中国、日本、菲律宾水稻白叶枯菌致病性和遗传多样性分析及文库克隆pA254的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻黄单胞菌的两个致病变种水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)和水稻条斑病菌(Xanthomonas oryzae pv.oryzicola, Xooc)是模式植物水稻(Oryza sativa)上的两种模式病原菌,分别引起水稻白叶枯病(bacterial blight, BB)和水稻细菌性条斑病(bacterial leaf streak, BLS),影响了亚洲大部分、非洲部分地区主要粮食作物的生产。水稻白叶枯菌(Xoo)从被发现至今100多年的历史中,一直是植物病理学研究者关注的焦点。研究水稻抗病基因(R)和Xoo无毒基因(A)的互作是阐明抗病基因和Xoo的致病性分化、鉴定小种、无毒基因、致病基因等的基本依据,也是发展有效的病害防治措施的需要。Xoo的小种分化涉及到对现有抗病品种的潜在利用价值。各国的Xoo代表菌株在科研和生产实践中都具有十分重要的意义。在寄主植物上的过敏反应HR最初被认为是一种“抗病现象”受到广泛关注,而病原细菌在非寄主烟草上的HR症状也是判定一个细菌分离物是否具有植物致病性的重要指标。由于HR现象与植物病原菌的致病性及寄主和非寄主植物的抗病性或内生免疫有着重要的关系,因此,研究Xoo菌株在寄主水稻上产生HR相关的avrBs3/pthA家族无毒基因和使非寄主烟草丧失产生HR的文库克隆pA254的组成和功能为更好地阐释植物细菌致病机理,植物病害抗病机理和植物与微生物学的其他方面的基本原理,同时也为内生免疫等方面带来重要启示。
     1 Xoo代表菌株致病多样性分析
     通过苗期注射接种法和成株期剪叶接种法,研究了20个来自中国、日本和菲律宾的Xoo不同致病型的代表菌株与36个水稻品种的互作关系。Xoo注射接种入14d的36个水稻品种的叶片中进行非亲和互作的HR表型测定,并对接种后第2-5d的接种叶片进行DAB溶液染色,检测接种叶片中活性氧爆发的情况,来观察HR发生情况。结果显示OS-198与所测试36个水稻品种苗期叶片中都发生有不同程度的非亲和互作,PX061、JXOI、OS-189菌株等与所测试36个品种中大多数品种之间存在特异性互作关系。Xoo注射接种所产生的症状是一复杂的表型,JXOI与IRBB1、IRBB2等发生特异性的互作,产生肉眼可见的典型的HR症状,表现出质量性状,但是更普遍现象是多数的Xoo在水稻品种上产生一种混合症状,即water-soaking症状和HR反应同时存在,但是病斑长度没有明显的变化,推测Xoo中所含有多数的avrBs3/pthA基因具有的无毒性属于一种数量累加效应,不是质量性状。研究结果明确了白叶枯菌与水稻近等基因系等36个水稻品种的互作关系,报道了在Xoo-水稻互作系统中的非亲和性互作与氧爆发的关系,推测不同代表菌株中可能含有的无毒基因,这为克隆对应R基因的无毒基因以及揭示水稻黄单胞菌致病性变异机制奠定了工作基础和提供了科学线索和依据。
     成株期剪叶接种结果显示在36个水稻品种中,基因累加品系IRBB54(xa5+Xa21)和IRBB55(xa13+Xa21)抗所有测试菌株,在20个测试菌株中,没有发现对36个水稻品种都致病的菌株。带有显性抗病基因Xa4、Xa7、Xal7、Xa21和隐性抗病基因xa5、xa13、xa24的水稻品种对50%以上的测试代表菌株抗病,而带显性抗病基因Xa1、Xa2、Xa10、Xa11、Xa12、Xa14、Xa18和隐性抗病基因xa8、xa19、xa20的水稻品种对50%以上的测试的代表菌株感病,籼稻IRBB3(Xa3)感病的品种也超过50%。IRBB21(Xa21)拥有最广的单基因抗性谱。IRBB54和IRBB55是抗病表现最好的双抗病基因组合的品种。常规品种TN-1感所有的测试菌株,IR26、BJ1、Asminori、Wase Aikoku 3和DV85对60%以上的测试菌有抗性.IR24、Java14、Tetep和Cas209对60%以上的测试菌感病。Xoo在36个水稻品种上的致病表型把测试菌株分成19个致病型,每个代表菌株的致病性各不相同。根据致病型的相似性,19个致病型可聚成7个类群(Cluster),聚类群3是优势群,分布最广,包含有测试的3国的代表菌株。
     2 Xoo代表菌株的小种遗传多样性分析
     有证据表明水稻黄单胞菌都含有15个以上的avrBs3/pthA家族基因,它们具有几乎一样的5'端和3'端,不同的只是中间102 bp重复单元的重复数不同。本研究参照PXO99A全基因组序列中已知的avrBs3/pthA基因的组成、数目和序列,以avrBs3/pthA家族成员avrXa3的中间保守区域大小为2.4kb-BamHI和1.4kb-SphI的中间片段为探针,对20个Xoo的代表菌株和Xooc菌株RS105的分别用BamHI和SphI酶切的基因组DNA进行Southern杂交作RFLP分析。杂交结果显示Xoo中很高的avrBs3/pthA家族成员遗传组成多样性。发现Xoo的不同小种间所含有的avrBs3/pthA基因的拷贝数不同,有些条带在所有的小种中都存在,有些条带是某个小种所特有的。发现探针的同源片段主要集中在1000bp到5000bp这个区间,意味着102bp的重复数大约有9-50个,每个菌株有12-38个同源拷贝。各国水稻白叶枯菌间至少共有4.3kb、4.0kb、3.9kb、3.8kb、3.5kb、3.1kb、2.8kb大小的BamHI片段或3.2kb、2.9kb、2.8kb、2.5kb、2.3kb、2.1kb、1.8kb大小的SphI片段的7个大小相同或相近的avrBs3/pthA家族基因。这些共有的基因在维护和展现水稻白叶枯菌的共性特征方面发挥着重要的作用。20个参试菌中总共鉴定了19种RFLP分子型(haplotype),根据分子型的相似性分为7个系群(Lineage).
     3.Xoo菌株PXO99A的无毒基因缺失突变分析
     水稻白叶枯菌中含有数目不等的无毒基因,但对大多数无毒基因的功能所知甚少。通过对同源重组获得的一个PXO99A无毒基因的突变体PXO99Δavr,进行Southern杂交验证、突变序列分析和水稻成株期剪叶接种的致病性测定。结果证实了突变体缺失了5个无毒基因,同源重组发生在PXO99A全基因组中一个有5个无毒基因串连的位点上。水稻成株期致病性测定结果表明突变体PXO99Δavr在IRBB10等15个水稻品种上的病斑长度比PXO99A明显缩短,在IRBB14、IRBB21和IRBB55上病斑变长,缺失的5个无毒基因的的综合表现为毒性因子功能。推断在缺失的基因中含有无毒基因avrXa14、avrXa21、avrxal3以及和抗病基因Xa3、Xa4、xa5、Xa10、Xal7亲和互作有关的毒性因子。为利用自杀式载体pKNG101建立模式菌株PXO99A的无毒基因缺失突变体库,进一步研究PXO99A中各无毒基因的功能做了一些初步的探索。
     4.无毒基因avrXa3介导的水稻白叶枯病菌在不同水稻品种上的致病适应性分析
     从水稻白叶枯JXOIII菌株中克隆到一个无毒基因avrXa3,它属于avrBs3/pthA家族成员。根据无毒基因avrXa3的序列,构建了水稻白叶枯PXO99A菌株缺失5个串联的无毒基因的突变体PXO99Δavr。将avrXa3导入PXO99A和PXO99Δavr后,得到衍生菌株PXO99A/avrXa3, PXO99Δavr/avrXa3,与36个含不同抗病基因的水稻品种进行互作分析。结果显示导入avrXa3后的菌株在不同的水稻品种上表现出了明显的寄生适应性变化。进一步分析证明无毒基因avrXa3在Wase Aikoku 3、IRBB2、IRBB3、IRBB203、IRBB204、IRBB205、IRBB211、IRBB53、IR24、TN-1等11个水稻上病斑缩短,表现明显的无毒活性;在IRBB21、IRBB10、IRBB14、IR26、Cas209、Java14等6个品种病斑明显变长,体现无毒基因的毒性功能。实验结果表明,无毒基因avrXa 3对PXO99A中其它无毒基因的表达有明显干扰作用,单个效应分子的变化也会使细菌在不同水稻品种上的寄生适应性发生复杂的改变。
     5.Xoo菌株与非寄主HR相关的PXO99A基因文库克隆pA254的功能分析
     来源于水稻白叶枯病菌PXO99A的文库克隆pA254,分别使水稻黄单胞菌PXO99A和RS105的致病力下降及丧失在烟草上激发过敏反应的能力。用SacI、EcoRI、KpnI和BamHI四种内切酶进行了交叉消化,构建了文库克隆pA254的酶切物理图谱。亚克隆导入RS105进行功能互补,在烟草上进行HR测定。结果显示亚克隆获得SacI, KpnI, EcoRl, BamHI完全和不完全酶切的29个亚克隆,导入RS105得到的接合子,都可以使烟草产生HR反应,没有与文库克隆pA254表型一致的亚克隆,即还未获得pA254的最小的功能片段。
     对所获得的pA254的亚克隆进行测序分析,通过序列同源性分析发现pA254与已经公布的PX099A的全基因组序列100%同源,与另外2个水稻白叶枯病菌具有99%以上同源性。这个克隆带有的外源片段大小为42572bp,位于PX099A基因组序列中相对保守的区域,包含约46个基因,也分别和MAFF11081和KACC10331中的37和42个基因同源。其中发现有毒力调控子基因、毒力蛋白基因、转录抑制子和含HTH基序的转录调控子等毒力相关因子,另外还有12个为未知功能基因,推测为保守的蛋白,4个转座酶基因,4个DNA连接酶,3个细胞色素C氧化还原酶,2个谷胱甘肽S转移酶,2个氨基酸-tRNA(Asp)合成酶,2个饥饿胁迫蛋白,2个抑制子(多羟基链烷酸合成抑制子),有一个乙酰辅酶Co-A还原酶,GumN蛋白和脂蛋白,YjeF家族蛋白,DNA错配修复酶,铁硫簇结合蛋白,乙酰丙氨酸酰胺酶,脱氧核糖核酸酶(亦称DNase),核糖核酸酶,可溶解胞壁转糖基酶等。文库克隆中有一大小约21kb的序列具有基因岛或致病岛的许多典型特征:带有1个或多个毒力相关因子、它们有明显的GC含量的变化,在连接处有整合酶基因,边界有tRNA作为整合位点,还有多个遗传移动性基因转座酶基因以及氨基酸偏爱密码子等。推测文库克隆pA254是hrp致病岛以外另一个和非寄主HR有关新的致病岛或基因岛(genomic island)。
Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xooc) cause bacterial blight (BB) and bacterial leaf streak (BLS) in rice (Oryza sativa), respectively. BB is one of the most destructive diseases of rice in Asia and Africa and BLS is emerging in importance in rice. Xoo and Xooc are considered as the model pathogens of rice, which is taken as the model cereal crop. The relationship between host resistance genes (R) and bacterial avr genes (A) offers important information about pathogenicity differentiation, race identification, and isolation of avr, pth and R genes. Understanding the complex interactions between the bacterial avr gene and its host rice R gene is imperative for the development of effective disease controls. Race differentiation of Xoo is involved in the potential value of resistant varieties of the existing resistant varieties. Analysis on the interaction between the rice and the representative of Xoo strains are of great significance in the practice of scientific research and production. The hypersensitive response (HR) on the host is recognized as a type of resistance phenomenon with the centenary of the first descriptions of'hypersensitiveness'and HR on the nonhost used as an important standard of phytopathogenesis for a pathogen.For the HR is so crucial with the pathogenesis and resistance or innate immunity, Therefore, the elucidation of the composing and function of the HR-associated genes surely facilitate our understanding molecular mechanisms of bacterial pathogenesis of plants and plant disease resistance, as well as other aspects of plant and microbial biology, with implications also for animal innate immunity.
