新型复合式仿生轮—腿机构运动学及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人已经广泛应用于侦查、营救、排爆、探测、采矿、娱乐、竞技等诸多行业,在军事、安全、生产、生活以及科学研究中扮演着越来越重要角色。随着移动机器人应用领域的不断拓展,对移动性能的要求不断提高,各种混合式移动机构相继问世。轮-腿混合式移动机构继承了轮式和腿式移动的优点,既能够保持较高的移动效率,又具有良好的通过性能,是传统混合式移动机构中研究较多的一种,已经取得了大量研究成果。但是,分析现有轮-腿混合式移动机构,其结构仍然存在一些值得改进和完善的不足之处,例如为实现既定功能而增加的附加装置、驱动器配置方式、特定运动模式下的机构冗余等,这些问题的存在不但增加了结构设计难度,往往还会对机构动态性能造成一定影响,给控制系统设计带来一定困难。本文提出一种新型复合式仿生轮-腿机构,它独特的结构特征和运动实现原理明显不同于现有轮-腿混合式移动机构,避免和纠正了上述轮-腿混合式移动机构中的不足之处,对这种新型机构进行深入研究对于高性能移动平台的开发具有一定的参考价值。
     围绕本文提出的新型复合式仿生轮-腿机构,开展了一系列的研究工作:对所提出的轮-腿机构进行了结构和功能实现原理分析,并针对混合式轮-腿机构的不足,总结归纳了其结构特点。轮-腿机构具有全新的结构特点和运动实现方式,论文从其形成原理入手,从具有相似功能的常见机构的结构特点出发,分析了它的结构特征及轮、腿、轮-腿复合三种运动功能的实现过程,概括了其有别于混合式轮-腿机构的结构特点。
     对仿生关节机构传动过程中接触力的时变特征进行了深入研究,得到了时变刚度系数曲线。仿生关节是轮-腿机构的主要结构和功能单元,受结构影响,关节传动过程中轮齿间接触力具有时变特征。论文利用微分几何相关方法和定理,分析了齿面的曲面特征,研究了单、双齿啮合区间变化规律,建立了反向啮合点位置求解方程,基于Hertz静力接触理论得到了接触刚度系数的变化曲线,为机构的动力学研究奠定基础。
     对所提出的轮-腿机构进行了运动学分析,给出了运动学正解和逆解方程。在运动学分析中,定义了用于准确描述机构运动状态的三个关键参数和用于运动分析的一个重要平面,即方位角、偏转角、偏转轴和偏摆平面,灵活运用连续变换的余弦变换矩阵和一次有限转动的欧拉定理,充分利用机构的结构特点,建立了机构在不同运动方式下的运动模型。
     将牛顿-欧拉法应用到轮-腿机构动力学分析当中,建立了机构的动力学模型。文中对车轮和地面之间的作用力对轮-腿机构的作用效果进行了分析,对仿生关节传动过程中接触力及其力臂的表达式进行了推导,对构件的运动姿态和惯性力、惯性力矩进行了求解,分别应用牛顿和欧拉定理建立了构件的平衡方程。最后,为满足实际需要,还研究了由模型计算所得驱动力向惯性系转换方法。
     进行了轮-腿机构的运动学和动力学虚拟样机试验,对机构功能实现的可行性进行检验和评估,并将试验结果与理论模型仿真结果进行对比,从而对模型描述机构运动和动力特征的可信度做出判断。论文研究了虚拟样机技术在轮-腿机构上的应用,并对试验内容、方法和过程进行了详细介绍。文中以样条曲线作为IMPACT函数的关键参数定义了虚拟样机中接触碰撞的力学行为,对关键构件的运动参数和受力状况进行了分析,对接触力的变化规律进行了观测,结果表明轮-腿机构能够实现既定功能。通过将试验数据与理论计算结果比较可以发现两者误差很小,说明本文所建立模型能够真实反映机构的运动特性。
     设计了轮-腿机构和多运动态轮-腿移动平台物理样机,初步运动学试验表明轮-腿机构完全能够实现设计运动形式,基于该机构的移动平台能够实现直行、斜行、原地转弯、跨步、小半径转弯等多种移动姿态,具有较好的移动性能和环境适应能力。
Mobile robots are being used widely in such diverse applications as reconnaissance operations, rescue operations, exploder removing, planetary explorations, mining, entertainment industries, sports competition etc., and play more and more important roles in military mission, safety guard, manufacturing, daily life of human beings and scientific research, and so on. Along with the environments becoming more and more complex, the locomotion ability must be improved so as to make mobile robots have the adaptability to maneuver on different types of terrains. As a result, tremendous hybrid locomotion systems have been presented in the past decades. Wheelled-legged hybrid locomotion mechanism inherits the merits of both legged mechanism and wheeled mechanism, and can move with excellent locomotive efficiency, while maintaining excellent locomotion performance. Consequently, more attention is focus on it, and large amounts of achievements with versatile structural forms have been come up with. However, there are still few structural hurdles in them, and need to be improved or overcomed, such as the switching system whose function is to alter the locomotion mode according to different terrains, the arrangement of the actuator which is usually mounted on every joint and drive it directly, the phenomena of redundant mechanism in special locomotion mode, and so on. All of these not only increase the difficulty in structural design, but also give rise to a higher possibility of making the dynamical performance of the hybrid locomotion mechanism worse. In this work, a novel bionic wheelled-Legged-fused mechanism is presented, which is distinctly different in structure and principle of realizing the locomotion modes, and eliminats or corrects the shortcomings in traditional hybrid locomotion mechanisms mentioned above. An in-depth study on this new mechanism is useful for the development of high performance locomotion mechanism.
