用力学委员会(杨延涛译).流体动力学的研究:面向国家需求.力学进展,2006,36(4):619-625.
    [23]邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认.力学进展,2007,37(2):279-288.
    [24]帕担卡.传热与流体流动的数值计算.浙江大学化机所影印本.
    [25]熊鳌魁,詹德新.不可压流场数值模拟方法综述.武汉交通科技大学学报,1999,23(5):523-528.
    [26]周天孝,白文.CFD多块网格生成新进展.力学进展,1999,29(3):344-368.
    [27]赵丽滨,王寿梅.结构动力分析中时间积分方法进展.力学与实践,2001,23(2):10-15.
    [28]Jozef Pelc,Convergence of space-time element method with rectangular element, Computer Methods in Applied Mechanics and Engineering,2001,190:3915-3926.
    [29]Ramos JI. Non-standard, explicit integration algorithms based on linearization for nonlinear dynamic response analysis. Applied Mathematics and Computation,2004, 159(3):695-715.
    [30]Ata Mugan, Frequency domainan alysis of time integration methods, Computer Methods in Applied Mechanics and Engineering,2001,190:5777-5789.
    [31]Li XD, Wiberg NE. Implementation and adaptivity of a space-time finite element method for structural dynamics. Computer Methods in Applied Mechanics and Engineering.1998,156(1-4):211-229.
    [32]王超,李红云,刘正兴.流固耦合系统动力响应分析的精细时程积分法.上海交通大学学报,2002,36(3):399-402.
    [33]苏志霄,刘宏昭,李鹏飞等.振动系统结构参数估计的泰勒变换法.应用力学学报,2000,17(1):47-53.
    [34]彭建设,张鹰,杨杰.策动力下动力学初一边值问题的时域配点空-时半解析法.计算物理,2000,17(1-2):54-58.
    [35]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,27(1):19-37.
    [36]Westergaard HM. Water pressures on dams during earthquakes. Transaction of American Society Civil Engineering,1933,98:418-433.
    [37]Kotsubo S. Dynamic water pressure on dams due to irregular earthquakes. Memoirs Faculty of Engineering, Kyushu university, Fukuoka, Japan,1959,18(4):119-129.
    [38]Chopra AK. Hydrodynamic pressure on dams during earthquake. Journal of Engineering Mechanics, ASCE,1967,93(6):205-223.
    [39]Blevins RD. Flow-induced vibration. New York:Van Nostrand-Reinhold,1977.
    [40]Haskind MD. Oscillation of a cascade of thin sections in incompressible flow. Journal of Applied Mathematics and Mechanics,1958,22(2):349-354.
    [41]郑哲敏.平板在流体作用下的振动.力学学报,1958,2(1):11-16.
    [42]居荣初,曾心传.弹性结构与液体耦联振动理论.北京:地震出版社,1983.
    [43]Zienkiewicz OC. Coupled problems and their numerical solution. In:Lewis R W, Bettess P, Himton E eds. Numerical Methods in coupled Systems. New York:John Wiley and Sons Ltd,1984.
    [44]刘正兴,孙雁,谢守国.流体介质中结构的动力特性及响应分析.上海交通大学学报,1995,29(4):7-16.
    [45]Chwang AT, Wang KH. Nonlinear impulsive force on an accelerating container. Journal of Fluids Engineering,1984,106:223-240.
    [46]Bathe KJ, Zhang H, Wang MH. Finite element analysis of incompressible and compressible flows with free surfaces and structural interaction. Computers and structures,1995,56:193-213.
    [47]沈惠明,赵德有.流固耦合振动问题的特征值解法.大连理工大学学报,1990,3:15-19.
    [48]傅作新.水库的库底条件和挡水结构的动水压力.水利学报,1987,5:20-25.
    [49]张升明,吴士冲.流固耦合有限元及储液容器振动问题研究.船舶结构力学论文集(二),1990.
    [50]黄玉盈.复杂外形薄浮板谐耦振问题的边界元-有限元混和解.固体力学学报,1991,12(3):255-260.
    [51]杜修力,陈厚群,侯顺载.拱坝系统三维非线性地震波动分析.地震工程与工程振动,1996,16(3):39-47.
    [52]李遇春,楼梦麟.强震下流体对渡槽槽身的作用.水利学报,2000,3:46-52.
    [53]张立翔,杨柯.流体结构互动理论及其应用.北京:科学出版社,2004.
    [54]刘晓旭.三场耦合的数学模型研究及有限元解法:[博士学位论文].成都:西南石油学院,2005.