     1.Virulence diversity of Xoo interaction with 36 rice cultivars
     Here we test 20 representative Xoo strains, comprising 4 Japanese strains (JXOI, JXOIII, JXOIV, JXOV),8 Philippine strains (PXO124, PXO112, PXO99, PXO99A, PXO86, PXO79, PXO71, PXO61) and 8 Chinese strains (OS-40, OS-86, OS-189, OS-198, OS-225, KS-6-6,GD-3, GD-5) interaction with 36 rice cultivars at the nursery and adult stage.
     In the seedling through the water-soaking method to detect the imcompatible interaction, the 20 Xoo strains were inoculated into 14-day rice seedlings of 36 cultivars by an needleless injection method, respectively. Photography and analysis the third day water soking lesions in rice. The HR phenomenon of oxidative burst was detected by DAB staining after needleless syringe-inoculation from the second day to the fifth day. The results of water-soaking lesions and DAB stain showed that no strain was virulence to all these R genes tested, while IRBB21, IRBB54, IRBB55 could overcome all these representative Xoo strains, strain OS-198 have imcompatible interaction with all 36 cultivars in seedlings, and PXO61, JXOI and OS-189, has speciality HR with a majority of detecting rice lines. This test analyses the avirulence and virulence of the 20 representative strains of Xoo from China, Japan and Philippines on 36 rice varieties. These results can be speculated that Xoo strains may contain avirulence genes and provide useful information for subsequent cloning experiments of the avr genes of the representative Xoo strains.
     In adult stage, the clip-inoculation results show that IRBB55 (Xa21+xal3) and IRBB54 (xa5+Xa21) have the best combination of R gene against BB. No strain was virulence to all these R genes tested, while IRBB54, IRBB55 could overcome all these representative Xoo strains. The lines with the gene Xa4, Xa7, Xa17, Xa21 or the recessive genes xa5. xa13. xa24, were resistant against over eighty percent of tested Xoo strains. While with the gene Xa1. Xa2. Xa10, Xall. Xal2,Xa14, Xa18 or xa8, xa19, xa20, were susceptible wih over fifty percent of tested strains. The gene, xa5, Xa7, and Xa21, exhibited the best broad resistance against about eighty percent of all tested strains. So the resistant gene xa5, Xa7, Xa21 is the best candidate R gene for breeding against Xoo. Among traditional varieties, IR26、BJ1、Asminori、Wase Aikoku 3,DV85 are resistance to over fifty percent of tested strains. Among the 20 strains tested,19 pathotypes were identified based on the 36 rice lines. Each strain has its pathotype. Further analysis of virulence data using the consensus of three clustering statistics and UPGMA revealed 7 clusters. Cluster 3 was the most heterogeneous and contained 1 from Philippines,2 from Japan and 6 from China, respectively.
     2.Genotypic diversity of Xoo with 2.4kb-BamHI and 1.4kb-Sphl fragment of avrXa3
     Evidence indicates that each race of Xanthomonas oryzae contain more than 15 members of avrBs3/pthA family genes. They have almost identical the 5'and 3'terminals. The difference is the repeat number of the 102 bp repeat unit among them. In this study, we use the 2.4kb-BamHI and 1.4kb-SphI DNA fragment of the avrXa3 gene, a member of avrBs3/pthA family genes, as the probes for genomic DNA Southern blot analysis of the representative Xoo and Xooc strains for RFLP research. The DNA fingerprint pattern generated by the probe revealed the high genetic diversity in Xoo strains.The copies of avrBs3/pthA gene are different in races of these two pathogens and found some bands in all races and some of the bands are specific in certain races.
     The size of DNA fragments that hybridized mainly ranged from 1 to 5 kbs, therefore, there are about 9 to 50 repeat units inferred with 102 bps in central region between the conservative SphI site among avrBs3/PathA family. The results indicated the presence of multiple homologous copies of the avrBs3/PthA gene family among the pathogens, ranging from 12-38 signal bands. Alignment of detected signal bands indicated that seven bands with the size of 4.3kb,4.0kb,3.9kb,3.8kb,3.5kb,3.1kb,2.8kb-BamHI fragment or 3.2kb, 2.9kb,2.8kb,2.5kb,2.3kb,2.1kb,1.8kb-Sph fragment respectively, are shared by all of tested strains and another one with 1.2 kbs is common for all Xoo strains. The DNA fingerprint pattern was referred to as molecular haplotype. At least 38 BamHI and 43 SphI bands positions were scored for the collections. On the basis of consensus of three clustering statistics, seven lineages were found among these strains. Genetic diversity was high in all lineages and No significant (P< 0.05) differences were revealed by t test.
     3. Studies on the mutant avr genes of Xoo strain PXO99A by knock-out mutagenesis
     PXO99△avr, an avr gene deletion mutant of Xoo strain PXO99A was obtained by homologous recombination. The mutant was identified by PCR, Southern blot, flanking sequence analysis and rice inoculation assay. The results showed that five avr genes were deleted in PXO99△avr and the site directed mutagenesis occurred on the one loci of the five series-wound avr genes in PXO99A genome. The inoculation assays of 36 rice varieties indicated that PXO99△avr induced shorter lesion on 15 varieties such as IRBB10 and longer lesion on IRBB14, IRBB21, and IRBB55 than PXO99A. Based on the compositive result, five knock-outed avr genes in PXO99A could coded virulence factors to induce rice leaf lesion. It was concluded that avr genes avrXa14, avrXa21, avrxal3 could be contained in five series-wound avr genes and some pathogenic fitness factors in PXO99A could be associated with the interaction with rice R genes such as Xa3, Xa4, Xa5, Xa10, Xa17. It should facilitate the study to generate avr gene mutant libraries of PXO99A and know more about their function.
     4.Analysis on the interaction between avrXa3 mediated Xoo strains and various rice varieties
     avrXa3 comes from Xoo(Xanthomonas oryzae pv.oryzae[Ishiyama] Dye)JXOⅢstrain, a member of avrBs3/pthA family. PXO99△avr, an avr gene deletion mutant of Xoo, derivate from PXO99A by homologous recombination. The avrXa3 was introduced into PXO99△avr and PXO99A to produce derivatives,PXO99A/avrXa3, PXO99△avr/avrXa3. The inoculation assays of 36 rice varieties indicated that pathogenic fitness of PXO99A/avrXa3, PXO99△avrlavrXa3on rice varieties was significant modulated as compared with PXO99A, PXO99△avr, respectively. Based on lesion length, avrXa3 shows avirulence on adult plants of rice varieties of Wase Aikoku 3, IRBB2, IRBB3, IRBB203, IRBB204, IRBB205, IRBB211, IRBB53, IR24, TN-1 and virulence on rice varieties of IRBB21, IRBB10, IRBB14, IR26, Cas209, Java14. The avrXa3 showed significant interference for expression of the avr genes in PXO99A. Individual effector change may make subtle alterations for bacterial pathogenicity on relevant rice varieties.
     5.Function analysis of a Xoo strain PXO99A genomic library clone pA254 associated with nonhost HR
     By biparental mating,1200 clones of Xoo strain PXO99A genomic library were transferred into Xooc strain RS105.Clone pA254 was found to significantly reduce the pathogenicity of recipient strain RS105 and its ability to induce HR on nonhost plant tobacco. Same results were obtained when pA254 was transferred into PXO99A. These indicated that pA254 may be carry genes which involved in negative regulation of hrp genes of Xanthomonas oryzae or genes which encoded protein enzymes that can degredate harpins protein produced in Xanthomonas oryzae. Based on the subclone study by SacI digestion, physical map of pA254 was constructed with restriction endonuclease EcoRI, BamHI, KpnI and SacI by cross-digestion method.
     None of the 29 subclones from 42.6-kb genomic library clone pA254 shows the same phenotype with pA254. We failed to gain the smallest functional fragment. Sequencing 42.6-kb fragment in pA254 demonstrates that pA254 is a 42572bp fragment locates in a relatively conservative region of PXO99A genome, contained 46 annotated genes. There are one virulence regulator xrvA, one virulence protein gene, one repressor etc genes associated with pathogenesis. There are twelve hypothetical protein, four ATP-dependent DNA ligases and transposases, respectively; 3 ubiquinol cytochrome C oxidoreductase,2 glutathione S-transferase,2 stringent starvation protein,2 repressor, and glutamyl-Q tRNA(Asp) synthetase, tRNA-Ala, acetoacetyl-CoA reductase, GumN protein, lipoprotein, DNA mismatch repair protein MutL, N-acetylmuramoyl-L-alanine amidase, YjeF family protein, iron-sulfur cluster binding protein, exodeoxyribonuclease, ribonuclease D, soluble lytic murein transglycosylase et al.. A 21kb fragment of pA254 has many conserved features of a pathogenicity island or genomic island. Include the presence of flanking repeats, mobility genes (e.g. integrases, transposases), proximal transfer RNAs (tRNAs, e.g., an Asp-tRNA gene, a Ala--tRNA gene), and atypical guanine and cytosine content, has a large percentage of phage protein, suggesting a phage-related recombination is involved. It may be speculated as a new pathogenicity island associated with nonhost HR other than the hrp pathogenicity island.