     A series of researches are carried out on it as follows:
     The structural principle and the locomotion capabilities of the bionic wheelled-legged-fused mechanism are introduced. Also, its structural characteristics are summarized in accord with the shortcomings existing in the wheelled-legged hybrid locomotion mechanisms. The wheelled-Legged-fused mobile mechanism has an innovative structure and can execute legged-mode, wheelled-mode, and wheelled-legged mode according to the environment. Based on several conventional mechanisms with similar function to the new mechanism, the paper presents its forming principle, the structural characteristics and the principle of realizing the three locomotion modes, and summarizes them as a conclusion.
     The time-variable characteristics of the meshing force in the bionic joint transmission are studied, and the time-variable-meshing-stiffness coefficient curves are obtained. The bionic joint is the main component of the new mechanism not only in structure but in function. Affected by the structural features of the joint, the meshing force in the bionic joint transmission shows time-variable characteristics. Based on the essential principle of differential geometry, the characteristics of the working flanks of the involute ring tooth are analyzed. The variety between single-tooth-meshing-span and two-teeth-meshing-span alternatively in transmission is studied. The equations to solve the position of the inverse meshing point are deduced. And then, based on the Hertz elastic contact theory, the formula for the calculation of the meshing-stiffness is given and the time-variable-meshing-stiffness coefficient curves are drawn, which is essential in dynamics.
     The related kinematics analysis for the new mechanism is accomplished, and the forward kinematics and inverse kinematics equations are derived. In kinematics analysis, three key parameters and an important plane are defined. The three parameters, named azimuth angle, deflection angle and deflection axis, respectively, are used to describe the spatial orientation of the new mechanism, while the plane, called deflection plane, is used to analyze the instantaneous configuration of the mechanism at anytime of the whole process. Then, combining the sequential cosines transformation matrix with the Euler’s theorem on rotation, the kinematics models are derived correspond to three types of locomotion modes.
     The dynamics model of the wheelled-legged-fused mechanism is set up using the Newton-Euler formulation. In this section, the interaction between ground and the wheel mounted on the output shaft of the new mechanism is analyzed firstly. Then, the expression for determined the meshing force vector and the arm of the meshing force vector is derived. After the inertia force and inertia moment of each component are calculated, the equilibrium equations for each body are written based on the Newton-Euler formulation. In order to meet the practical requirement, the transformation method of the actuating force from reference frame to gravity frame is presented in the last.
     The virtual prototype of the new mechanism is established, and the feasibility for the new mechanism to realize the design functions is examined and evaluated based on it. Also, the experimental results are employed to determine the reliability of the kinematics and dynamics models, by comparing them with the calculations of the models. In this process, the application of the virtual prototype in the wheel-leg-fused mechanism is introduced in details. A spline curve is used to define the contact force in establishing the virtual prototype, which is a key parameter in impact-function-based contact force calculations in ADAMS. In the experiments, emphasis is focus on the motion state of several important components, and load state of them is analyzed, especially, the contact forces from the gear pairs are measured. All of the experimental results demonstrate that the new mechanism can meet the design requirement and have the capability of executing the wheelled-mode, legged-mode and wheelled-legged mode. Results of the comparison drawn between the experimental results and the calculations of the kinematics and dynamics models validate the reliability of the models.
     A physical prototype of the new mechanism is established, and meanwhile, a quadruped vehicle based on it is assembled. Results from a preliminary kinematics test based on them verifies that the mechanism design meet its requirements for traversing with the wheelled-mode, legged-mode and wheelled-legged mode, and the vehicle can realize multi-locomotion-configurations, such as straight movement, side movement, turning in place, walking, and turning in small radius, and so on. which make the vehicle have a strong locomotion performance and a better adaptability on extreme environments.
