基于故障树法的地铁施工安全风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展,多数大中城市正在或即将修建地铁。由于城市地铁隧道建设的时间跨度大,动态变化大,管理难度大,因此地铁隧道施工风险具有多样性和多层次性,加之缺乏科学的风险评估工具和科学的风险管理体系,在现有城市地铁隧道建设过程中,安全事故时有发生。本文应用模糊理论故障树法和贝叶斯网络故障树法,对地铁盾构隧道施工成本风险、盾构隧道管片失效风险、车站深基坑工程失事风险展开了系统的分析和研究。
     首先,系统地介绍了故障树分析法的基本原理和分析步骤,以及构建故障树的基本方法、原则和具体步骤,阐述了故障树中逻辑门和系统结构函数的表达形式。介绍了故障树定性分析中利用上行法和下行法求解故障树最小割集的方法,以及定量分析中底事件重要度的基本原理和计算方法。鉴于传统故障树法的局限性,引入模糊数学理论对其进行改进,介绍了模糊理论中模糊集合与隶属度、模糊集运算、扩张原理、凸模糊集与兄截集、L-R型模糊数等相关知识,并给出了故障树分析的模糊算子,利用模糊数描述故障树底事件的发生概率,解决了实际中无法获取底事件精确概率的不足,而利用模糊门算子代替故障树的逻辑门算子,便得到了顶事件发生的概率模糊数,更能反映实际情况。最后重点介绍了两种常用的模糊重要度及计算方法。
     其次,应用三角模糊数故障树分析法,对地铁盾构隧道施工成本的风险进行了深入分析,计算得出了相应的成本重要度,并比较三角模糊数故障树法、传统故障树法和经济损失比相乘法三种方法的计算结果,结果表明:①三角模糊数考虑了各个风险因素对整个工程项目的影响以及底事件概率的模糊特性,计算结果具有较高的准确度。②在广佛地铁菊村站至西朗站城市地铁盾构隧道施工成本的实例计算中,“盾构进出洞时漏水漏浆情况”和“盾构掘进中遭遇障碍物”两项风险因素最为严重,应予以高度重视,建议在盾构施工前应高度重视和首先规避。
     然后,应用模糊故障树分析法,对地铁盾构隧道管片上浮、错台与开裂的失效进行了风险分析,计算表明:①基于模糊数表现定理,推导了模糊数乘法运算的精确求解法,为模糊数学在故障树理论中的应用打下了坚实基础。②从结构重要度的角度看,应首先规避“盾构机开挖推进姿态”和“注浆浆液参数”两项风险;对于“硬岩含水地层等不良地质”、“管片外弧面开裂”、“管片间的不均匀顶力”概率影响虽小,但结构重要度较大,应酌情采取提高施工水平及防护措施规避。③在三角模糊数相乘的运算中采用基于表现定理的精确求解法,可使计算结果更加精确;同时采用信心指数和三角模糊数修正专家评分数据,精确性很高,且操作简单,推荐使用。
     最后应用贝叶斯网络的故障树分析法,对地铁车站深基坑工程的风险进行了分析,结果表明:通过深基坑工程体系的贝叶斯网络模型计算分析,既得到了较精确的结果,又在表达形式的复杂程度上和运算速度上都明显优于传统故障树模型,且容易发现系统的薄弱环节。武汉地铁2号线循礼门车站深基坑的实例分析表明,基于贝叶斯网络的故障树分析法比传统故障树分析法更便捷更实用,同时解决了传统故障树模型中的规模问题和建模后的调整问题。
     本文的研究成果对于地铁盾构隧道的施工风险分析与控制具有重要的参考价值。
With the rapid development of China's economy, subways are being or will be constructed in most large and medium cities. Due to the long construction period, dynamic design scheme and difficult management, the risk of subway tunnel construction has the characteristics of diversity and multilevel, In addition, the scientific evaluation tool and management system of risk have not been formed, the contingencies usually occur in subway tunnel construction. In this dissertation, Fuzzy Fault Tree mathod and Bayesian Network Fault Tree method are employed to systematically study the risk of construction cost of shield tunnel, failure risk of segment of shield tunnel and failure risk of deep foundation pit of subway station.