引文
1. Alvarez, M.E., Pennell, R.I.,Meijer, P-J., Ishikawa, A., Dixon, R.A.and Lamb, C.1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity.Cell 92:773-784.
    2. Baker, C.J., Orlandi, E.W. and Mock, N.M.1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells.Plant Physiol.102:1341-1344.
    3. Bauer, D.W., Wei, Z.M., Beer, S.V. and Collmer, A.1995.Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol.Plant-Microbe Interact.8:484-491.
    4. Bethke, P.C. and Jones, R.L.2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J.25:19-29.
    5. Bolwell, G.P. and Wojtaszek, P.1997. Mechanisms for the generation of reactive oxygen species in plant defense:a broad perspective. Physiol. Mol. Plant Pathol.51:347-366.
    6. Bonas, U.1994. Hrp genes of phytopathogenic bacteria. In:J.L Dangle (Ed.) Current Topics in Microbiology and Immunology, vol.192:Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms, Springer-Verlag, Berlin, pp.79-98.
    7. Bowler, C. and Fluhr, R.2000. The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci.5:241-245.
    8. Mehdy, M.C.1994. Active oxygen species in plant defense against pathogens. Plant Physiol.105: 467-472
    9. Dangl, J.L., Dietrich, R.A. and Richberg, M.H.1996. Death don't have no mercy:cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807.
    10. Dong, H., Delaney, T.P., Bauer, D.W. and Beer, S.V.1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    11. Dorey, S., Baillieul, F., Saindrenan, P., Fritig, B. and Kauffmann,S.1998. Tobacco cells I and II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Mol. Plant-Microbe Interact.11:1102-1109.
    12. Foyer, C.H., Descourvieres, P. and Kumert, K.J.1994. Protection against oxygen radicals:an important defence mechanism studied in transgenic plants. Plant Cell Environ.17:507-523.
    13. Galan, J.E. and Collmer, A.1999. Type III secretion machines:bacterial devices for protein delivery into host cells. Science 284:1322-1328.
    14. Gallo-Meagher, M., Sowinski, D.A., Elliot, R.C. and Thompson,W.F.1992. Both internal and external regulatory elements control expression of the pea Fed-1 gene in transgenic tobacco seedlings.Plant Cell 4:389-395.
    15. Greenberg, J. T.1997. Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol.48:525-545.
    16. Greenberg J T,A llan G, Klessig D F et al. P rogrammed cell death in p lants:a pathogen triggered response activated coo rdinately w ith multip le defense functions. Cell,1994; 77:551-563
    17. He, S.Y., Huang, H.C. and Collmer, A.1993. Pseudomonas syringae pv. syringae harpinpss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants.Cell 73: 1255-1266.
    18. He, S.Y., Bauer, D.W., Collmer, A. and Beer, S.V.1994. Hypersensitive response elicited by Erwinia amylovora harpin requires active plant metabolism. Mol. Plant-Microbe Interact.1994; 7 (2):289-292.
    19. Klement Z, Farkas G L, Loverkovich L. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopatho logy,1964; 54:474-477
    20. Lam E, Kato N, Lawton M (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853
    21. Luis A. J. Mur, Paul Kenton, Amanda J. Lloyd et al. The hypersensitive response; the centenary is upon us but how much do we know? 2008 Journal of Experimental Botany, Vol.59, No.3, pp. 501-520,
    22. Stackman E C. Relation between P uccinia g ram inis and p lant h ighly resistance to its attack. J. Agric. Res.,1915:193-199
    23. Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y.,Collmer, A. and Beer, S.V.1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.
    24. Xie, Z. and Chen, Z.2000. Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant-Microbe Interact.13:183-190.
    1. Abramovitch, R. B., Kim, Y.-J., Chen, et al.2003. Pseudomonas type Ⅲ effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO (Eur. Mol. Biol. Organ.) J.22:60-69
    2. Asturias FJ. RNA polymerase Ⅱ structure, and organization of the preinitiation complex. Curr Opin Struct Biol.2004;14:121.
    3. Bai J, Choi S-H, Ponciano G, Leung H, Leach JE. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant-Microbe Interact 2000;13:1322-9.
    4. Ballvora A, Pierre M, Van den Ackerveken G, et al. Genetic mapping and Functional analysis of the tomato Bs4 locus, governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant-Microbe Interact 2001a;14:629-38.
    5. Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 1999;21:932-9.
    6. Bonas U, Stall RE, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 1989;218:127-36.
    7. Bonas U, Conrads-Strauch J, Balbo I. Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet 1993;238:261-9.
    8. Brunings AM, Gabriel DW. Xanthomonas citri: breaking the surface. Mol Plant Pathol 2003;4:141-57.
    9. Bu"ttner D, Bonas U. Port of entry—the type III secretion translocon. Trends Microbiol 2002; 10:186-92.
    10. Bu'ttner D, Gu'Ylebeck D, Noe"1 LD, Bonas U. HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type Ⅲ-dependent protein secretion. Mol Microbiol 2004;54:755-68.
    11. Buttner D, Nennstiel D, Klu"sener B, Bonas U. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J Bacteriol 2002; 184:2389-98.
    12. Chakrabarty PK, Duan YP, Gabriel DW.1997, Cloning and characterization of a member of the Xanthomonas avr/pth gene family that evades all commercially utilized cotton R genes in the United States. Phytopathology.87:1160-1167.
    13. Cunnac S, Occhialini A, Barberis P, Boucher C, Genin S. Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 2004;53:115-28.
    14. da Silva, A. C., J. A. Ferro, F. C. Reinach, et al.2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
    15. David, O. N., C. R. Pamela, and J. B. Adam.2006. Xanthomonas oryzae pathovars:model pathogens of a model crop. Mol. Plant Pathol.7(5):303-324.
    16. De Feyter R, Gabriel DW. At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol Plant-Microbe Interact 1991;4:423-32.
    17. De Feyter R, Yang YO, Gabriel DW.1993, Gene-for-genes interactions between cotton R-genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant-Microbe Interact.6:225-237.
    18. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol 1971.9:275-296.
    19. Doreen Gu'rlebeck, Frank Thieme, Ulla Bonas. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology 2006:163233—255
    20. Flor, H. H.1955. Parasite interaction in flax rust-its genetics and other implications. Phytopathology 45:680-685.
    21. Fujikawa,T., Hiromichi I., Jan E. Leach, et al. Suppression of Defense Response in Plantsby the avrBs3/pthA Gene Family of Xanthomonas spp. Mol Plant-Microbe Interact 19:2006, pp.342-349.
    22. Gabriel DW. The Xanthomonas avr/pth gene family. Plant-microbe interactions, vol.4. St. Paul, MN:APS Press; 1999. p.39-55.
    23. Gabriel DW, Burges A, Lazo GR.1986, Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proc. Natl. Acad. Sci. U.S.A.83:6415-6419.
    24. Ginalski K, Elofsson A, Fischer D, Rychlewski L.3D-Jury:a simple approach to improve protein structure predictions. Bioinformatics 2003; 19:1015-8.
    25. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C et al.2005. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 435,1122-1125.
    26. Gu K, Tian D, Yang F, et al. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theor Appl Genet 2004; 108:800-7.
    27. Gu"rlebeck D. Genetische und molekulare Analyse von AvrBs3 und AvrBs4, zwei Mitgliedern der AvrBs3-Genfamilie aus Xanthomonas campestris pv. vesicatoria. Diploma thesis; Martin-Luther Universita"t Halle-Wittenberg, Germany,2001.
    28. Hirokazu,O., I. Yasuhiro, T. Masaru, et al.2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ.39(4):275-287
    29. Hopkins CM, White FF, Choi SH, Guo A, Leach JE. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact 1992;5:451-9.
    30. Innes RW. Guarding the goods:new insights into the central alarm system of plants. Plant Physiol 2004; 135:695-701.
    31. Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance.Mol Plant-Microbe Interact 2004; 17:1348-54.
    32. Kay S, Boch J, Bonas U. Characterization of AvrBs3-like effectors from a Brassicacae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant-Microbe Interact 2005; 18:838-48.
    33. Kearney B, Staskawicz BJ. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene, avrBs2. Nature 1990;346:385-6.
    34. Keen, N. T.1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463.
    35. Kelemu, S., and Leach, J. E.1990. Cloning and characterization of an avirulence gene from Xanthomonas campestris pv. oryzae. Mol. Plant-Microbe Interact.3:59-65.
    36. Kobayashi K, Hohn T. The avirulence domain of Cauli flower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. Mol Plant-Microbe Interact 2004; 17:475-83.
    37. Lahaye T, Bonas U. Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 2001;6:479-85.
    38. Leach J E, White F F. Bacterial avirulence genes. Annual Review of Phytopathology,1996,34: 153-179.
    39. Lee BM, Park YJ, Park DS, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 2005;33:577-86.
    40. Li P, Long JY, Huang YC, Zhang Y, Wang JS.2004, AvrXa3:a novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function. Prog Natl Sci; 14:774-780.
    41. Lorang J M, Keen N T.1995, Characterization of avrE from Pseudomonas syringae pv. tomato:a hrp-like avirulence locus consisting of at least two transcriptional units. Molecular Plant-Microbe Interactions,8:49-57.
    42. Makino, S., A. Sugio, F. White, and A. Bogdanove.2005. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Plant-Microbe Interact.19:240-249.
    43. Marois E, Van den Ackerveken G., Bonas U. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant-Microbe Interact 2002; 15:637-46.
    44. Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 2003;54:23-61.
    45. Ogawa T, Yamamoto T, Khush GS, Mew TW. The Xa-3 gene for resistance to Philippine races of bacterial blight of rice. Rice Genet Newslett 1986;3:77-8.
    46. Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agric Res Q 2005;39:275-87.
    47. Schornack, S., A. Meyer, P. Romer, T. Jordan, and T. Lahaye.2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Journal of Plant Physiology 163:256-272
    48. Schornack S, Ballvora A, Gu"rlebeck D, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 2004;37:46-60.
    49. Schornack S, Peter K, Bonas U, et al. Expression levels of avrBs3-like genes affect recognition specifi-city in tomato Bs4 but not in pepper Bs3 mediated perception. Mol Plant-Microbe Interact 2005;18:1215-25.