引文
[1]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002,24(9):475~480
    [2]张明路,丁承君,段萍.移动机器人的研究现状与趋势.河北工业大学学报,2004,33(2):110~114
    [3]徐秀娜,赖汝.移动机器人路径规划技术的现状与发展.计算机仿真,2006,23(10):1~5
    [4] Tarokh M,Mireles L,McDermott G.Two Approach to Kinematics Modeling of Articulated Rovers: report of Department of Computer Science.San Diego State University:2005.Research Report No.CSRR-02-October,2005
    [5] Xingguang Duan,Qiang Huang,Nasir Rahman,et al.MOBIT,A Small Wheel-Track-Leg Mobile Robot.Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian,China,June 21-23,2006:9159~9163
    [6] Tarokh M,McDermott G.Kinematics Modeling and Analysis of Articulated Rovers.IEEE Trans. Robotics,2005,21(4):539~554
    [7] Yong-Joo Oh,Yoshio Watanabe.Development of small robot for home floor cleaning.SICE 2002 Proc. of the 41st SICE Annual Conference.2002,5:3222~3223
    [8] Kui Yuan,Xianhua Liu,Bencheng Luo,et al.Development of the autonomic mobile platform for RoboCup robot.Proc. of the 4th World Congress on Intelligent Control and Automation,Shanghai,P.R.China,June 10-14,2002,506~509
    [9] Kohtaro Sabe.Development of Entertainment Robot and Its Future.2005 Symposium on VLSI Circuits Digest of Technical Papers.2005:2~5
    [10] Kasagami F,Hongbo Wang,Araya M,Sakuma I,et al.Development of a robot to assist patient transfer.2004 IEEE Int. Conf. on Systems,Man and Cybernetics. 2004(5):4383~4388
    [11]董砚秋.智能机器人概述.网络与信息,2007(7):68~69
    [12] Takahashi M,Yoneda K,Hirose S.Rough Terrain Locomotion of a Leg-Wheel Hybrid Quadruped Robot.Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation.Orlando,Florida-May 2006,1090~1095
    [13] Jianguo Tao,Zongquan Deng,Ming Hu,et al.A Small Wheeled Robotic Rover for Planetary Exploration.ISSCAA 2006 1st Int. Symposium on Systems andControl in Aerospace and Astronautics,Jan,2006:413~418
    [14] Francois M,Dominic L,Martin A,et al.AZIMUT,a Leg-Track-Wheel Robot. Proc. of the 2003 IEEE/RSL Int. Conf. on Intelligence Robots and Systems,Las Vegas,Nevada,October 2003,2553~2558
    [15] K. H. Low,W. K. Loh,Heng Wang,Jorge Angeles.Motion study of an omni-directional rover for step climbing.Proc. of the 2005 IEEE int. conf. on robotics and automation.Barcelona,Spain,April 2005,1585~1590
    [16] Hirose S,Fukushima E F,Damoto R,Nakamoto H.Design of the terrain versatile crawler vehicle HELIOS-VI.Proc. of the 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.Maui,Hawaii,USA,29 Oct.-3 Nov. 2001,1540~1545
    [17] Bayraktaroglu Z Y,Kihcarslan A,Kuzucu A,et al.Design and Control of Biologically Inspired Wheel-less Snake-like Robot.The 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics.February 20-22,2006:1001~1006
    [18] Hougen,D F,Benjaafar S,Bonney J C,et al.A miniature robotic system for reconnaissance and surveillance.Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation.2000(1):501~507
    [19] Sasaki M,Yanagihara N,Matsumoto O,Komoriya K.Forward and backward motion control of Personal riding-type wheeled Mobile Platform.Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation,2004(4):3331~3336
    [20] Sascha A.Stoeter and Nikolaos Papanikolopoulos.Kinematic Motion Model for Jumping Scout Robots,IEEE Trans. Robotics,2006(22):398~403
    [21] Yunwei Deng,Mingjun Zhang,Jianan Xu,Yujia Wang.Research on Platform and Motion Control System for a Mobile Robot..Proc. of the 6th World Congress on Intelligent Control and Automation,Dalian,China,June 21-23,2006:8150~8154
    [22] Staicu S.Matrix model in dynamics of mobile robots.2005 IEEE Int. Conf. on Robotics and Biomimetics.July 5,2005.529~532