     First of all, the fundamental principles and analysis procedure of fault tree method, as well as the general principles and specific steps of establishing a fault tree are systematically introduced. The logic gates and system structure function expression of the fault tree are also explained. The qualitative analysis method of fault tree describes uplink and downlink methods for solving the minimum cut set of the fault tree, the quantitative analysis method of fault tree explain the basic principles and calculation methods of importantance degree of events. Fuzzy theory is introduced to eliminate the limitations of the traditional fault tree. The theory of fuzzy sets and fuzzy membership, fuzzy set operations, expansion theory, convex fuzzy set andλcut set, L-R type fuzzy number and other relevant knowledge are also introduced, and fuzzy operator of fault tree analysis are given as well. Fuzzy numbers are used to describe the probability of the basic events in the fault tree, the problem that the precise probabilities of the basic events cannot be obtained is solved. The fuzzy gate operator used instead of the logic gate operator results in the fuzzy numbers of probability of occurrence of the top event, which can reflect the actual situation better. Finally, two kinds of commonly used fuzzy importance degree and their calculation methods are introduced.
     Secondly, the fault tree method based on triangular fuzzy numbers is applied to analyze the risk of construction costs of shield tunnel of subway, and the corresponding cost importance degrees are calculated and obtained. The calculated results obtained from the fault tree method based on triangular fuzzy number, the traditional fault tree method and economic loss multiplication method are compared, and the results show that:①the impact of various risk factors on the whole project, the fuzzy characters of bottom event probability are both considered in triangular fuzzy numbers method, and the results are relatively accurate.①during the construction period of a shield tunnel, the two most severe risks to total cost are "leakage of water and grout when the shield enters and leaves" and "encountering obstacles during advancing", which should be paid attention to and evaded by carrying out effective measures.
     Thirdly, the fuzzy fault tree method is employed to investigate the risks of the shield tunnel segment floating, the dislocation and cracking failure in subway shield tunnel, and the calculation results show that:①based on fuzzy number representation theorem, the exact solving method for multiplication of fuzzy numbers is derived, it is a solid foundation for the application of fuzzy theory in fault tree method.①according to the requirement of the important degree of the structures, the "shield machine advancing posture" and "grouting slurry parameters" risks should be avoided at first. The other three risks "poor geologic condition of water-bearing strata in hard rock", "cracking of segment extrados" and the "uneven jacking force between segments", although their probability impacts are small, the importance degrees of structures are great. Thus commensurate construction standards and appropriate protective measures should be adopted.③when the exact solving method based on the representation theorem is employed to calculate the multiplication of the triangular fuzzy number, it can make the results more accurate. Meanwhile, the confidence index and the triangular fuzzy number are used to modify the experts rating, and the obtained results have high accuracy and the method is simple to use. So this method is highly recommended.
     Finally, fault tree analysis method based on Bayesian network is employed to analyze the construction risk of deep excavation of the subway station, the results show that by using Bayesian network model on the deep excavation system, more accurate results are obtained and the complexity of the expression and the calculation speed are significantly superior to the traditional fault tree model, and it is easy to find the weaknesses in the system. Case study on deep fondation pit of Xunlimen station of Wuhan metro line 2 shows that the fault tree analysis method based on Bayesian network is more convenient and practical than the ordinary fault tree analysis method. Meanwhile, the problems in calculation scale and post adjustment of the ordinary fault tree model are also solved.
     The achievements In this dissertation can be valuable references for risk analysis and control of shiel tunnel in subway construction.