    50. Sidhu GS, Khush GS, Mew TW. Genetic-analysis of bacterial-blight resistance in 74 cultivars of rice, Oryza-sativa-L. Theor Appl Genet 1978;53:105-11.
    51. Swarup S, De Feyter R, Brlansky RH, Gabriel DW. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of Xanthomonas campestris to elicit cankerlike lesions on citrus. Phytopathology 1991;81:802-9.
    52. Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ. Spontaneous and induced mutations in a single openreading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 1996;178:4661-9.
    53. Szurek, B., Rossier, O., Hause, G., and Bonas, U.2002. Type Ⅲ-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell.\Mol. Microbiol.46:13-23.
    54. Szurek B, Marois E, Bonas U, Van den Ackerveken G. Eukaryotic features of the Xanthomonas type III effector AvrBs3:protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 2001;26:523-34.
    55. Thieme F, Koebnik R, Bekel T, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 2005; 187:7254-66.
    56. Van den Ackerveken G, Marois E, Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 1996;87:1307-16.
    57. Vidal S, Cabrera H, Andersson RA, et al. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y. Mol Plant-Microbe Interact 2002; 15:717-27.
    58. White F F, Yang B, Johnson L B. Prospects for understanding avirulence gene function. Current Opinion in Plant Biology,2000,3:291-298.
    59. Wichmann G, Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics 2004; 166:693-706.
    60. Yang B, Sugio A, White FF. Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact 2005; 18:142-9.
    61. Yang B, White FF. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 2004; 17:1192-200.
    62. Yang B, Zhu W, Johnson LB, White FF. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double- stranded DNA-binding protein. Proc Natl Acad Sci USA 2000;97:9807-12.
    63. Yang YN, De Feyter R, Gabriel DW. Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol Plant-Microbe Interact 1994; 7:345-55.
    64. Yang YN, Gabriel DW. Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J Bacteriol 1995a; 177:4963-8.
    65. Yang Y N, Gabriel DW. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact 1995b;8:627-31.
    66. Zhao, B., Ardales, E.Y., Raymundo, A., Bai, J., Trick, H.N., Leach, J.E. and Hulbert, S.H. (2004a) The avrRxol gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxol. Mol. Plant-Microbe Interact.17:771-779.
    67. Zhu WG, Yang B, Chittoor JM, Johnson LB, White FF. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant-Microbe Interact 1998; 11:824-32.
    68. Zhu WG, Yang B, Wills N, Johnson LB, White FF. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. Plant Cell 1999;11:1665-74.
    1. Amante Bordeos A, Sitch LA, Nelson R, et al.1992. Transfer of bacterial blight and blast resistance from the tetraploid wild rice, Oryza minuta to cultivated rice, Oryza sativa. Theor. Appl. Genet,84: 345-354.
    2. Blair MW, Garris AJ, Iyer AS, Chapman B, Kresovich S, McCouch SR.2003, High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.).Theor Appl Genet.107:62-73.
    3. Bonas U, Conrads-Strauch J, Balbo I.1993, Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet. 238:261-269.
    4. Brueggeman R. et al,2002, The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. U. S. A. July 9,99(14):9328-9333.
    5. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA et al.2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita. Plant Cell.12,2033--2046.
    6. Buschges R, Hollricher K, Panstruga R et al.1997, The barley Mlo gene: A novel control element of plant pathogen resistance. Cell.88,695-705.
    7. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W et al.2006. A Blectin receptor kinase gene conferring rice blast resistance. Plant J.46:794-804.
    8. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C et al.2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev.20:1200-1255.
    9. Ezuka A, Horino O, Toriyama K, Shinoda H, Morinaka T.1975, Inheritance of resistance of rice variety Wase Aikoku 3 to Xanthomonas oryzae. Bull Tokai-kinki Nat. Agric. Exp. Stn.28:124-130.
    10. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol 1971.9:275-296.
    11. Gu K, Tian D, Yang F, et al,2004, High resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theo. Appl. Genet.108:800-807.
    12. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C et al.2005. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 435,1122-1125.
    13. Ikeda R, Tabien RN, Khush GS,1991, Chromosomal location of Xa21. Rice Genet. Newsl., 8:102-103.
    14. Iyer AS, McCouch SR.2004, The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant-Microbe Interact; 17:1348-1354.
    15. Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS et al.2006. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgammal. Mol Genet Genomics 275,354-366.
    16. Johal GS, Briggs SP.1992, Reductase activity encoded by the HM1 disease resistance gene in maize [J].Science,258:985-987.
    17. Kaji R, Qgawa T.1995, Identification of the located chromosome of the resistance gene Xa7 to bacterial leaf blight in rice Jpn J. Breed.,45(suppl.1):79.
    18. Lee KS, Rasabandith S, Angeles ER, et al,2003, Inheritance of resistance to bacterial blight in 21 cultivars of rice, Phytopathology,93(2):147-152.
    19. Leister D,Kurth J,Laurie DA,et al.Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA,1998,95:370-375
    20. Liang-Ying Dai, Xiong-Lun Liu, Ying-Hui Xiao and Guo-Liang Wang,2007, Recent Advances in Cloning and Characterization of Disease Resistance Genes in Rice, Journal of Integrative Plant Biology,49(1):112-119.
    21. Librojo V, Kauffman HE, Khush GS,1976, Genetic analysis of bacterial blight resistance in four varieties in rice. SABRAO J.,6(2):105-110.
    22. Lin XH, Zhang DP, Xie YF, et al 1996, Identification and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopatholgy,86:1156-1159.
    23. Me Couch SR, Abenes ML, Angeles R, et al.1991, Molecular tagging of a resistance gene, xa5, for resistance to bacterial blight of rice. RGN,8:143-145.
    24. Nakai H, Kuwahara M, Saito M.1988, Studies of an induced mutant resistant to multiple races of bacterial leaf blight, Rice Genet. New].,5:101-103.
    25. Noda T, Ohuchi A.,1989, A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Tetep to it. Ann. Phytopathol. Soc. Jpn.,55:201-207.
    26. Ogawa T, Lin L, Tabien RE, et al.1987, A new recessive gene for resistance to bacterial blight of rice. Rice Genet. Newl.,4:98-100.
    27. Ogawa T, Morinaka T, Fujii K, et al.1978, Inheritance of resistance of rice varieties of Kogyoku and Java 14 to bacterial group V of Xanthomonas oryzae. Ann. Phytopathol. Soc. Jpn.,44:137-141.
    28. Ogawa T, Yamamoto T,1989, Resistance gene of rice cultivar, Asominori to bacterial blight of rice, Jpn J. Breed.,39(suppl.1):196-197.
    29. Ogawa T, Yamamoto T, Khush GS, Mew TW.1986, The Xa-3 gene for resistance to Philippine races of bacterial blight of rice. Rice Genet Newslett; 3:77-78.
    30. Petpisit V, Khush GS, Kauffman HE,1977, Inheritance of resistance to bacterial blight in rice. Crop Sci.,17:551-564.
    31. Pierre M, Noe"1 L, Lahaye T, Ballvora A, Veuskens J, Ganal M, et al.2000, High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv. vesicatoraAvrBs3 protein. TheorAppl Genet; 101:255-263.
    32. Porter BW, Chittoor JM, Yano M, Sasaki T, White FF.2003, Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7. Crop Sci; 43:1484-1492.
    33. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L et al.2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotidebinding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172,1901-1914.
    34. Ronald PC, Albano B, Tablen R, et al 1992, Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol. Gen. Genet.,236:113-120.
    35. Sakaguchi S.1967, Linkage studies on the resistance to bacterial leaf blight, Xanthomonas oryzae (Uyeda et yishiyama) Dowson, in rice. Bull. Natl. Inst. Agric. Sci.,D 16:1-18.
    36. Schornack S, Ballvora A, Gu'rlebeck D, Peart J, Baulcombe D, Baker B, et al.2004, The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J;37:46-60.
    37. Schornack S, Peter K, Bonas U, Lahaye T.2005, Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4 but not in pepper Bs3 mediated perception. Mol Plant-Microbe Interact,18:1215-1225.
    38. Sebastian Schornack, Annett Meyer, Patrick Ro"mer, Tina Jordan, Thomas Lahaye,2006, Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins, Journal of Plant Physiology 163 256-272.
    39. Shunyuan Xiao, Simon Ellwood, Ozer Calis, Elaine Patrick, Tianxian Li, Mark Coleman, John G. Turner 2001, Broad-Spectrum Mildew Resistance in Arabidopsis thaliana Mediated by RPW8 Science 5 January Vol.291. no.5501, pp.118-120.
    40. Sidhu GS, Khush GS, Mew TW.1978, Genetic-analysis of bacterial-blight resistance in 74 cultivars of rice,Oryza-sativa-L. Theor Appl Genet;53:105-111.
    41. Sidhu GS, Khush GS, New TW.1978, Genetic analysis of bacterial blight resistance in seventy cultivars of rice, Oryza saviva L. Theor. Appl. Geneti.53:105-111.
    42. Singh K, Vikal Y, Singh S, et al.2002, Mapping of bacterial blight resistance gene xa8 using microsatellite makers Rice Genetics Newsletters,19:94-97.
    43. Song W Y,Pi L Y,Wang G L,Gardner J,Holsten T,Ronald P C.1997, Evolution of the rice xa21 disease resistance gene family. Plant Cell,9:1279-1287.
    44. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T et al.1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270,1804-1806.
    45. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q 2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37, 517-527.
    46. Taura S, Ogawa T,, Yoshimura A, et al 1992b, Identification of a recessive gene to rice bacterial blight of mutant line XM6, Oryzae sativa L. Jpn J. Breed.,42:7-13.
    47. Taura S, Ogawa T, Tabien RE, et al.1987, The specific reaction of Taizhung Native 1 to Philippine race of bacterial blight and inheritance of resistance to race 5 (PXO112). Rice Genet. Newl., 4:10-102.
    48. Taura S, Ogawa T, Yoshimura A, et al 1991b, Identification of a recessive resistance gene in induced mutant line XM5 of rice to rice bacterial blight. Jpn J. Breed.,41:427-432.
    49. Thilmony RL,Chen Z,Bressan RA,et al.Expression of the tomato Pto gene in tobacco enhances resistance fo Pseudomonas syringae pv.tobaci expressing avrPto. Plant Cell,1996,8:1683-1693
    50. Vera Cruz CM, Bai J, Ona I, Leung H, Nelson RJ, Mew TW, et al.2000, Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence genemutation. Proc Natl Acad Sci USA; 97:13500-13505.