    [23] El-Shenawy A,Wagner A,Badreddin E.Controlling a Holonomic Mobile Robot With Singularities.Proc. of the 6th World Congress on Intelligent Control and Automation,Dalian,China,June 21-23,2006.8270~8274
    [24] Po-Chih Chen.Han-Pang Huang. 3D Dynamical Analysis for a Caster Wheeled Mobile Robot Moving on the Frictional Surface.Proc. of the 2006 IEEE/RSJ Int.Conf. on Intelligent Robots and Systems.Beijing,China,October 9-15,2006,3056~3061
    [25] Williams R L II,Carter B E,Gallina P,Rosati G.Dynamic Model With Slip for Wheeled Omnidirectional Robots,IEEE Trans. on Robotics and Automation,2002(18):285~293
    [26] Sandholm T,Huai Q.Nomad:mobile agent system for an Internet-based auction house.Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation.Leuven,Belgium,May,1998.611~617
    [27] Matsumoto O,Kajita S,Tani K,Oooto M.A four-wheeled robot to pass over steps by changing running control modes.Proc. of the 1995 IEEE Int. Conf. on Robotics and Automation.1995(2):1700~1706
    [28] Byun K,Kim S,Song J.Design of a Four-wheeled Omnidirectional Mobile Robot with Variable Wheel Arrangement Mechanism.Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation.Washton,D.C.,May 2002,720~725
    [29] Kunii Y,Kuroda Y,Suhara M,Kubota T.Command data compensation for real-time tele-driving system on lunar rover:Micro-5.Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation,2001(2):1394~1399
    [30]胡明,邓宗全,王少纯,高海波.月球探测车移动系统的关键技术分析.哈尔滨工业大学学报,2003,35(7):795~798
    [31] Kevin L. Moore,Nicholas S. Flann.A six-wheeled omnidirectional autonomous mobile robot,IEEE Control Systems Magazine,December,2000.53~66
    [32] Ming Lin,Jihong Zhu,Jianghua Meng,Zengqi Sun.Tsinghua Lunar Rover Prototype and its Hardware Design.Proc. of the 2002 IEEE Region 10 Conf. on Computers,Communications,Control and Power Engineering,2002(328):1578~1581
    [33] Randel A. Lindemann,Donald B. Bickler,Brian D. Harrington,et al. Mars Exploration Rover Mobility Development: Mechanical Mobility Hardware Design,Development,and Testing.IEEE Robotics & Automation Magazine. June 2006.19~26
    [34] Lindemann R. A.,Voorhees C. J..Mars Exploration Rover Mobility Assembly Design, Testing,and Performance.IEEE Int. Conf. on Systems,Man and Cybernetics.October,2005.450~455
    [35] Tarokh M,McDermott G,Hayati S,Hung J.Kinematic modeling of a high mobility Mars rover.Proc. of the 1999 IEEE Int. Conf. on Robotics andAutomation,1999,210(15):992~998
    [36] Volpe R.Rover Technology Development and Mission Infusion Beyond MER,2005 IEEE Conf. on Aerospace,05-12 March 2005.1~11
    [37] Kemurdjian A,Gromov V,Mishkinyuk,et al.Small Marsokhod configuration. Proc. of the 1992 IEEE Int. Conf. on Robotics and Automation.1992(1):165~168
    [38]刘进长,辛建成.机器人世界.郑州:河南科学技术出版社,2000.
    [39] Iizuka K,Sato Y,Kuroda Y,Kubota.Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain.2006 9th IEEE Int. Workshop on Advanced Motion Control.March 2006,266~271
    [40]王巍.六轮月球漫游车运动系统动力学、控制与仿真技术:学位论文.哈尔滨:哈尔滨工业大学,2002
    [41]邓宗全,高海波,胡明,王少纯.行星越障轮式月球车的设计.哈尔滨工业大学学报,2003,135(12):203~206,209,213
    [42]邓宗全,高海波,王少纯,胡明.行星轮式月球车的越障能力分析.北京航空航天大学学报,2004.30(13):197~201
    [43]江海波,潘存云.基于行星轮系的移动机器人及其特性分析.机械制造,2005(12):11~13
    [44]易声耀,潘存云.一种新型移动平台的传动系统设计与分析.机械设计,2007,24(5):20~23
    [45]易声耀,潘存云.一种新型移动平台动力学仿真与试验研究.机械设计与研究,2007,23(2):55~59
    [46]宋立博.从动轮式溜冰机器人运动学与动力学研究:学位论文.上海:上海交通大学,2002
    [47]刘方湖.管道形轮腿式月球探测机器人及其运动特性的研究:学位论文.上海:上海交通大学,2002
    [48] Hun-ok Lim,Yu Ogura,Atsuo Takanishi.Dynamic Locomotion and Mechanism of Biped Walking Robot.SICE-ICASE Int. Joint Conf..Bexco,Busan,Korea,2006.3484~3489