引文
[1]姚宣德.浅埋暗挖法城市隧道及地下工程施工风险分析与评估[博士学位论文],北京:北京交通大学,2009
    [2]张凤祥,朱合华,傅德明.盾构隧道.北京:人民交通出版社,2004
    [3]奚程磊.盾构法隧道管片接头形式研究及其优化[硕士学位论文].上海:同济大学,2006
    [4]蒋洪胜.盾构法隧道管片接头的理论研究及应用[博士学位论文].上海:同济大学,2000
    [5]丁士昭.建筑工程项目管理.北京:中国建筑工业出版社,1991
    [6]刘海燕,姜玉松.隧道开挖对地表及建筑物影响研究与分析.西部探矿工程,2005,106(3):108-109
    [7]麻永华,贺善宁.建筑物下浅埋暗挖隧道施工技术研究.隧道及地下工程,2004,(12):74-77
    [8]陶禹.地铁施工对周边建筑物的影响及控制.铁道勘测与设计,2004,135(3):70-72
    [9]Massimo C, Diego F. Planning and management of safety in tunnelling, Tunnelling and Underground Space Technology,2004, (B03):56-58
    [10]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议.岩石力学与工程学报,2008,27(4):649-655
    [11]Einstein H H. Geologic uncertainties in tunneling. Geotechnical Special Publication, (581):239-253
    [12]胡群芳.基于地层变异的盾构隧道工程风险分析及其应用研究[博士学位论文].上海:同济大学,2006
    [13]李继华.可靠性数学.北京:中国建筑工业出版社,1988
    [14]高大钊.土力学可靠性原理.北京:中国建筑工业出版社,1989
    [15]邹天一.桥梁结构可靠度.北京:中国交通出版社,1991
    [16]黄宏伟.隧道及地下工程建设中的风险管理研究进展.地下空间与工程学报, 2005,2(1):13-20
    [17]Einstein H H, Vick G S. Geological model for tunnel cost model. Proc Rapid Excavation and Tunneling 2nd Conf, San Francisco,1974:1701-1720
    [18]Nilsen B, Palmer M A, Stille H. Quality control of a subsea tunnel project in complex ground conditions. In:Proceedings of World Tunnel Congress 99, Oslo, Balkema, 1999,137-145
    [19]Sturk R, Olsson L, Johansson J. Risk and decision analysis for large underground projects as applied to the Stockholm ring road tunneling.Tunneling and Underground Space technology,1996,11(2):157-164
    [20]Heinz D. Challenges to Tunneling Engineers. Tunneling and Underground Space Technology,1996,11(1):5-10
    [21]Kampmann J, Eskesen S D, Summers J W. Risk assessment helps select the contractor for the Copenhagen Metro System. In:Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises,1998, (1):123-128
    [22]Burland J B, Standing J R, Jarding F M. Building response to tunneling:case studies from construction of the jubilee line extension, London:Thomas Telford publishing, 2001
    [23]佐藤久,田中胜雄.日本隧道工程的发展和灾害情况的统计.隧道与地下工程,1998,5(4):1-9
    [24]Chapman C B. Design engineering-a need to rethink the solution using knowledge based engineering. Knowledge-Based Systems.1999,12(6):257-267
    [25]Isaksson. Tunnelling in poor ground-choice of shield method based on reliability Proc XI Danube-European Conference on Soil Mechanics and Geotechnical Engineering, Balkema Rotterdam,1998:527-534
    [26]Vik E A. Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten tunnel. Tunneling and Underground Space Technology,2000,15(4):369-378
    [27]Tonon F, Bernardini A,Mammino A. Reliability analysis of rock mass response by means of Random Set Theory.Reliability Engineering & System Safety,2000, (70):263-282