    51. Wang GL,Song WY,Ruan DL,et al.The cloned gene,Xa21,confers resistance to multiple Xanthomonas oryzae pv.oryzae is olates in transgenic plants. Mol Plant-Microbe Interact, 1996,9:850-855
    52. Wang GL, Ruan DL, Song WY, et al.1998 Xa21D encodes a receptor-like molecule with a Leucine-Rich-Repeat domain that determines race-specific recognition and is subject to adaptive evolution, The Plant Cell,10:765-779.
    53. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H et al.1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19,55-64.
    54. Whitham S,McCormick S,Baker B.The Ngene of tobacco Confers resistanec to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA,1996,93:8776-8781
    55. Xinghua L, Duanpin Z, Yuefeng X, Qifa Z, Heping G. 1996,Mapping a new gene for resistance to bacterial blight using RFLP markers. Int Rice Res Notes; 21:30.
    56. Yamamoto T, Ogawa T.1990, Inheritance of resistance in rice cultivars, Toyonishiki, Milyang 23, and IR24 to Myanmar isolates of bacterial leaf blight pathogen. Jpn. Agric. Res. Q.,24:74-77.
    57. Yoshimura A, Mew TW, Khush GS, Omura T.1983, Inheritance of resistance to bacterial blight in rice cultivar Cas209. Phytopathology;73:1409-1412.
    58. Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95,1998.1663-1668.
    59. Yoshimura S, Yoshimura A, Iwata N, et al.1995,Tagging and combining bacterial-blight resistance genes in rice using RAPD and RFLP markers. Mol Breed; 1:375-387.
    60. Yoshimura SA, Yoshimura A, Saito N, Kishimoto M, Kawase M, Yano M, et al.1992, RFLP analysis of introgressed chromosomal segments in three near-isogenic lines of rice for bacterial blight resistance genes, Xa-1,Xa-3, Xa-4. Jpn J Genet; 67:29-37.
    61. Yoshioka H., Numata N., Nakajimaa K. et al.2003, Nicotiana benthamiana gp91 phox Homologs NbrbohA and NbrbohB Participate in H2O2 Accumulation and Resistance to Phytophthora infestans. (J). Plant Cell,15(3):706-718.
    62. Yu YG,Buss GR,Maroof MAS.Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-biding site.Proc Natl Acad Sci USA,1996,93:11751-11756.
    63. Zhang Q, Angeles RE, Abenes MLP, et al,1996, RAPD and RFLP mapping of the bacterial blight resistance gene xa13 in rice. Theor. Appl. Genet.93:65-70.
    64. Zhang Q, Lin SC, Zhao BY et al.,1998, Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon, Rice Gene. Newsl., 15:138-142.
    65. Zhong YM, Jiang GH, Chen XW, Xia ZH, Li XB, Zhu LH.2003, Identification and gene prediction of a 24 kb region containing xa5, a recessive bacterial blight resistance gene in rice (Oryza sativa L.). Chin Sci Bull; 48:2725-2729.
    66. Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G et al.2006. The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe In 19,1216-1228.
    67.樊颖伦,陈学伟,王春连等.2006,水稻抗白叶枯病基因Xa23的RFLP标记定位及其STS标记的转化.作物学报.32(6):931-935.
    68.谭震波,章琦,朱立煌等.1998.水稻白叶枯病基因Xa14在分子标记连锁图上的定位.遗传.20(6):30-33.
    69.章琦主编.2007.水稻白叶枯病抗性的遗传及改良.科学出版社.
    1. Alfano JR., Collmer A (1996). Bacterial pathogens in plants:life up against the wall. Plant Cell 8: 1683-1698.
    2. Alfano JR, collmer A (1997) The Type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death (minireview). J Bacteriol 179:5655-5662
    3. Alfano JR, Charkowski AO, Deng W-L, Badel JL, Petnicki T, van Dijk K, Collmer A (2000). The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856-4861.
    4. Aaron J Windsor,Thomas Mitchell-Olds.2006,Comparative genomics as a tool for gene discovery. Current Opinion in Biotechnology,17:161-167
    5. Arnold DL, Jackson RW, Waterfield NR, Mansfied JW (2007) Evolution of microbial virulence: the benefits of stress (review). TRENDS in Genetics 23:293-300
    6. Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschape, H.& Hacker, J. (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen Infect. Immun 62,606-614
    7. Chen LL (2006) Identification of genomic islands in six plant pathogens. Gene 374:134-141
    8. Datz, M., M. C. Janetzki, S. Franke, F. Gunzer, H. Schmidt, and H. Karch.1996. Analysis of the enterohemorrhagic Escherichia coli 0157 DNA region containing lambdoid phage gene p and Shiga-like toxin structural genes. Appl. Environ. Microbiol.62:791-797
    9. Ehrbar K, Hardt WD (2005) Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium (review). Infection Genetics and Evolution 5:1-9
    10. Gabriele Blum, Manfred Ott, Axel Lischewski, et al. Excision of Large DNA Regions Termed Pathogenicity Islands from tRNA-Specific Loci in the Chromosome of an Escherichia coli Wild-Type Pathogen. Infection and Immunity.1994.62,2:606-614
    11. Guillaume Pavlovic, Vincent Burrus, Brigitte Gintz, Bernard Decaris, Ge'rard Gue'don. Evolution of genomic islands by deletion and tandem accretion by site-specific recombination:ICESt1-related elements from Streptococcus thermophilus. Microbiology.2004,150,759-774
    12. Hacker, J., Bender, L., Ott, M., Wingender, J., Lund, B., Marre, R.& Goebel, W. (1990) Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog.8:213-225
    13. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997). Pathogenicity islands of virulent bacteria:structure, function and impact on microbial evolution. Mol. Microbiol.23:1089-1097.
    14. Janke B, Dobrindt U, Hacker J, et al. A subtractive hybridisation analysis of genomic differences between the unpathogenic E. coli strain 536 and the E. coli K-12 strain MG1655. Fems Microbiol Lett.2001,199(1):61
    15. Kim JF, Alfano JR (2002). Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol.264:127-147.
    16. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185:3155-3166
    17. Knapp S, Hacker J, Jarchau T, et al.1986 Large, Unstable Inserts in the Chromosome Affect Virulence Properties Of Uropathogenic Escherichia coli 06 Strain 536. J Bacteriol,168(1)=22^-30
    18. Lober S, Jackel D, Kaiser N, Hensel M (2006) Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. International Journal of microbiology 296:435-447
    19. Oh CS, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight (minireview). FEMS Microbiology Letters 253:185-192
    20. Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Current Opinion in Microbiology 6:519-527
    21. Pitman AR, Jackson RW, Mansfied JW, Kaitell V, Thwaites R, Arnold DL (2005) Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Current Biology 15:2230-2235
    22. Reckeseidler S L, DeShazer D, Sokol P A, et al. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burholderia pseudomallei as a major virulence determinant. Infect. Immun.2001,69(1):34
    23. Rogerio C N, Marcela C C, Alice G M, et al. (2004) Molecular investigation of tRNA genes integrity and its relation to pathogenicity islands in Shiga toxin-producing Escherichia coli (STEC) strains. Genetics and Molecular Biology,27,4,589-593
    24. Robinson D. Ashley and Mark C. Enright. Evolution of Staphylococcus aureus by Large Chromosomal Replacements. J. Bacteriology.2004.186,4:1060-1064
    25. Schubert S, Rakin A, Heesemann J (2004) The Yersinia high-pahtogenicity island (HPI) evolutionary and functional aspects (review). Inernational Journal of Medical Microbiology 294:83-94
    26. Uladzimir A, Christina N, Jurgen H, Alexander R. (2005)Horizontal transfer of Yersinia high-pathogenicity island by the conjugative RP4 attB target-presenting shuttle plasmid. Molecular Microbiology 57(3),727-734
    27. William Hsiao, Ivan Wan, Steven J. Jones and Fiona S. L. Brinkman. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics.2003.19(3):418-420
    28. Zhang Ren and Zhang Chun-Ting.2003. Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis. Physiol Genomics 16:19-23
    1. Adhikari TB, Mew TW, Leach JE.1999a. Genotypic and phenotypic diversity of Xanthomonas oryzae pv. oryzae in Nepal. Phytopathology 89:687-694.
    2. Adhikari TB, Vera Cruz CM, Zhang Q, et al.1995. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl Environ Microbiol 61:966-971.
    3. Atkinson M M.1993. Molecular mechanisms of pathogen recognition by plants. Adv. Plant Pathol. 10:35-64.
    4. Baker C J O, Neill N R, Keppler L D, et al.1991. Early responses during plant- bacteria interactions in tobacco cell suspensions. Phytopathology.81:1504-1507.
    5. Bai J, Shi X.1993. Major progresses in the studies on rice bacterial blight. J Basic Sci Eng 1:71-80.
    6. Brady J D, Fry S C.1997. Formation of di-isodityrosine and loss of isodityrosine in the cell walls of tomato cell- suspensioncultures treated with fungal elicitors or H2O2. Plant Physiol.115:87-92.
    7. Diego R M, Eugenia R, Francisco M Cazorlaa, et al.2008. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions Journal of Plant Physiology (article in press).
    8. Dixon R A, Harrison M J, Lamb C J.1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol.479-501.
    9. Goodman R N, Novacky A J.1994. The Hypersensitive Reaction in Plants to Pathogens. St. Paul, MN:APS Press.244 pp.
    10. Greenberg J T, Guo A, Klessig D F et al.1994. Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions. Cell.77:551-63.
    11. Grant J J, Loake G J.2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol.124 (1):21-90.
    12. Gu, K Y, Yang, B, Tian D S H, et al.2005. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice, nature,435:1122-1125.
    13. Huckelhoven R, Koge K H.2003. Reactive oxygen intermediates in plant- microbe interactions: who is who in powdery mildew resistance. Plant.216(6):891-902.
    14. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD.1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537-541.
    15. Kiraly Z.1980. Defenses triggered by the invader: hypersensitivity. In Plant Disease, ed. JG Horsfall, EB Cowling, pp.201-24. New York: Academic.
    16. Lamb C, Dixon R A.1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol Plant Mol Biol.48:251-275.
    17. Leach J E, White F F.1996. Bacterial Avirulence genes, Annu. Rev. of Phytopathol.1996. 34:153-79.
    18. Levine A, Tenhaken R, Dixon R A, Lamb C.1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell.79:583-593.
    19. Leung H, Nelson RJ, Leach JE.1993. Population structure of plant pathogenic fungi and bacteria. Adv. Plant Pathol 10:157-250.