    [49] Alejandro Aceves-Lopez , Alejandro Melendez-Calderon . Human-inspired walking-style for a low-cost biped prototype.IEEE 3rd Latin American Robotics Symposium.Oct. 2006,141~148
    [50] Sandip Tiwari,Kumar A,Liu C C,et al.Modeling and simulation of biped kinematics using bond-graphs.IEEE 2nd Int. Conf. on Emerging Technologies.Peshawar,Pakistan,13-14 Nov. 2006.677~682
    [51] Atsuo Kawamura,Chi Zhu.The Development of Biped Robot MARI-3 for Fast Walking and Running.IEEE 6th Int. Conf. on Humanoid Robots,Dec.2006,599~604
    [52] Suzuki T,Tsuji T,Ohnishi K.Trajectory planning of biped robot for running motion.Industrial Electronics Society,2005.32nd Annual Conf. of IEEE.6-10 Nov,2005.1815~1820
    [53] Silva F M,Tenreiro Machado,J A.Kinematic analysis of artificial biped locomotion systems.Proc. of the 1997 IEEE Int. Conf. on Intelligent Engineering Systems.15-17 Sept.1997,345~350
    [54] Hyungseok Kim,Taehun Kang,Vo Gia Loc,Hyouk Ryeol Choi.Gait Planning of Quadruped Walking and Climbing Robot for Locomotion in 3D Environment . Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation.April,2005.2733~2738
    [55] Zhang Xiuli,Zheng Haojun,Guan Xu,et al.A biological inspired quadruped robot : structure and control . 2005 IEEE Int. Conf. on Robotics and Biomimetics.July,2005.387~392
    [56] Ma S,Tomiyama T,Wada H.Omnidirectional static walking of a quadruped robot. IEEE Trans. on Robotics.2005,21(2):152~161
    [57] Qingsheng Luo,Baoling Han,Xin Mao,et al.A FWN-Based Distributed Hierarchical System for Hexapod Bio-Robot Control.Proc. of the 6th World Congress on Intelligent Control and Automation.Dalian,China.June,2006,8943~8947
    [58] Gassmann B,Zacharias F,Zollner J M,Dillmann R.Localization of Walking Robots.Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation.April,2005.1471~1476
    [59] Go Y,Yin X,Bowling A.Navigability of Multi-Legged Robots.IEEE/ASME Trans. on Mechatronics,Feb.2006,1~8
    [60] Lin P C,Komsuoglu H,Koditschek D E.Sensor Data Fusion for Body State Estimation in a Hexapod Robot with Dynamical Gaits.IEEE Trans. on Robotics,2006,22(5):932~943
    [61] Kanehiro F,Kaneko K,Fujiwara K,et al.The first humanoid robot that has the same size as a human and that can lie down and get up.Proc. of the 2003 IEEE Int. Conf. on Robotics and Automation,2003(2):1633~1639
    [62] Akachi K,Kaneko K,Kanehira N,et al.Development of humanoid robot HRP-3P.2005 5th IEEE-RAS Int. Conf. on Humanoid Robots,Dec. 5.2005. 50~55
    [63] Kaneko K,Kanehiro F,Kajita S,et al. Humanoid robot HRP-2.Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation,2004(2):1083~1090
    [64] Verrelst B,Stasse O, Yokoi K,Vanderborght B.Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2.2006 6th IEEE-RAS Int. Conf. on Humanoid Robots,2006,117~123
    [65] Ido J,Matsumoto Y,Ogasawara T,Nisimura R.Humanoid with Interaction Ability Using Vision and Speech Information.Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,Beijing,China.Oct. 2006,1316~1321
    [66] Yisheng Guan,Sian N E,Yokoi K.Motion planning for humanoid robots stepping over obstacles.2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.2-6 Aug. 2005,363~369
    [67] Yisheng Guan,Ee Sian Neo,Yokoi K,Tanie K.Stepping over obstacles with humanoid robots.IEEE Transactions on Robotics,2006,22(5):958~973
    [68] Yoshida E.Humanoid motion planning using multi-level DOF exploitation based on randomized method.2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2-6 Aug. 2005,3378~3383
    [69] Ruchanurucks M,Nakaoka S,Kudoh S,Ikeuchi K.Generation of humanoid robot motions with physical constraints using hierarchical B-spline.2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,Aug. 2005,1869~1874