    [55]杨向龙.流固耦合在生物分叉流及人工心脏中的应用研究:[博士学位论文].合肥:中国科学技术大学,2007.
    [56]Cunningham HJ, Batina JT, Bennett RM. Modern wing flutter analysis by computational fluid dynamics methods. Journal of Aircraft,1988,25(10):962-968.
    [57]Schuster DM, Vadyak J, Atta E. Static aeroelastic analysis of fighter aircraft using a three-dimensional Navier-Stokes algorithm. Journal of Aircraft,1990,27(9):820-825.
    [58]Lee-Rausch EM, Batina JT. Wing flutter boundary prediction using unsteady aerodynamic method. Journal of Aircraft,1995,32(2):416-422.
    [59]Lee-Rausch EM, Batina JT. Wing flutter computations using an aerodynamic model based on the Navier-Stokes equations. Journal of Aircraft,1996,33(6):1139-1147.
    [60]Liu F, Cai J, Zhu Y, Wong ASF, Tsai HM. Calculation of wing flutter by a coupled CFD-CSD method. AIAA,2000,0907.
    [61]Liu F, Sadeghi M, Yang S, Tsai H. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method. AIAA,2003,1347.
    [62]Farhat C, Pierson K, Degand C. CFD based simulation of the unsteady aeroelastic response of a maneuvering vehicle. AIAA,2000,0899.
    [63]Kamakoti R. Computational aeroelasticity using a pressure-based flow solver. PhD dissertation, University of Florida, Gainesville,2004.
    [64]Kamakoti R, Shyy W, Thakur S, Sankar B. Time dependent RANS computations for an aeroelastic wing. AIAA,2004,0886.
    [65]Cai J, Liu F, Tsai HM. Static aero-elastic computation with a coupled CFD and CSD method. AIAA,2001,0717.
    [66]Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics,1974,14:227-253.
    [67]Hughes TJR, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering,1981,29:329-349.
    [68]Donea J. Arbitrary Lagrangian-Eulerian finite element methods, in:T. Belytschko, T.J.R. Hughes (Eds.), Computational Methods for Transient Analysis, Elsevier, Amsterdam,1983,473-516.
    [69]Ramaswamy B, Kawahara M. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow. International Journal for Numerical Methods in Fluids,1987,7:1053-1075.
    [70]Ramaswamy B, Numerical simulation of unsteady viscous free surface flow. Journal of Computational Physics,1990:90:396-430.
    [71]Huerta A, Liu WK, Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering,1988,69:277-324.
    [72]Sackinger PA, Schunk PR, Rao RR. A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems:a finite element implementation. Journal of Computational Physics,1996,125:83-103.
    [73]Tezduyar TE, Behr M, Liou J, A new strategy for finite element computations involving moving boundaries and interfaces-The deforming spatial-domain/space-time-procedure:Ⅰ. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering,1992,94:339-351.
    [74]Tezduyar TE, Behr M, Mittal S etal. A new strategy for finite element computations involving moving boundaries and interfaces-The deforming-spatial-domain/space-time-procedure:Ⅱ. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering,1992,94:353-371.
    [75]Masud A, Hughes TJR, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Computer Methods in Applied Mechanics and Engineering,1997,146:91-126.
    [76]Hansbo P, Crank-Nicolson type space-time finite element method for computing on moving meshes, Journal of Computational Physics,2000,159:274-289.
    [77]Soulaimani A, Saad Y. An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows. Computer Methods in Applied Mechanics and Engineering,1998,162:79-106.
    [78]Braess H, Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering,2000,190: 95-109.
    [79]Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Chichester, UK,2000.
    [80]Dettmer W, Peric' D. A computational framework for fluid-rigid body interaction: finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering,2006,195:1633-1666.
    [81]Dettmer W. Finite element modelling of fluid flow with moving free surfaces and interfaces including fluid-solid interaction. Ph.D. thesis, University of Wales Swansea, 2004.
    [82]Batina JT. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis. AIAA Journal,1989,1189.
    [83]Robinson BA, Batina JT, Yang HTY. Aeroelastic analysis of wings using the Euler equations with a deforming mesh. Journal of Aircraft,1991,28(11):781-788.
    [84]Eriksson LE. Generation of boundary-conformation grids around wing-body configurations using transfinite interpolation. AIAA Journal,1982,20(10):1313-1320.
    [85]Hartwich PM, Agrawal S. Method for perturbing multiblock patched grids in aeroelastic and design optimization applications. AIAA Paper,1997,1997-2038.