    20. Liu HX, Yang W, Hu BSH, Liu FQ.2007. Virulence Analysis and Race Classification of Xanthomonas oryzae pv. oryzae in China. J Phytopathol 3(7):129-135.
    21. Mew TW.1987 Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathology 25:359-382.
    22. Nelson RJ, Baraoidan MR, Vera Cruz CM, et al.1994. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microbiol 60:3275-3283.
    23. Noda T, Yamamoto T, Ogawa T, Kaku H.1996. Pathogenic races of Xanthomonas oryzae pv. oryzae in south and east Asia. JIRCAS (Jpn Int Res Center Agric Sci) J.3:9-15.
    24. Orozco-Cardenas M, Ryan C A.1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Pro. Nat. Acad. Sci. USA.96:6553-6557.
    25. Ochiai H, Horino O, Miyajima K, Kaku H.2000. Genetic diversity of Xanthomonas oryzae strains from Sri Lanka. Phytopathology 90:415-421.
    26. Ou SH.1985. Rice Diseases. Commonwealth Mycological Institute, Aberystwyth, England,70-74.
    27. Poole RW. An Introduction to Quantitative Ecology. New York, USA, McGraw-Hill,1974.
    28. Swings J, Van den Moore M, Vauterin L, et al. (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak(Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Inst. J Syst Bacteriol 40:309-311.
    29. Wojtaszek P.1997. Oxidative burst: an early plant response to pathogen infection. Biochem J. 322:681-692.
    30. Yap I, Nelson RJ. WinBoot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Paper Series 14. International Rice Research Institute, Manila, Philippines,1996.
    31. Yashitola J, Krishnaveni D, Reddy APK, Sonti RV.1997. Genetic diversity within the population of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87:760-765.
    32.方中达,许志刚,过崇俭等.1990.中国水稻白叶枯病菌致病型的研究.植物病理学报.20(2):81-88.
    33.谢关林,苗东华,徐鸿润等.1991水稻白叶枯病菌菌落类型及致病力变异研究.浙江农业大学学报.17(1):44-48
    34.孙恢鸿.2003.我国水稻白叶枯病菌致病力分化研究.植物保护.Vol.29,No.3:5-8
    35.殷尚志,过崇俭,张长平等.1990.水稻白叶枯菌自然群体的毒力结构与致病力的关系.江苏农业学报.6(1):30-37.
    1. Adhikari TB, Mew TW, Leach JE.1999a. Genotypic and phenotypic diversity of Xanthomonas oryzae pv. oryzae in Nepal. Phytopathology 89:687-694.
    2. Adhikari TB, Vera Cruz CM, Mew TW, Leach JE.1999b. Identification of Xanthomonas oryzae pv. oryzae by insertion sequence-based polymerase chain reaction (IS-PCR). Int Rice Res Notes 24:23-24.
    3. Adhikari TB, Vera Cruz CM, Zhang Q, Nelson RJ, Skinner DZ, Mew TW, Leach J E.1995. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl Environ Microbiol 61:966-971.
    4. Anjali SI, Susan RM.2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17:1348-1354.
    5. Ardales EY, Leung H, Vera Cruz CM, et al. Hierarchical analysis of spatial variation of the rice bacterial blight pathogen across diverse agroecosystems in the Philippines. Phytopathology,1996, 86:241-252.
    6. Chang JH, Goel AK, Grant SR, Dang JL.2004. Wave of the flood:ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr Opin Microbiol 7:11-18.
    7. Chu ZH, Fu B, Yang H, et al.2006. Targeting xal3, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112:455-461.
    8. Fujikawa T, Ishihara H, Leach JE, Tsuyumu S.2006. Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Mol Plant Microbe Interact 19(3):342-349.
    9. George MLC, Bustamam M, Cruz WT, Leach JE, Nelson RJ.1997. Movement of Xanthomonas oryzae pv. oryzae in Southeast Asia detected using PCR-based DNA fingerprinting. Phytopathology 87:302-309.
    10. Gonzalez C, Szurek B, Manceau C, Mathieu T, Sere Y, Verdier V.2007. Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol Plant Microbe Interact 20:534-546.
    11. Gu KY, Yang B, Tian DS, et al.2005. R-gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 435:1122-1125.
    12. Hopkins C, White FF, Choi SH, Guo A, Leach JE.1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 5(6):451-459.
    13. Leach JE, Rhoads ML, Vera Cruz CM, White FF, Mew TW, Leung H.1992. Assessment of genetic diversity and population structure of Xanthomonas oryzae. Appl Environ Microbiol 58(7):2188-2195.
    14. Lee BM, Park YJ, Park DS, et al.2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577-586.
    15. Li P, Long JY, Huang YC, Zhang Y, Wang JSH.2004. AvrXa3:A novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function. Prog Nat Sci 14(9):774-780.
    16. Li P, Long JY, Huang YC, Zhang Y, Wang JSH.2004, AvrXa3:A novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function. Prog Nat Sci 14(9):774-780.
    17. Mew TW, Vera Cruz CM, Medalla ES.1992. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis 76:1029-1032.
    18. Milgroom MG, Fry WE.1997. Contributions of population genetics to plant disease epidemiology and management. Adv Bot Res 24:1-30.
    19. Nelson RJ, Baraoidan MR, Vera Cruz CM, et al.1994. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microbiol 60:3275-3283.
    20. Noda T, Horino O, Ohuchi A.1990. Variability of pathogenicity in races of Xanthomonas campestris pv. oryzae in Japan. Jpn Agric Res Q23:182-189.
    21. Noda T, Yamamoto T, Ogawa T, Kaku H.1996. Pathogenic races of Xanthomonas oryzae pv. oryzae in south and east Asia. JIRCAS(Jpn Int Res Center Agric Sci) J.3:9-15.
    22. Ochiai H, Horino O, Miyajima K, Kaku H.2000. Genetic diversity of Xanthomonas oryzae strains from Sri Lanka. Phytopathology 90:415-421.
    23. Ochiai H, Inoue Y, Takeya M, et al. Genome sequence of Xanthomonas oryzae pv.oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARG, 2005,39(4):275-287.
    24. Salzberg SL, Sommer DD, Schatz MC, et al.2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204.
    25. Song WY, Wang GL, Chen LL.1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804-1806.
    26. Sun XL, Cao YL, Yang ZF, et al.2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 31:511-521.
    27. Vera Cruz CM. Bacteriological and pathological variation of Xanthomonas campestris pv. oryzae (Ishiyama) Dye, the pathogen of bacterial blight of rice M.S. thesis, University of the Philippines, Los Banios, Philippines,1984.
    28. White FF, Yang B, Johnson LB.2000. Prospects for understanding avirulence gene function. Curr. Opin. Plant Biol 3:291-298.
    29. Yang B, White FF.2004. Diverse members of avrBs3/pthA family of type III effectors are major virulence determinants in bacterial blight of rice. Mol Plant Microbe Interact 17:1192-1200.
    30. Yang B, Zhu W, Johnson LB, White FF.2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent, nuclear-localized, double-stranded DNA binding protein. Proc Natl Acad Sci USA 97:9807-9812.
    31. Yashitola J, Krishnaveni D, Reddy APK, Sonti RV.1997. Genetic diversity within the population of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87:760-765.
    32. Yoshimura S, Yamanouchi U, Katayose Y.1998. Expression of Xal, a bacterial blight-resistance gene in rice is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663-1668.
    33. Zhang Qi, Leach JE, Nelson RJ, et al. Genetic structure of rice bacterial blight pathogen population in China. ActaAgronomica Sinica,1997,23(2):150-158.
    34. Zhu WG, Yang B, Chittoor JM, Johnson LB, White FF.1998. AvrXA10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact 11:824-32.
    35. Zhu W. G., Yang B., Wills N., Johnson L. B., and White F. F.1999. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. Plant Cell.11:1665-1674.
    36.方中达,许志刚,过崇俭,等.中国水稻白叶枯病菌致病型的研究.植物病理学报,1990,20(2):82?88.
    37.王春连,章琦,周永力,等.我国长江以南地区水稻白叶枯病原菌遗传多样性分析.中国水稻科学,2001,15(2):131?136.
    38.郑伟,刘晓辉,成国英,等.中国、日本和菲律宾水稻白叶枯病菌遗传多样性比较分析.微生物学通报,2008,35(4):519-523.
    1. Mew T W. Current status and future prospects of research on bacterial blight of rice [J]. Ann Rev Phytopatho,1987,125:539-582
    2. Nino-Liu DO, Ronald PC, Bogdanove AJ:Xanthomonas oryzae pathovars:model pathogens of a model crop. Mol Plant Pathol 2006,7(5):303-324.
    3. Boch J, Bonas U. Gram-negative plant pathogenic bacteria.Contrib[J]. Microbiol,2001,8: 186-196.
    4. Hopkins C M, White F F, Choi S H, Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae[J]. Mol Plant-Microbe Interact,1992,5:451-459.
    5. Ochiai H, Inoue Y, Takeya M, et al. Whole-genome sequencing of Xanthomonas oryzae pv. oryzae, the causal organism of bacterial blight of rice[C]. Abstracts of International Rice Congress,2002, p:92.
    6. Lee B M, Park Y J, Park D S, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331 the bacterial blight pathogen of rice[J]. Nucleic Acids Res,2005, 26;33(2):577-86.
    7. Steven L S, Daniel D S, Michael C S, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A[J].BMC Genomics 2008,9:204 doi:10.1186/1471-2164-9-204
    8. Choi, S, H., and J. E. Leach.1994. Genetic manipulation of Xanthomonas oryzae pv. oryzae. International Rice Research Notes.19(2):31-32
    9. Zhang, X. Z., X. Yan, Z. L. Cui, Q. Hong, and S. P. Li.2006. SmazF,a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Research. 34,No.9
    10. Steinmetz, M., D. Le Coq, H. B. Djemia, and P. Gay.1983. Analyse genetique de sacB, ge'ne de structure d'une enzyme secre'te'e, la le'vane-saccharase de Bacillus subtilis Marburg. Mol. Gen. Genet.191:138-144
    11.龙菊英,张桂英,王金生.水稻条斑病菌和白叶枯病菌致病相关基因的敲除.南京农业大学学报2006,29(2):50-56
    12. Sambrook J, Fritsch E R.1989,Molecular Cloning: A Laboratory Manual[M].2nd edn.New York, Cold Spring Harbor Laboratory Press, Vol.3,
    13. Li Ping, Long Juying, Huang, yingchun, Zhang Yan, Wang Jinsheng. AvrXa3:Anovel member of avrBs3 gene family from Xanthomonas oryzae pv.oryzae has a dual function.Progress in natural science,2004.14(9):774-780
    14. Rabibhadana S, Chamnongpol S, Sukchawalit R, et al. Characterization and expression analysis of a Xanthomonas.oryzae pv.oryzae recA[J]. FEMS Microbiol Lett,1998,158:195-200.