    [70] Nakaoka S,Nakazawa A,Kanehiro F,et al.Task model of lower body motion for a biped humanoid robot to imitate human dances.2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2-6 Aug. 2005,3157~3162
    [71] Nishiwaki K,Sugihara T,Kagami S,et al.Design and Development of Research Platform for Perception-Action Integration in Humanoid Robot:H6.Proc. IEEE/RJS Int. Conf. on Intelligent Robots and Systems,2000,1559~1564
    [72] Kagami S,Nishiwaki K,Kuffner Jr,J J,et al.Online 3D Vision,Motion Planning and Biped Locomotion Control Coupling System of Humanoid Robot:H7.Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2002,2557~2562
    [73]满翠华,范迅,张华,刘晓萌.类人机器人研究现状和展望.农业机械学报,2006,37(9):204~210
    [74]黄海欢.类人机器人多关节运动控制技术研究:学位论文.北京:北京科技大学,2006,01
    [75]杨庆.仿人机器人实时运动规划方法研究:学位论文.长沙:国防科学技术大学,2005,11
    [76] Wettergreen D,Pangels H,Bares J.Behavior-based gait execution for the Dante II walking robot.Proc. of the 1995 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,1995(3):274~279
    [77] Apostolopoulos D,Bares J.Locomotion configuration of a robust rappelling robot.Proc. of the 1995 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,1995(3):280~284
    [78] Akizono J,Tanaka T,Nakagawa K,et al.Seabottom roughness measurement by aquatic walking robot.OCEANS '97. MTS/IEEE Conf. Proc. 1997(2):1395~1398
    [79] Seiji Y,Tomohiro Y.Training AIBO like a dog - preliminary results Robot and Human.2004 13th IEEE Int. Workshop on Interactive Communication,20-22 Sept. 2004,431~436
    [80] Fujita M.On activating human communications with pet-type robot AIBO.Proc. of the IEEE, 2004, 92(11):1804~1813
    [81]文娉.独领风骚的日本机器狗AIBO.中国青年科技,2006(7):31~33
    [82]王沫楠,孙立宁.仿生机器蟹步行腿结构设计及运动学、动力学分析.机械设计与研究,2005,21(5):41~44
    [83]王立权,孙磊,陈东良,张玲,孟庆鑫.仿生机器蟹样机研究.哈尔滨工程大学学报,2005,26(5):591~595
    [84] Wang li-quan,Chen dong-liang,Sun lei,Meng qing-xin,Zhang ling.The Research on Bionic Crab-liked Robot Prototype.Proc. of the IEEE Int. Conf. on Mechatronics & Automation.Niagara Falls,Canada,July 2005,2017~2021
    [85] Flannigan W C,Nelson G M,Quinn R D.Locomotion controller for a crab-like robot.Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation,1998,(1):152~156
    [86] Ohnishi T, Asakura T. Walking behavior of spider-robot with adaptation for environment information. SICE 2004 Annual Conference. Aug.4-6, 2004, 1999~2003
    [87]许宏岩,付宜利,王树国,刘建国.仿生机器人的研究.机器人,2004,26(3):283~288
    [88] Guangping Lan,Shugen Ma,Kousuke Inoue.Development of A Novel CrawlerFor Irregular Terrain Access.Proc. of the 2005 IEEE Int. Workshop on Safety,Security and Rescue Robotics.Kobe,Japan,June 2005.42~47
    [89] Yokota S,Kawabata K,Blazevic P,et al. The development of crawler type robot that can move in all over the house.SICE-ICASE Int. Joint Conf.Bexco, Busan,Korea.Oct. 2006,4266~4269
    [90] Hae-Won Park,Sung-Hyun Kim,No-Cheol Park,et al.Design of Tracked Vehicle with Passive Mechanism for Uneven Terrain.SICE-ICASE Inte. Joint Conf.Bexco,Busan,Korea.Oct. 2006,3132~3136
    [91] Guangping Lan,Shugen Ma.Step-climbing analysis of a novel tracked robot.2005 IEEE Int. Conf. on Robotics and Biomimetics.July 5,2005.544~549
    [92]李科杰.危险作业机器人发展战略研究.机器人技术与应用,2003(5):14-22
    [93]王永涛.美国军用机器人的现状与开发动向.飞弹导航,2003(2):11-15
    [94]大山.Packbot战术机动机器人.现代轻武器,2005(3):36-37
    [95] Matsumoto O,Kajita S,Komoriya K.Flexible locomotion control of a self-contained biped leg-wheeled system.IEEE/RSJ Int. Conf. on Intelligent Robots and System,2002(3):2599~2604
    [96] Bourbakis N G.Kydonas-an autonomous hybrid robot:walking and climbing. Robotics & Automation Magazine,IEEE.June 1998.52~59