    [28]Chungsik Y, Jeon Y W, Choi B S. IT based tunnelling risk management system(IT TURISK)-development and implementation. Tunnelling and Underground Space Technology,2006,21(2):190-202
    [29]Chungsik Y, Kim J H. A web-based tunneling-induced building utility damage assessment system:TURISK. Tunnelling and Underground Space Technology,2003, 18(5):497-511
    [30]Snel A J, Van Hasselt D R S. Risk management in the Amsterdam North/South Metroline:A matter of process-communication instead of calculation. In:Proceedings of the World Tunnel Congress,1999,179-186
    [31]Woude S V, Maidl U, Honker J J. Risk management for the Betuwe route shield driven tunnels. Reclaiming the Underground Space,2003,(2):1043-1049
    [32]Clark G T, Borst A. Addressing risk in Seattle's underground. PB Network,2002, (1): 34-37
    [33]Duijvestijn A M W, Bout P. A new metro tunnel under Amsterdam central station with known risks. Claiming the underground space,2003:1027-1033
    [34]Kolic D. Risk analysis for design and construction aspects of Mala Kapela tunnel. In: Proceedings of the ITA world tunnelling congress,2003, (3):513-519
    [35]Eskesen S D, Tengborg P R, Kampmann J, et al. Guidelines for tunneling risk management. Tunneling and Underground Space technology,2004, (19):217-237
    [36]McFest Smith I, Haman K W. MS risk evaluation system for financing and insuring tunnel projects. In:Proceedings of world tunnel congress and 13th ITA assembly, Singapore,2004,22
    [37]毛儒.隧道工程风险评估.隧道建设,2003,23(2):1-3
    [38]毛儒.论工程项目的风险管理.都市快轨交通,2004,17(2):3-6
    [39]毛儒.有效的风险管理.都市快轨交通,2004,17(3):4-7
    [40]毛儒.积极开展隧道风险评估,认真加强风险管理.隧道建设,2004,27(4):6-11
    [41]毛儒.轨道交通安全风险管理.都市快轨交通,2007,20(4):7-9
    [42]边亦海,黄宏伟,高军.可靠度理论在确定隧道衬砌参数的应用.地下空间与工程学报,2005,1(1):129-132
    [43]盛继亮.建筑工程项目风险和保险研究[博士学位论文],武汉:武汉大学,2003
    [44]王梦恕.厦门海底隧道设计施工运营安全风险分析.施工技术,2005,(增):1-5
    [45]陈亮,黄宏伟,胡群芳.盾构隧道施工风险管理数据库系统开发.地下空间与工程学报,2005,1(6):964-967
    [46]黄宏伟,曾明,陈亮等.基于风险数据库的盾构隧道施工风险管理软件TRM1.0开发.地下空间与工程学报,2006,2(1):36-41
    [47]袁勇,王胜辉,彭定超.盾构隧道全寿命防水风险模糊评价.自然灾害学报,2005,14(2):81-88
    [48]吴贤国,吴刚,骆汉宾.武汉长江隧道工程盾构施工风险研究.中国市政工程,2007,(1):51-53
    [49]胡志平,冯紫良,刘学山等.盾构隧道管片衬砌结构稳定性风险分析.同济大学学报,2005,32(5):596-600
    [50]陈龙.城市软土盾构隧道施工期风险风险分析与评估研究[博士学位论文].上海:同济大学,2004
    [51]朱合华,闰治国等.饱和软土地层中管幕法隧道施工风险分析.岩石力学与工程学报,2005,24(增):5549-5554
    [52]李锋.翔安隧道强风化层施工的风险管理[硕士学位论文].上海:同济大学,2007
    [53]姚 浩,周红波.软土地区土压盾构隧道掘进施工风险模糊评估.岩土力学,2007,28(8):1753-1756
    [54]侯艳娟,张顶立.浅埋大跨度隧道穿越复杂建筑物安全风险分析与评估.岩石力学与工程学报,2007,26(增):3719-3726
    [55]闰玉茹,黄宏伟.大连湾海底隧道钻爆法施工风险评估研究.岩石力学与工程学报,2007,26(增):3616-3624
    [56]王景春,侯卫红.海底隧道施工安全评价的初步研究.岩石力学与工程学报,2007,26(增):3719-3726
    [57]卿和民,邓林,李勇.可靠性维修性工程软件的现状分析与应用.电子产品可靠性与环境试验.2001,8(4):20-26
    [58]韩明.FTA法和重要度分析在某系统可靠性中的应用.运筹与管理,2000,(1):58-63
    [59]金星,洪延姬,沈怀荣等.工程系统可靠性数值分析方法.北京:国防工业出版社,2002
    [60]郭波,武小悦.系统可靠性分析.长沙:国防科技大学出版社,2002
    [61]史定华,王松瑞.故障树分析技术方法和理论.北京:北京师范大学出版社,1993
    [62]黄祥瑞.可靠性工程.北京:清华大学出版社,1990