    15. Adriana, C.,D. R. Joseph, E. Y. Basmal, and D. W. Gabriel.2005.Mutagenesis of all eight avr genes in Xanthomonas campestrid pv. campestris had no detected effect on pathogenicity,but one avr gene affected race specificity. Mol. Plant-Microbe Interact.12:1306-1317
    16. Collmer A. Determinants of pathogenicity and avirulence in plant pathogenic bacteria.Curr. Opin. plant Biol.1998.1:329-335.
    17. Leach J, Vera Cruz C M, Bai J, Leung H. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol.2001.39:187-224.
    18. Bai J, Choi S H, Ponciano G, Leung H and Leach J E. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol. Plant-Microbe. Interact.2000.13:1322-1329.
    19. Yang B and White F F Diverse members of the AvrBsS/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol. Plant-Microbe Interact. 2004.17:1192-1200
    20. Gu K Y, Yang B, Tian D S, Wu L F, Wang D J, Sreekala C, Yang F, Chu Z Q, Wang G L White F F, Yin Z C. R gene expession induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 2005 435:1122-1125
    1. Mew T W. Current status and future prospects of research on bacterial blight of rice[J]. Ann. Rev. Phytopathol.1987.125:539-582.
    2. Herbers K, Conrads-Strauch J and Bonas U. Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein[J]. Nature 1992.356: 172-173
    3. David, O. N., C. R. Pamela, and J. B. Adam.2006. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Mol. Plant Pathol.7(5):303-324.
    4. Ochiai H, Inoue Y, Takeya M, et al. Genomic sequence of Xanthomonas oryzae pv.oryzae suggests contribution of large numberof effector genes and insertion sequences to its race diversity[J]. Jpn Agric Res Q 2005.39(4):275-287
    5. Lee B M, Park Y J, Park D S, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice[J]. Nucleic Acids Res.2005.33(2):577-586
    6. Steven L.Salzberg, Daniel D.Sommer, Michael C.Schatz. et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv.oryzae PXO99[J].BMC Genomics,2008,9:204.
    7. Bai J, Choi S H, Ponciano G, Leung H and Leach J E. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol. Plant-Microbe. Interact.2000.13:1322-1329.
    8. Li Ping, Long Juying, Huang, yingchun, et al.AvrXa3:Anovel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function[J]. Progress in natural science, 2004.14(9):774-780
    9. Gu K Y, Yang B, Tian D S, et al. R gene expession induced by a type-Ⅲ effector triggers disease resistance in rice[J]. Nature 2005 435:1122-1125
    10. Yang B, Zhu W, Johnson L B, et al. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway dependent, nuclear-localized, double-stranded DNA binding protein[J].PNAS.U.S.A.2000.97:9807-9812.
    11. Leach J, Vera Cruz C M, Bai J, et al. Pathogen fitness penalty as a predictor of durability of disease resistance genes[J]. Annu. Rev. Phytopathol.2001.39:187-224.
    12. Lahaye T, Bonas U. Molecular secrets of bacterial type III effector proteins[J]. Trends Plant Sci. 2001.6:479-485.
    13. Collmer A. Determinants of pathogenicity and avirulence in plant pathogenic bacteria.Curr. Opin. plant Biol.1998.1:329-335.
    14. Yang B and White F F. Diverse members of the AvrBsS/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice[J]. Mol. Plant-Microbe Interact.2004.17: 1192-1200
    15. Vera Cruz C, Bai J F, Ona I, et al. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. PNAS.U.S.A.2000.97:13500-13505.
    16. White F F, Yang B and Johnson L B. Prospects for understanding avirulence gene function[J]. Curr. Opin. Plant Biol.2000.3:291-298.
    17.龙菊英,张桂英,王金生.水稻条斑病菌和白叶枯病菌致病相关基因的敲除[J].南京农业大学学报2006,29(2):50-56
    18. Sambrook J, Fritsch E F and Maniatis T. Molecular Cloning: A Laboratory Manual, Vol.3,2nd edn. 1989[M]. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    19. Rabibhadana S, Chamnongpol S, Sukchawalit R, et al. Characterization and expression analysis of a Xanthomonas.oryzae pv.oryzae recA[J]. FEMS Microbiol Lett,1998.158:195-200.
    20.方中达,许志刚,过崇俭,等.中国水稻白叶枯病菌致病类型的研究[J].植物病理学报,1990,20(2):81-87.
    21. Dahlbeck D, Stall R E. Mutations for change of race in cultures of Xanthomonas vesicatoria[J]. Phytopathol.1979.69:634-636.
    22. Nelson, R.R.1979. The evolution of parasitic fitness. In Plant Disease, ed. JG Horsfall, EB Cowling, pp.23-46
    23. Antonivics J and Alexander H M. The concept of fitness in plant-fungalpathogen systems. In Plant Disease Epidemiology, ed. KJ Leonard, WE Fry, pp.185-214. New York: McGraw-Hill.1989.
    1. Aldon D., Belen B., Boucher C., et al. A bacterial sense of plant cell contact controls the transcrip-tional induction of Ralstonia solanacearum pathogenicity genes. The EMBO Journal,2000,19(10): 2304-2314
    2. Alfano James R.and Collmer Alan.Bacterial pathogens in plants:life up against the wall.The plant cell,1996,8:1683-1698
    3. Alfano JR, collmer A (1997) The Type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death (minireview). J Bacteriol 179:5655-5662
    4. Alfano JR, Charkowski AO, Deng W-L, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 2000.97:4856-4861.
    5. Arnold DL, Jackson RW, Waterfield NR, Mansfied JW (2007) Evolution of microbial virulence: the benefits of stress (review). TRENDS in Genetics 23:293-300
    6. Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar P. S. Signaling in plant-microbe interactions. Science,1997,276(5313):726-733
    7. Barras F.,Van-Gijsegem F.,Chatterjee A.k. Extracellular enzymes and pathogenesis of soft rot Erwinia.Annu.Rev.Phytopathol,1994,32:201-234
    8. Blum G., Ott M., Lischewski A., et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen Infect. Immun. 1994,62,606-614
    9. Bogdanove J.A., Kim F.J., Wei Z., et al. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Plant Biology,1998,95(3):1325-1330
    10. Bogdanove A., Bauer W.D., and Beer V.S. Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (Type III secretion) pathway. Journal of Bacteriology,1998,180(8):2244-2247
    11. Brito B., Marenda M., Barberis P., et al. prhJ and hrpG, two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia sdolanacearum. Molecular Microbilogy,1999,31(1):237-251
    12. Brown L., Mansfield J., and Bonas U. hrp genes in Xanthomonas campestris pv. vesicatoria determine ability to suppress papilla deposition in pepper mesophyll cells. Molecular Plant-Microbe Interaction,1995,8(6):825-836
    13. Charkowski O.A., Alfano R.J., Preston G., et al.The Pseudomonas syringae pv. tomato HrpW Protein Has Domains Similar to Harpins and Pectate Lyases and Can Elicit the Plant Hypersensitive Response and Bind to Pectate. Journal of Bacteriology,1998,180(19):5211-5217
    14. Chen Jienan., Roberts P.D., and Gabriel D.W. Effects of a virulence locus from Xanthomonas campestris 528T on pathovar status and ability to elicit blight symptoms on crucifers. Phytopathology,1994,84(12):1458-1465
    15. Chen L L (2006) Identification of genomic islands in six plant pathogens. Gene 374:134-141
    16. Cheng L., and Schneewind O. Type III machines of gram-negative bacteria delivering the goods. Trends in Microbiology,2000,8(5):214-220
    17. Collmer A. Determinants of pathogenicity and avirulence in plant pathogenic bateria. Current Opinion in Plant Biology,1998,1:329-335
    18. Coplin D.L., Frederick R.D., and Majerezak D.R. New pathogenicity loci in Erwinia stewartii identified by random Tn5 mutagenesis and molecular cloning. MPMI,1992,5(3):266-268
    19. Deng W., Preston Gail, Collmer A., et al. characterization of the hrpC and hrpRS Operons of Pseudomonas syringae Pathovars Syringae, Tomato, and Glycinea and Analysis of the Ability of hrpF, hrpG, hrcC, hrpT, and hrpV Mutants To Elicit the Hypersensitive Response and Disease in Plants. Journal of Bacteriology,1998,180(17):4523-4531
    20. Dow M.J., Feng J., Barber E.C., Tang J., and Daniels J.M. Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology,2000,146:885-891
    21. Duan Y.P., Castaneda A., Zhao G., et al. Expression of a signle, host-specific,bacterial pathogeni-city gene in plant cells elicits division,enlargement, and cell death. MPMI,1999,12(6):556-560
    22. Etchebar C., Trigale-Demery D., Gijsegem T.V., et al. Xylem colonization by an hrcV-mutant of Ralstonia solanacearum is a key factor for the efficient biological control of tomato bacterial wilt. Molecular Plant-Microbe Interaction,1998,11(9):869-877
    23. Frederick R.D., Ahmad M., Majeczak D.R., et al. Genetic organization of the pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Molecular Plant-Microbe Interaction,2001,14(10):1213-1222
    24. Guttman D.S., and Greenberg J.T. Functional analysis of the type III effectors AvrRpt2 and AvrRpml of Pseudomonas syingae with the use of a single-copy genomic integration system. Molecular Plant-Microbe Interaction,2001,14(2):145-155
    25. Guttman D.S., Vinatzer B.A., Sarkar F.S., et al. A functional screen for the typeⅢ (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science,2002,295(5560):1722-1733
    26. Hacker J., Bender, L., Ott M., et al. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog.1990,8,213-225
    27. Hacker J, Blum-Oehler G, Muhldorfer I, et al. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol.1997,23:1089-1097.