    [97] Adachi H,Koyachi N,Arai T,et al.Mechanism and control of a leg-wheel hybrid mobile robot.Proc. of the 1999 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,1999(3):1792~1797
    [98] Bo Huang,Pengfei Wang,Lining Sun.Behavior-based Control of a Hybrid Quadruped Robot.Proc. of the 6th World Congress on Intelligent Control and Automation,Dalian,China.June,2006,8997~9001
    [99] Wang Pengfei,Huang Bo,Sun Lining.Walking Research on Multi-motion Mode Quadruped Bionic Robot Based on Moving ZMP.Proc. of the IEEE Int. Conf. on Mechatronics & Automation Niagara Falls,Canada,July 29-Aug. 1,2005. 1935~1940
    [100] Kenji H,Takuya H,Yusuke S,et al.Realization by Biped Leg-wheeled Robot of Biped Walking and Wheel-driving Locomotion.Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation,Barcelona,Spain,May 2006.2970~2975
    [101] Endo G,Hirose S.Study on Roller-Walker (multi-mode steering control and self-contained locomotion).Proc. of the ICRA '00. IEEE Int. Conf. on Robotics and Automation,2000(3):2808~2814
    [102] Smith J A,Sharf I,Trentini M.PAW:a Hybrid Wheeled-Leg Robot.Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation,Orlando,Florida,May, 2006.4043~4048
    [103] Doi T,Hodoshima R,Hirose S,et al.Development of a quadruped walking robot to work on steep slopes,TITAN XI (walking motion with compensation for compliance).2005 IEEE/RSJ Int. Conf.on Intelligent Robots and Systems,2-6 Aug. 2005.2067~2072
    [104]信建国,李小凡,王忠等.履带腿式非结构环境移动机器人特性分析.机器人,2004,26(1):35-39
    [105] Chen C X,Trivedi M M.Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation.Proc. of the 1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.1993(2):1349~1356
    [106]王挺,王越超,赵忆文.多机构复合智能移动机器人的研制.机器人,2004,26(4):289~294
    [107]赵海峰,李小凡,姚辰,王忠.新型轮-腿-履带复合移动机构及稳定性分析.机器人,2006,28(6):576~581
    [108] Xingguang DUAN,Qiang HUANG,Nasir RAHMAN,Jingtao LI and Qinjun DU.Kinematic Modeling of a Small Mobile Robot with Multi-Locomotion Modes.Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.Beijing,China.Oct,2006.5582~5587
    [109]段星光,黄强,李科杰.小型轮履腿复合式机器人设计及运动特性分析.机械工程学报,2005,41(8):108~114
    [110] Adachi H,Koyachi N.Development of a Leg-Wheel Hybrid Mobile Robot and Its Step-Passing Algorithm.Proc. of the 2001 IEEE/RSL Int. Conf. on Intelligent Robots and Systems.Maui,Hawaii,USA,Otc.29-Nov.03,2001,728~733
    [111] Muller J,Schneider M,Hiller M.Modeling,simulation,and model-based control of the walking machine ALDURO.IEEE/ASME Transactions on Mechatronics,2000,142~152
    [112] Muller G,Schneider M,Hiller H.Mechatronic models for simulation and model based control of the walking machine ALDURO.Proc. of the 1999 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics,1999,543~548
    [113] Schneider M,Muller J.Force based motion control of the walking machine ALDURO using exact linearization methods.Proc. of the 1999 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics,1999,537~542
    [114] Grand Ch,BenAmar F,Plumet F,Bidaua Ph.Decoupled control of posture and trajectory of the hybrid wheel-legged robot hylos.Proc. of the 2004 IEEE Int. Conf. on Robotics & Automation.New Orieans,LA.April 2004,5111~5116
    [115] Guccione S,Muscato G.The Wheeleg Robot.IEEE Robotics & Automation Magazine.Dec. 2003,33~43
    [116] Eiji N,Sei N.Leg-Wheel Robot:A Future Mobile Platform for Forestry Industry . Proc. of the 1993 IEEE/Tsukuba Int. Workshop on Advanced Robotics-Can robots contribute to preventing environmental deterioration?- Tsukuba,Japan Nov. 8-9,1993,109~112
    [117] Yu-Jie Dai,Nakano E,Takahashi T,Ookubo H.Motion control of leg-wheel robot for an unexplored outdoor environment.Proc. of the 1996 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,1996,(2):402~409