    [63]Gerogiannis V C, Caragiannis I E. A general framework for applying safety analysis to safety critical real-time applications using fault trees. In:Proceedings Ninth Euromicro Workshop on Real Time Systems,1997:168-175
    [64]Gabor K, Andre B. Application of the system(IRAS). Reliability Engineering and System Safety integrated reliability analysis.1999, (64):99-107
    [65]Leader S, Friend R. A Probabilistic diagnostic and prognostic system for engine health and usage management. Aerospace Conference Proceedings.2000, (6):185-192
    [66]赵振宇,刘伊生,杨华春.故障树法引入工程项目风险管理研究.现代电力,2002,119(2):96-99
    [67]Wong D. A knowledge-based decision support system in reliability-centered maintenance of HVAC systems. Dissertation Abstracts International,2001,61(12): 6681
    [68]Yong O. Dependability and sensitivity analysis of multiphase systems using Markov chains. Dissertation Abstracts International.2002,63(1):435
    [69]李静,陈龙珠,龙小梅.旧有建筑安全隐患及故障树分析方法.工业建筑,2005,35(增):46-49
    [70]夏红履,曹斌,赵晶晶等.基于故障树的混凝土施工故障诊断专家系统.武汉理工大学学报,2004,26(12):76-82
    [71]仲景冰,李惠强,吴静.工程失败的路径及风险源因素的FTA分析方法.华中科技大学学报(城市科学版),2003,20(1):14-17
    [72]张小平,王杰,胡明亮.事故树分析在排桩基坑工程安全评价中的应用研究.岩土工程学报,2011,33(6):960-965
    [73]李惠强,吴贤国.失败学与工程预警.土木工程学报,2003,36(9):91-94
    [74]Hideo T, Fan L T, Lai F S, et al. Fault-tree analysis by fuzzy probability. Transactions on Reliability,1983,32(5):453-457
    [75]Kenarangui R. Event-tree analysis by fuzzy probability. Reliability,1991, (40):120-124
    [76]Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems,1990,32(2):145-155
    [77]Furuta H, Shiraishi N. Fuzzy importance in fault tree analysis, Fuzzy Sets and Systems,1984,(12):205-213
    [78]Sawyer J P. Fault tree analysis of mechanical systems, Microelectron and Reliability, 1994,54(4):653-667
    [79]华小洋,胡宗武,范祖尧.模糊故障树分析方法.机械强度,1998,20(1):35-40
    [80]Misra K B, Weber G G. A new method for fuzzy fault tree analysis. Microelectronics and Reliability,1989,29(2):195-216
    [81]王永传,庄钊文,郁文贤.一种基于卷积模糊算子的故障树分析方法.系统工程与电子技术,2000,22(9):76-79
    [82]Cen Y T. Fuzzy quality and analysis on fuzzy probability. Fuzzy Sets and Systems, 1996,83(2):283-290
    [83]Dunyak J, Saad I W, Wunsch D. A theory of independent fuzzy probability for system reliability. Transactions on Fuzzy Systems,1999,7(2):286-294
    [84]王永传,郁文贤,庄钊文.基于故障率为模糊数的故障树分析方法研究.系统工程与电子技术,2000,22(1):88-91
    [85]Suresh P V, Babar A K, Raj V V. Uncertainty in fault tree analysis:a fuzzy approach. Fuzzy Sets and Systems,1996,83(22):135-141
    [86]Olaru C, Wehenkel L. A complete fuzzy decision tree technique. Fuzzy Sets and Systems,2003,138(2):221-254
    [87]高明,陈文振,刘峰.基于离散化修正模糊算子的模糊故障树新析.系统工程与电子技术,2006,28(5):783-787
    [88]徐进永,罗士军,张子达.基于模糊故障树分析法的装载机液压系统故障诊断系统.吉林大学学报(工学版),2007,37(3):569-574