    28. Ham H.J., Bauer W. D., Fouts E. D., et al. A cloned Erwinia chrysanthemi Hrp (type III protein secretion) system functions in Escherichia coli to deliver Pseudomonas syringae Avr signals to plant cells and to secrete Avr proteins in culture. Microbilogy,1998,95(17):10206-10211
    29. He S.Y.Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol,1998,36:363-392
    30. Hueck J. C. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev.,1998,62(2):379-433
    31. Hutcheson W.S., Bretz J., Sussan T., Jin S., and Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. Journal of Bacteriology,2001,183(19):5589-5598
    32. Innes W.R., Bent F. A., Kunkel N.B., Bisgrove R.S. and Staskawicz J.B. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol.,1993,175(15):4859-4869
    33. Jackson W. R., Athanassopoulos E., Tsiamis G., Mansfield W. J., Sesma A., Arnold L. D., Gibbon J.M., Murillo J., Taylor D. J. and Vivian A. Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc. Natl. Acad.Sci.,1999,96(19):10875-10880
    34. Jin Q-L., and He S-Y. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science,2002,294(5551):2556-2562
    35. Kamounn S., and Kado C.I. Phenotypic switching affecting chemotaxis, xanthan production, and virulence in Xanthomonas campestris. Applied and Environmental Microbiology,1990,56(12): 3855-3860
    36. Kamoun S., Kamdar H.V., Tola E., and Kado C.I. Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response:role of the hrpX locus. Molecular Plant-Microbe Interaction.1992,5(1):22-23
    37. Kim JF, Alfano JR. Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol.2002,264:127-147.
    38. Kim JG, Park BK, Yoo CH, et al. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 2003,185:3155-3166
    39. Knapp S, Hacker J, Jarchau T, et al.1986 Large, Unstable Inserts in the Chromosome Affect Virulence Properties Of Uropathogenic Escherichia coli 06 Strain 536. J Bacteriol,168(1)=22^-30
    40. Koster M., Bitter W., and Tommassen J. Protein secretion mechanisms in gram-negative bacteria. Int.J. Microbiol.,2000,290:325-331
    41. Lamb C. A Ligand-Receptor mechanism in plant-pathogen recognition. Science,1996, 274(5295):2038-2039
    42. Li C., Brown L., Mansfield J., Stevens C., Boureau T., Romantschuk M., and Taira S. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. The EMBO Journal,2002,21(8):1908-1915
    43. Lindgren PB., Peet RC., Panopoules NJ. Gene cluster of Pseudomonas syringae pv.phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J.Bacteriol,1986, 168:512-522
    44. Liu Y., Jiang G., Cui Y., et al.kdgREcc Negatively Regulates Genes for Pectinases, Cellulase, Protease, HarpinEcc, and a Global RNA Regulator in Erwinia carotovora subsp. Carotovora. J. Bacteriol.,1999,181(8):2411-2421
    45. Lober S, Jackel D, Kaiser N, et al. Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. International Journal of microbiology 2006,296:435-447
    46. Luderer R., and Joosten H.A.J.M. Avirulence proteins of plant pathogens:determinants of victory and defeat. Molecular Plant Pathology,2001,2(5):355-364
    47. Marenda M., Brito B., Callard D., et al. et al. PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol. Micro.,1998,27 (2):437-456
    48. Mor H., Manulls S., Zuck M., et al. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv.gypsophilae. Mol. Plant-Microbe Interaction.2001,14(3):431-436
    49. Mudgett M.B., and Staskawicz J.B., Protein signaling via type III secretion pathways in phytopathogenic bacteria. Current Opinion in Microbiology,1998,1:109-114
    50. Mudgett M.B., Chesnokova O., Dahlbeck D., et al. Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. PNAS,2000,97 (21):13324-13329
    51. Mudgett M.B., Staskawicz J.B. Protein signaling via type III secretion pathways in phytopathogenic bacteria. Current Opinion in Microbiology,1998,1:109-114
    52. Nik W.K.and Bonas U. HrpXv, an AraC-Type regulator, activates expression of five of the six loci in the hrp cluster of X.campestris pv.vesicatoria. Journal of Bacteriology,1996,178(12):3462-3469
    53. Noel L., Thieme F., Nennstlel D., et al. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen X. campestris pv. vesicatoria. Mol. Micro.,2001,41(6):1271-1281
    54. Oh CS, Beer SV. Molecular genetics of Erwinia amylovora involved in the development of fire blight (minireview). FEMS Microbiology Letters.2005253:185-192
    55. Pallen MJ, Chaudhuri RR, Henderson IR. Genomic analysis of secretion systems. Current Opinion in Microbiology 2003,6:519-527
    56. Penaloza-Vazquez A., Preston M.G., Collmer A., et al. Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomoto DC3000. Microbilology,2000,146:2447-2456
    57. Pirhonen Mu, Lidell MC., Rowley DL.,et al. Phenotypic expression of Pseudomonas syringae avr genes in E.coli is linked to the activities of theb hrp-encoded secretion system. MPMI,1996,9:252-260
    58. Pitman AR, Jackson RW, Mansfied JW, et al. Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Current Biology 2005,15:2230-2235
    59. Plano V.G., Day B.J., and Ferraccl F. Type III export: new uses for an old pathway. Molecular Microbiology,2001,40(2):284-293
    60. Preston G., Deng WL., Huang H., et al. Negative regulation of hrp genes in Pseudomonas syringae. Journal of Bateriology,1998,180(17):4532-4537
    61. Rahme G.L., Mindrinos N.M., and Panopoulos J.N. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringa pv. phaseolica. Journal of Bacteriology,1992, 174 (11):3499-3507
    62. Ray S.K., Rajeshwari R., and Sonti R.V.. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to sesreter xylanase. Molecular Plant-Microbe Interaction,2000,13(4):394-401
    63. Reckeseidler S L, DeShazer D, Sokol P A, et al. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burholderia pseudomallei as a major virulence determinant. Infect. Immun.2001,69(1):34
    64. Rogerio C N, Marcela C C, Alice G M, et al. (2004) Molecular investigation of tRNA genes integrity and its relation to pathogenicity islands in Shiga toxin-producing Escherichia coli (STEC) strains. Genetics and Molecular Biology,27,4,589-593
    65. Roine E., Wei W., Yuan J. et al. Hrp pilus:An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci.,1997,94:3459-3464
    66. Rossier O., Guido Van den Ackerveken, and Bonas U.. HrpB2 and hrpF from Xanthomonas are type Ⅲ-secreted proteins and essential for pathogenicity and recognition by the host plant. Molecular Microbilogy,2000,38(4):828-838
    67. Rossier O., Wengelnik K., Hahn K.,and Bonas U. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Microbiology,1999,96(17):9368-9373
    68. Salmond G.P.C. Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol.,1994,32:181-200
    69. Schell Mark A. Control of virulence and pathogenicity genes of Ralstonia Solanacearum by an elaborate sensory network.Annu.Rev.Phytopathology,2000,38:263-292
    70. Schubert S, Rakin A, Heesemann J. The Yersinia high-pahtogenicity island (HPI):evolutionary and functional aspects (review). Inernational Journal of Medical Microbiology 2004,294:83-94
    71. Shen Y., Chern M., Silva F.G., and Ronald P. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Molecular Plant-Microbe Interaction,2001, 14(2):204-213
    72. Swarup S., Yang Y., Kingsley T.M., and Gabriel W.D. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Molecular Plant-Microbe Interactions,1992,5 (3):204-213
    73. Swings J., M. VAN DEN Mooter, Vauterin L., Hoste B., Gillis M., Mew T.W., and Kersters K. Reclassification of the causal agents of bacterial blight(Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. Nov.,nom.rev.. International Journal of Systematic Bacteriology, 1990,40(3):309-311
    74. Swords KmM., Dahlbeck D., Kearhey B.,et al. Spontantous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthononas campestris pv.vesicatoria avrBs2.J.Bacteriol,1996,178:4661-4669
    75. Tang Ji-liang., Gough Clare L.,and Daniels Michael J. Cloning of genes involved in negative regulation of extracellular enzymes and polysaccharide of Xanthomonas campestris pathovar campestris. Mol.Gen.Genet,1990,222:157-160
    76. Tang J-L., Feng JX., Li QQ, et al. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae:involvement in exopolysaccharide production and virulence to rice. Molecular Plant-Microbe Interaction.,1996,9. (7):664-666
    77. Valinsky L., Manulis S., Nizan R., et al.A pathogenicity gene isolates from the Ppath plasmid of Erwinia herbicola pv.gypsophilae determines host specificity. MPM 1,1998,11 (8):753-762
    78. Vasse J., Genin S., Frey P., et al.The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomoto root infection process. MPMI.2000,13(3):259-267
    79. Viboud I.G., and Bliska B.J. A bacterial type III secretion system inhibites actin polymerization to prevent pore formation in host cell membranes. The EMBO Journal,2001,20(19):5373-5382
    80. Wei W., Anne Plovanich-Jones, Deng WL., et al. The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci.,2000,97(5):2247-2252
    81. Wei Z., and Beer V.S. hrpL activates Erwinia amylovora gene transcription and is a member of the ECF subfamily of (?) factors. Journal of Bateriology,1995,177(21):6201-6210
    82. Xiao Y., and Hutcheson W.S. A single promoter sequence recognized by a newly identified alternate sigma factor dirtects expression of pathogenicity and host range determinants in Pseudomonas syringae. Journal of Bactriology,1994,176:3089-3091
    83. Xiao Y., Heu S., Yi J., et al. Identification of a putative alternative sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of P syringae pv. syringae Pss61 hrp and hrmA genes. Journal of Bacteriology,1994,176 (4):1025-1036
    84. Xiao Y., Lu Y, and Hutcheson W.S. Organization and environmental regulation of the Pseudomonas syringapv. syringae 61 hrp cluster. Journal of Bacteriology,1992,174 (6):1734-1741
    85. Young M.G., Schmiel H.D., and Miller L.V. A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system. Microbilogy, 1999,96(11):6456-6461
    86. Yuan J.,and He S. The P. syringae hrp regulation and secetion system control the production and secrection of multiple extracellular proteins. Journal of Bacteriology,1996,178(21):6399-6402
    87. Zhu W., Magbanua M.M., and White F.F. Identification of two novel hrp-associated in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. Journal of Bacteriology,2000,182(7):1844-1853
    88.陈功友.博士学位论文.2000,南京农业大学
    89.李有志,唐纪良,马庆生.接种浓度对野油菜黄单胞菌野油菜致病变种胞外多糖突变体致病性的影响.广西农业大学学报,1998,17(3):211-221
    90.王金生等.植物病原细菌学.2000,中国农业出版社
    91.王金生.分子植物病理学.北京:中国农业出版社
    92.查冬兴,唐纪良,马庆生.转座子诱变甘蓝黑腐病单胞菌所获胞外多糖突变体的验证.广西农业大学学报,1996,15(4):277-283
    93.张学民.博士学位论文.1999,南京农业大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700