    [86]Farhat C, Lesoinne M. Two eficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics and Engineering,2000,183(30):499-515.
    [87]Huang W, Ren Y, Russell RD. Moving mesh methods based on moving mesh partial differential equations. Journal of Computational Physics,1994,113:279-90.
    [88]Huang W, Russell RD. Moving mesh strategy based on a gradient flow equation for two-dimensional problems. SIAM Journal on Scientific Computing,1999,20(3): 998-1015.
    [89]Huang W. Practical aspects of formulation and solution of moving mesh partial differential equations. Journal of Computational Physics,2001,171:753-775.
    [90]Thomas PD, Lombard K. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal,1979,17(10):1030-1037.
    [91]Konga BN and Guillard H. Godunov type method on non-structured meshes for three-dimensional moving boundary problems. Computer Methods in Applied Mechanics and Engineering,1994,113(1-2):183-204.
    [92]Lesoinne M and Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering,1996, 134(1-2):71-90.
    [93]Koobus B and Farhat C. Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering,1999,170(1-2):103-129.
    [94]Farhat C, Geuzaine P, Grandmont C. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. Journal of Computational Physics,2001,174:669-94.
    [95]Kamakoti R, Shyy W. Moving grid computations for turbulent. aeroelastic flows. AIAA,2003,3719.
    [96]Kamakoti R. Computational aeroelasticity using a pressure-based flow solver. PhD dissertation, University of Florida, Gainesville,2004.
    [97]Kamakoti R, Shyy W, Thakur S, etal. Time dependent RANS computations for an aeroelastic wing. AIAA Journal,2004,0886.
    [98]Farhat C, Lesoinne M. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics and Engineering,2000,182:499-515.
    [99]Farhat C, Lesoinne M, Letallec P. Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems with Non-matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity. Computer Methods in Applied Mechanics and Engineering,1998,157: 95-114.
    [100]Cervera M, Codina R, Galindo M. On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Engineering Computations,1996,13:4-30.
    [101]Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. International Journal for Numerical Methods in Fluids,1997,25:1207-1226.
    [102]Matthies HG, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction. Computers and Structures,2003,81:805-812.
    [103]Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Naiver-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1982,32:199-259.
    [104]Hughes THR. The Finite Element Method:Linear Static and Dynamic Finite Element Analysis. Dover Publications, Inc.:New York,2000,562-564.
    [105]Sarrate J, Huerta A, Donea J. Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction. Computer Methods in Applied Mechanics and Engineering,2001,190:3171-3188.
    [106]Nomura T, Hughes TJR. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering,1992,95:115-138.
    [107]Zhang Q, Hisada T. Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Computer Methods in Applied Mechanics and Engineering,2001,190:6341-6357.
    [108]Bathe KJ, Zhang H, Wang WH. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Computers and Structures,1995,56:193-213.
    [109]Rugonyi S, Bathe KJ. On finite element analysis of fluid flows fully coupled with structural interactions. Computer Modeling in Engineering and Sciences,2001,2: 195-212.
    [110]Heil M. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering,2004,193:1-23.
    [111]Hubner B, Walhorn E, Dinkler D. A monolithic approach to fluid-structure interaction using pace-time finite elements. Computer Methods in Applied Mechanics and Engineering,2004,193:2087-2104.
    [112]周盛.叶轮机气动弹性力学引论[M].北京:国防工业出版社,1986.
    [113]管德.气动弹性试验[M].北京:北京航空学院出版社,1986.
    [114]Bokaian AR and Geoola F. Hydroelastic instabilities of square cylinders. Journal of Sound and Vibration 1984,92(1):117-141.
    [115]Chiba M. Non-linear hydroelastic vibration of a cantilever cylindrical tank-Ⅰ. Experiment (Empty case). International Journal of Nonlinear Mechanics 1993,28(5): 591-599.
    [116]Chiba M, Non-linear hydroelastic vibration of a cantilever cylindrical tank-Ⅰ. Experiment (Liquid-filled case). International Journal of Nonlinear Mechanics 1993; 28(5):601-612.
    [117]Khalak A, WilliamsonI CHK. Fluid forces and dynamics of a hydroelastic structure with low mass and damping. Journal of Fluids and Structure,1997,11(8):973-982.
    [118]Kwak MK. Effect of fluid depth on the hydroelastic vibration of free-edge circular plate. Journal of Sound and Vibration,2000,230(1):171-185.