    [89]Huang C F. Risk analysis with information described in natural language. In: Computational Science-ICCS 2007. Berlin:Springer,2007:1016-1023
    [90]刘仁辉,张劲强,韩喜双.三角模糊数的工程项目风险识别.哈尔滨工业大学学报,2008,40(10):1617-1620
    [91]朱云斌,黄晓明,常青.模糊故障树分析方法在机场环境安全中的应用.国防科技大学学报,2009,31(6):126-131
    [92]兰守奇,张庆贺.基于模糊理论的深基坑施工期风险评估.岩土工程学报,2009,31(4):649-652
    [93]胡小静,李维科,张艳兰,罗志清.模糊故障树在矿业权核查质量控制中的应用探讨.甘肃利学学报,2010,22(4):58-61
    [94]支刚,袁希平,甘淑.模糊故障树在土地适宜性评价质量控制中的应用分析.河南科学,2011,29(1):80-83
    [95]Charniak E. Bayesian Networks without Tears. AI Magazine,1991,12(4):50-63
    [96]Nilsson N. Artificial Intelligence:a new synthesis. Morgan Kaufmanm Publishers, USA,1998
    [97]Bresniek T A, Buede D M, Tatman J A. Introduction to Bayesian Networks:A Tuorial for the 66th MORS Symposium. Naval Postgraduate School, Monterey,1998, (7): 23-25
    [98]Pearl J. Fusion propagation and structuring in belief networks. Artificial Intelligence, 1986,29:241-288
    [99]Pearl J. Probabilistic reasoning in intelligent systems:networks of plausible inference. San Mateo, California, Morgan Kaufmann Publishers,1988:117-133
    [100]Heckerman D. Bayesian Networks for data mining. Data Mining and Knowledge Discovery,1997,1(1):79-119
    [101]Suermondt H, Cooper G. Probabilistic inference in multiply connected belief networks using loop outsets. International Journal of Approximate Reasoning,1990,4(4): 283-306
    [102]Heckerman D, Nathwani B. An evaluation of the diagnostic accuracy of pathfinder. SIAM Journal on Computing,1992,25:56-74
    [103]Pradhan M, Provan G, Middleton B, et al. Knowledge engineering for large belief networks. In:Proceedings of the TenthConference on Uncertainty in Artificial Intelligence, San Francisco, Morgan Kaufmann,1994,484-490
    [104]Beinlich I A, Suermondt H J, Chavez R M, et al. The ALARM monitoring system:A case study with two probabilistic inference techniques for belief networks. In: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, London, England,1989,247-256
    [105]Zhang N L, Nielsen T D, Jensen F V. Latent variable discovery in classification models-Artificial Intelligence in Medicine,2003,30(3):283-299
    [106]Heckerman D, Mamdani A,Wellman M. Real-world applications of Bayesian networks. Communications of the ACM,1995,38(3):38-45
    [107]Russells N, Norving P. Artificial intelligence:a modern approach. Englewood Cliffs, NJ:Prentice Hall,1995
    [108]Heckermand, N. An evaluation of the diagnostic accuracy of path finder. SIAM Journal on Computing,1992,25:56-74
    [109]Xu L, Krzyzak A and Suen C Y. Methods of combining multiple classifiers and theirapplications to handwriting recognition. Transactions on Systems, Man and Cybernetics,1992,22(3):418-435
    [110]Raval A, Ghahramani Z, Wild D L. A Bayesian network model for protein fold andremote homologue recognition. Bioinformatics,2002,18(6):788-801