    [118]张启先.空间机构的分析与综合(上册).北京:机械工业出版社,1984.75
    [119]王庭树.机器人运动学及动力学.西安:西安电子科技大学出版社,1990.16
    [120]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999.33
    [121]谭营,邓超.一种机器人逆运动学求解的神经网络方法.电子科技大学学报,1998,27(3):310~315
    [122]戴齐,姚先启.一种求解机器人操作器运动学逆问题的分解算法.机器人,1989,3(6):21~26
    [123]史胜利,刘乃钊.一种求解机器人运动学逆问题的有效方法.哈尔滨船舶工程学院学报,1994,15(3):72~82
    [124]周骥平,朱兴龙,陶晔,缪汉东.基于小生境遗传算法的机械臂运动学逆解.扬州大学学报:自然科学版,2004,7(1):28~31
    [125]刘永超,黄玉美.基于遗传算法的机器人运动学逆解.机器人,1998,20(6):421~426
    [126]尤波,张永军,毕克新.PUMA560型机器人逆运动学问题的解析解.哈尔滨科学技术大学学报,1994,4:6~10
    [127]董明晓,陈美华.PUMA机器人逆运动学分析.山东建筑工程学院学报,2000,15(4):63~66
    [128]董明晓,周以齐.PUMA机器人逆运动学求解新方法.组合机床与自动化加工技术,2000,10:19~21
    [129]王奇志,尹朝万.PUMA机械手逆运动方程新的推导方法及求解.机器人,1998,20(2):81~87
    [130]陈宁,焦恩璋.PUMA机械手逆运动方程求解新方法.南京林业大学学报:自然科学版,2003,27(4):23~26
    [131]王红卫,尚展垒.机器人运动学反解惟一性研究.郑州轻工业学院学报,2001,16(2):26~28
    [132]刘德满,刘宗富.机器人运动学逆的并行算法.东北工学院学报,1992,13(6):556~561
    [133]易科.机器人运动学逆的数值迭代法.计算技术与自动化,1992,11(2):16~30,42
    [134]张劲夫.机器人运动学逆问题的一种新的数值解法.西北工业大学学报,1994,12(3):494~498
    [135]胡准庆,房海荣等.机器人奇异性分析.机器人技术与应用,2001,6:32~35
    [136] HU Zhun-qing,FANG Hai-rong,FANG Yue-fa.Study and Simulation of Manipulator Kinematic Solution at Singular Configurations.系统仿真学报,2003,15(6):826~829,844
    [137]朱向阳,熊有伦.机器人运动学反解中的奇异点处理.机器人,1996,18(5):264~267
    [138] Ang M H , Tourassis V D . Singularities of Euler and Roll-Pitch-Yaw Representations.IEEE Trans. on Aerospace and Electronic Systems, 1987, 317~324
    [139] Chou J C K. Quaternion kinematic and dynamic differential equations. IEEE Transactions on Robotics and Automation, 1992,53~64
    [140]王庆国,林建亚,路甬祥.机器人的运动学与动力学.机器人,1990,12(1):58~64
    [141] Ma Xiang-feng,Xu Xiang-rong.A Further Study on Kane's Equations Approach of Robots Dynamics. Proc. of the 1988 IEEE Int. Conf. on Systems, Man, and Cybernetics, 1988,107~112
    [144]戈新生.基于完全笛卡尔坐标的机构动力学计算机分析.机械设计与制造工程,2001,30(5):21~24
    [143]戈新生,刘松,张涌.等机器人动力学分析的完全笛卡尔坐标方法.机械设计,2001,18(10):13~15,30
    [144] McMillan S; Orin D E.Efficient computation of articulated-body inertias using successive axial screws.IEEE Trans. on Robotics and Automation,1995,606~611
    [145] Balafoutis C A; Patel R V. Efficient computation of manipulator inertia matrices and the direct dynamics problem. IEEE Trans. on Systems, Man and Cybernetics,1989, 1313~1321
    [146] Balafoutis, C A; Patel, R V; Misra P. Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors. IEEE Journal of Robotics and Automation, 1988, 665~676
    [147]李彦明,马培荪,高雪官,鲁守银.承压管道外检测机器人行走机构设计.机械设计与制造,2002(6):50-52
    [148]张华,潘际銮等.无轨导全位置爬行式弧焊机器人系统.机械工程学报,2006,42(7):85-92
    [149]肖俊君.多姿态便携式履带机器人设计与分析:学位论文.长沙:国防科学技术大学,2006
    [150]杨春辉,刘平安.仿生关节3自由度并联机构运动分析.贵阳学院学报(自然科学版)(季刊),2006,1(2):20-23
    [151]张龙,张友良.构造仿生关节的3自由度并联机构运动特性.机械设计与制造,2005(3):101-102
    [152]潘存云,温熙森.渐开线环形齿球齿轮传动原理与运动分析.机械工程学报,2005,41(5):1~9
    [153]姚齐水,李常义,潘存云.渐开线环形齿球齿轮的几何建模及其齿面方程研究.机械设计与研究,2006, 22(2):60-63
    [154]梅向明、黄敬之编.微分几何,人民教育出版社:北京,1981年
    [155]龙凯,程颖.齿轮啮合仿真计算的参数选取研究.计算机仿真,2002,19(6):87-88、91
    [156]李金玉,勾志践,李媛.基于ADAMS的齿轮啮合过程中齿轮力的动态仿真.机械,2005(3):15-17
    [157]毕凤荣,崔新涛,刘宁.渐开线齿轮动态啮合力计算机仿真.天津大学学报,2005,38(11):991-995
    [158]华顺刚,余国权,苏铁明.基于ADAMS的减速器虚拟样机建模及动力学仿真.机械设计与研究,2006,22(6):47-52
    [159]李三群,贾长治,武彩岗,刘海平.基于虚拟样机技术的齿轮啮合动力学仿真研究,系统仿真学报.2007,19(4):901-904
    [160]李起忠,刘凯.基于虚拟样机技术的齿轮啮合力的计算与仿真.重型机械,2006(6):49-51
    [161]刘国华,李亮玉,赵继学.考虑反向齿面啮合力的齿轮系统时变啮合刚度研究.天津工业大学学报,2006,25(6):54-57
    [162]施高义,唐金松,喻怀正,蒋丽敏合编.联轴器.机械工业出版社,北京:1988
    [163]王庭树.机器人运动学及动力学.西安电子科技大学出版社,西安:1990
    [164]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高.机械工业出版社.北京:2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700