    [119]吕海宁,杨建民,姚美旺.箱式超大型浮体在非均匀海洋环境中的水弹性试验.海洋工程,2004,22(1):1-8.
    [120]Berselli LC, Iliescu T, Layton WJ. Mathematics of large eddy simulation of turbulent flows. New York:Springer,2006.
    [121]Sagaut P. Large eddy simulation for incompressible flows. New York:Springer,2006.
    [122]Pope SB. Turbulent Flows. New york:Cambridege University press,2000.
    [123]Smagorinsky J. General circulation experiments with the primitive equations, i. the basic experiment. Monthly Weather Review,1963,91:99-112.
    [124]Watkins CB. Numerical solution of the three-dimensional boundary layer on a spinning sharp body at angle of attack. Computers & Fluids,1973,1(4):317-329.
    [125]Schumann U. Results of a numerical simulation of turbu lent channel flows. in: Dalle-donnem, ed. International Meeting on Reactor Heat Transfer,1973,230-251.
    [126]Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation. Annual Review of Fluid Mechanics,2000,32:1-32.
    [127]Germano M, Piomelli U, Moin P et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids,1991,3:1760-1765.
    [128]Lilly DK. A proposed modifieation of the germano subgrid-scale closure method. Physics of Fluids A,1992,4(3):633-635.
    [129]Zang Y, Street RL, Koseff JR. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids,1993,5:3186-3196.
    [130]Ghosal S, Moin P. The basic equations for the large eddy simulation of turbulent flows in complex geometry. Journal of Computer Physics,1995,118:24-37.
    [131]Bardina J, Ferziger J, Reynolds W. Improved subgrid scale models for large eddy simulation. AIAA paper,1980,1357.
    [132]Davidson L. Large eddy simulation:a dynamic one-equation subgrid model for three-dimensional recirculating flow.In:11th International Symposium on Turbulent Shear Flow, Grenoble,3:261-266.
    [133]Kim WW, Menon S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows, Technical Report AIAA,1997,0210.
    [134]Kim SE. Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. Technical Report AIAA,2004,2548.
    [135]Rodi W. A new algebraic relation for calculating the Reynolds stresss. ZAMM,1976, 56:219-221.
    [136]Khurram RA, Masud AA. A multiscale/stabilized formulation of the incompressible Navier-Stokes equations for moving boundary flows and fluid-structure interaction. Computational Mechanics,2006,38:403-416.
    [137]Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems:three-field formulation, geometric conservation and distributed solution. International Journal for numerical method in fluids,1995,21:807-819.
    [138]Guillard H, Farhat C. On the significance of the geometric conservation law for flow computations on moving meshes. Computer Methods in Applied Mechanics and Engineering.2000,190(11-12):1467-1482.
    [139]Farhat C, Degand C, Koobus B, et al. Torsional spring for two dimensional dynamical unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering, 1998,163:231-245.
    [140]Frederic JB. Considerations on the spring analogy 2000; International Journal for umerical Methods in Fluids,2000,32:647-668.
    [141]Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1982,32:199-259.
    [142]Tezduyar TE, Mittal S, Ray SE, Shih R. Incompressible Flow Computations with Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements. Computer Methods in Applied Mechanics and Engineering,1992,95(2):221-242.
    [143]Smith MJ, Hodges DH, Cesnik CES. Evaluation of computational algorithms suitable for fluid-structure interaction. Journal of Aircraft,2000,37(2):282-294.
    [144]魏泳涛.不可压缩Navier--Stokes方程的有限元分析.四川大学博士后出站报告论文,2003.
    [145]Zhang Q, Hisada T. Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Computer Methods in Applied Mechanics and Engineering,2001,190:6341-6357.
    [146]Wall WA, Ramm E. Fluid-structure interaction based upon a stabilized (ALE) finite element method. In:Idelshon, S, editor. Computational Mechanics. Barcelona: CIMNE,1998.
    [147]Hubner, E. Walhorn, D. Dinkler. A monolithic approach to fluid-structure interaction using space-time finite elements, Computer Methods in Applied Mechanics and Engineering,2004,193:2087-2104.
    [148]J.Steindorf. Partitionierte verfahren fur problem der fluid-struktur wechselwirkung, Ph.D.thesis, Technische Univeritat Braunschweig, Mechanik-Zentrum,2003.
    [149]Teixeira PRF, Awruch AM. Numerical simulation of fluid-structure interaction using the finite element method. Computers & Fluids,2005,34:249-273.
    [150]Dettmer W, Peric DA. Computational framework for fluid-structure interaction: Finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering,2006,195:199-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700