    [111]Rodrigues M A, Liu Y, Bottaci L, et al. Learning and diagnosis in manufacturing processes through an executable Bayesian network. Lecture Notes in Computer Science,2000, (1821):390-395
    [112]Gutta S, Wechsler H. Face recognition using hybrid classifier systems. International Conference on Neural Networks, NY,1996:1017-1022
    [113]Sillanpaa M J, Corander J. Model choice in gene mapping:what and why. Trends in Genetics,2002,18(6):301-307
    [114]Brenda M C. Belief networks for engineering applications. International Journal of echnology Management,2001,21(3-4):257-270
    [115]Sanguesa R, Burrell P. Application of Bayesian Network learning methods to waste water treatment plants. Applied Intelligence,2000,13(1):19-40
    [116]Cristina C, Abigail G, Kurt V. Using Bayesian Networks to manage uncertainty in student modeling. User Modeling and User-adapted Interaction,2002,12:371-417
    [117]Wooff D A, Goldstein M, Coolen F P A. Bayesian graphical models for software testing. Transaction On Software Engineering,2002,28(5):510-525
    [118]Getoor L, Friedman L, Koller D, et al. Learning probabilistic relational models with structural uncertainty. In:Proceedings of the International Conference on Machine Learning, Morgan Kaufman,2001,170-177
    [119]Getoor L, Friedman N, Koller D, et al. Learning probabilistic models with link structure. Journal of Machine Learning Research,2002, (3):679-707
    [120]曹冬明,张伯明,邓佑满等.一种新型故障定位方法的研究.电力系统自动化,1999,23(7):12-14
    [121]李明,邓家梅,曹家麟.基于贝叶斯网络的串行译码方法.通信技术,2001,115(4):38-40
    [122]李伟生,王宝树.实现规划识别的一种贝叶斯网络.西安电子科技大学学报(自然科学版),2002,29(6):741-744
    [123]邓勇,施文康,陈良州.基于模型诊断的贝叶斯解释及应用.上海交通大学学报,2003,37(1):5-8
    [124]王学伟,积海斌,刘雪松等.贝叶斯网络杂交学习算法及其在中医中的应用.浙江大学学报(工学版),2005,39(7):948-952
    [125]李典庆,鄢丽丽,邵东国.基于贝叶斯网络的土石坝可靠性分析.武汉大学学报(工学版),2007,40(6):24-29
    [126]陈姿羽,李伟鹏.基于属性选择的贝叶斯网络模型在临床缺失数据中的研究与应用.南方医科大学学报,2008,28(10):1903-1905
    [127]尹晓伟,钱文学,谢里阳.基于贝叶斯网络的多状态系统可靠性建模与评估.机械工程学报,2009,45(2):206-212
    [128]周建方,唐椿炎,许智勇.事件树、故障树、决策树与贝叶斯网络.河海大学学报(自然科学版),2009,37(3):351-355
    [129]陆莹,李启明,周志鹏.基于模糊贝叶斯网络的地铁运营安全风险预测.东南大学学报(自然科学版),2010,40(5):1110-1114
    [130]康玲,何小聪,熊其玲.基于贝叶斯网络理论的南水北调中线工程水源区与受水区降水丰枯遭遇风险分析.水利学报,2010,41(8):908-913
    [131]汪涛,廖彬超,马昕,方东平.基于贝叶斯网络的施工安全风险概率评估方法.土木工程学报,2010,43(增):384-390
    [132]Huang H Z, Tong X, Ming J, etl. Posbist fault tree analysis of coherent systems. Reliability Engineering and System Safety,2004,84(2):141-148
    [133]赵艳萍,贡文伟.模糊故障树分析及其应用研究.中国安全科学学报,2001,12(6): 81-87
    [134]李青,路廷金,李宁萍.三角模糊数的模糊故障树分析及其应用.中国矿业大学学报,2000,1(1):56-59
    [135]刘普寅,吴孟达.模糊理论及其应用.北京:国防科技大学出版社,1998
    [136]杨伦标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社,1996
    [137]Sawyer J P. Fault Tree Analysis of Mechanical Systems, Microelectron and Reliability, 1994,54(4):653-667
    [138]Misra K B, Weber G G A New Method for Fuzzy Fault Tree Analysis. Microelectron and Reliability,1989,29(2):195-216
    [139]Kenarangui R. Event-tree Analysis By Fuzzy Probability, Trans. Reliability,1991, (40):120-124
    [140]Tanaka H, Fan L T, Lai F S,etl. Fault-tree analysis by fuzzy probability. Transaction on Reliability,1983,32(5):453-457
    [141]黄宏伟.隧道及地下工程建设中的风险管理研究进展.地下空间与工程学报,2006,2(1):13-20
    [142]何淑静,周伟国,严铭卿.上海城市燃气输配管网失效三角模糊数故障树分析法.同济大学学报(自然科学版),2005,33(4):507-511
    [143]李兵,朱梅林,陈晓伟等.三角模糊数故障树分析法在内燃机可靠性中的应用研究.内燃机学报,1999,17(1):63-66
    [144]蒋泽军.模糊数学教程.北京:国防工业出版社,2004
    [145]胡宝清.模糊理论基础.武汉:武汉大学出版社,2004
    [146]李青,陆廷金.模糊重要度分析方法的研究.模糊系统与数学,2000,14(1):89-93
    [147]郑俊杰,林池峰,赵冬安等.基于模糊故障树的盾构隧道施工成本风险评估.岩土工程学报,2011,33(4):501-508
    [148]吴贤国,王锋.R=P×C法评价水下盾构隧道施工风险.华中科技大学学报(城市科学版),2005,22(4):4446
    [149]崔玖江.盾构隧道施工风险与规避对策.隧道建设,2009,29(4):377-396
    [150]陈 龙,黄宏伟.软土盾构隧道施工期风险损失分析.地下空间与工程学报,2006,2(1):74-77
    [151]黄宏伟,闫玉茹,胡群芳.复合式土压平衡盾构刀盘失效风险分析,岩土力学,2009,30(8):2324-2330
    [152]田华军.武汉长江盾构隧道管片上浮控制技术.隧道建设,2009,29(6):364-366
    [153]郭磊.复合式盾构常见施工故障排除.现代隧道技术,2006,(增):436-439
    [154]梁仲元,陈俊生,莫海鸿等.广州地铁盾构施工阶段管片开裂原因初探.广东土木与建筑,2004(3):23-25
    [155]Zhao J, Gong Q M, Einstein Z. Tunnelling through a frequently changing and mixed ground:a case history in Singapore. Tunnelling and Underground Space Technology, 2007,22:388-400
    [156]Nilsen B, Dahl F, Holzhauser J, et al. Abrasivity of soils in TBM tunneling. Tunnels & Tunnelling International,2006,(3):36-38
    [157]Richard E B, Jerry B F, Nozer D. Reliability and fault tree analysis. Philadelphia: Society for Industrial and Applied Mathematics,1975
    [158]史定华,王松瑞.故障树分析技术方法和理论.北京:北京师范大学出版社,1993
    [159]王永传,郁文贤,庄钊文.一种故障树模糊重要度分析的新方法.国防科技大学学报,1999,21(3):63-66
    [160]周红波.基于贝叶斯网络的深基坑风险模糊综合评估方法.上海交通大学学报,2009,43(9):1473-1478
    [161]Luo Z J, Zhang Y Y, Wu Y X. Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. Journal of Hydrodynamics.2008,20(5):596-602
    [162]朱玉明,张永,沈瑞鹤等.地铁车站深基坑施工风险分析及控制.建筑技术,2011,42(1):54-57
    [163]陆莹,李启明,周志鹏.基于模糊贝叶斯网络的地铁运营安全风险预测.东南 大学学报(自然科学版),2010,40(5):1110-1113
    [164]张小平,王杰,胡明亮.事故树分析在排桩基坑工程安全评价中的应用研究.岩土工程学报,2011,33(6):960-965
    [165]汪涛,廖彬超,马听等.基于贝叶斯网络的施工安全风险概率评估方法.土木工程学报,2010,(43):384-391
    [166]杨虹,汪厚祥,支冬栋等.基于贝叶斯网络的故障树在机械设备中的应用.微计算机信息,2010,26(2-1):115-117
    [167]Zhou N Q, Vermeer P A, et al. Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Engineering Geology, 2010,114(3-4):251-260
    [168]Darwiche A. Modeling and reasoning with Bayesian networks. London:Cambridge University Press,2009
    [169]Chen F, Wang X F, Rao Y M. Learning Bayesian Networks using genetic algorithm. Journal of Systems Engineering and Electronics,2007,18(1):142-157
    [170]丁烈云,李炜明,吴贤国等.地铁循礼门车站深基坑施工监测分析.铁道工程学报,2010,144(9):74-81
    [171]陶春艳.武汉地铁循礼门车站基坑施工稳定性分析.科技资讯,2011,(11):107-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700