基于声传感器阵列的油气管道内检测器地面标记跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输已经成为与公路、铁路、航空和水运等并驾齐驱的五大运输行业之一,在国民经济和国防建设方面发挥着越来越大的作用。但随着管龄增长以及施工缺陷、人工破坏和腐蚀等原因,管道泄漏事故频频发生,不仅造成重大的经济损失,还严重污染环境。管道在线内检测器(Smart Pig)是管道腐蚀检测最广泛的方法。地面标记系统是整个管道内检测系统的管外定位部分,是消除检测器里程累积误差、精确定位管壁缺陷的关键设备。它可以将管道缺陷定位误差减少到几米甚至一米以内,为管道维修提供准确科学的数据,避免了盲目开挖。内检测器跟踪技术是内检测器在管道中出现意外被卡住之后,确定管道内检测器在管道内位置的技术。
     由于管道金属介质的屏蔽作用,一般的电磁波技术在应用于地面标记跟踪时受到了很大的限制。而传统的基于磁通量的地面标记技术穿透的距离有限,已经不能满足现在管道越埋越深,管壁越来越厚所带来的新的需求。
     本文提出了一种新的基于声传感器阵列的地面标记跟踪技术。通过声传感器阵列测量内检测器与管壁的摩擦和碰撞声音来进行标记。提出了基于内检测器自发声的跟踪技术,对被卡住的内检测器在管道中的位置进行定位。本文主要进行了以下几方面的研究工作:
     1、提出了利用内检测器与管壁的摩擦声和焊缝冲击声进行标记的方法。焊缝冲击声在土壤中传播距离较远,这样地面标记器能够标记埋地更深的管道。
     2、提出了在小波域内进行独立分量分析的声音信号增强方法,在位置未知的情况下,能够对强环境噪声下内检测器发出的声音信号进行增强。
     3、提出了基于声源方位角的内检测器信号判定方法。使用基于小波包熵的信号特征提取方法、基于经验模态分解的信号特征提取方法和AR模型参数法对采集到的声音信号进行特征提取,使用基于支持向量机的人工神经网络方法对信号进行模式识别。
     4、使用了基于信号到达时间差(TDOA)的定位方法对内检测器进行定位。提出了利用小波分解和EMD分解的方法来提高时延估计的精度。
     5、提出了基于内检测器自发声的跟踪技术。设计了内检测器自发声装置发出特定频率的声音信号,利用声传感器阵列检测该声音信号相位差来对内检测器定位。并通过实验验证了理论的可行性。
     6、通过实地试验来验证了本文所提方法的有效性。设计了基于声阵列的地面标记器硬件系统结构,为系统实用化做了铺垫。
Pipeline transportation has become one of the five chief transporting industries while the other four are highway carriage, railage, air-ferry and water carriage,and is playing a more and more important part in national economy and national defence. However, along with the age of pipe growth and construction blemish, the artificial reasons such as breakage and corrosion etc., pipeline leakage accident often takes place. The leakage accidents not only result in huge economy loss, but also serious environment pollution. The Pipeline Internal Detector (Smart Pig) is the most widely used equipment in detecting pipe corrosion.
     The above ground marker system (AGM), which is designed to locate the corrosion precisely by eliminating the cumulate error of distance the PIG passing through and avoid blindness digging, plays a pivotal role among the whole system. The tracking technology of inner inspector is used to locate the inspector in pipe from ground, when the inspector was locked in pipe.
     Because the shield functions of metal media of pipe, the general electromagnetic wave can hardly penetrate the pipe wall. On the other hand, the penetrable distance of traditional magnetic flux AGM was limited, and can't satisfy the new require of more deep and thicker pipeline wall.
     A new kind of above ground benchmarking and tracking technology of pipeline internal inspection instrument based on geophone array was proposed in this dissertation. The benchmarking was carried on by the geophone array detecting low energy voice on the pipewall. The voice was generated when the cups or discs of a pig encounter internal weld beads between the pipes and fittings ,or when the pig rubbed against the pipe wall surface. When pipeline internal inspection instrument was locked in pipeline, it was tracked by the geophone array to locate the voice which was sent by inspector.
     The dissertation mainly covers the following aspects:
     1. A above ground benchmarking technology based on geophone array according to crash voice of inspector and the weld seams of pipe was proposed. The above ground marker could benchmark deeper pipe because the crash voice could spread more distance in soil.
     2. A voice signal enhancement method of an independent component analyze in the wavelet domain was proposed , which in case of an unknown location information, was able to enhance the voice of internal detector in noise case environment.
     3. A sound signal determinant method based on the internal sound source azimuth detector was proposed. Wavelet packet entropy, empirical mode decomposition and the AR model parameters was used in the signals feature extraction method, and the artificial neural network based on support vector machine was used to identify the sound signals.
     4. The time difference of arrival based on signals (TDOA) location method was used. In order to improve the accuracy of delay estimation, the wavelet decomposition and the EMD method was proposed.
     5. An internal detector tracking method based on measurement of phase difference of fixed-frequency sound signal waveform was proposed, which was verified through experiments.
     6. The on-the-spot experiment was carried on to vertify the proposed theory. The hardware system architecture of above ground marker was designed, which was prepared for the practical usage.
引文
[1]臧铁军,臧天红,我国管道运输的发展概况,管道技术与设备,1998,(4):1~4
    [2]张树奎,金永兴,大力发展管道运输提高持续发展能力,南通航运职业技术学院学报,2005,4(3):66~68
    [3]王疆戈,世界油气管道现状,中国石化,2004,(7):18~19
    [4]梁翕章,管道建设基本规律,油气储运,2003,22(12):1~9
    [5]郭敏智,杨嘉瑜,当代管道输油技术的现状与发展趋势,中国石化,2004,(7):16~20
    [6]朱喜龙,我国油气管道发展的探讨,炼油与化工,2005,16(2):4~9
    [7]赵荣飚,石油管道工业发展战略前景研究,管道技术与设备,1994,(2):1~2
    [8]梅云新,中国管道运输的发展与建设,交通运输系统工程与信息,2005,5(2):108~111,115
    [9]中国统计年鉴,我国输气管道长度和运输量,能源政策研究,2005,(6):49
    [10]高福庆,管道内检测技术应用与发展,石油规划设计,2000,11(1):40~41
    [11]余浩然,吴斌,漏磁通法油气管道在役检测技术,实用测试技术,1997,(5):2~6
    [12]王为民,国内外石油管道输送技术发展综述,管道技术与设备,1997,(4):4~8
    [13] Song X. C., Wu X. J., Kang Y.H., An inspection robot for boiler tube using magnetic flux leakage and ultrasonic methods, Insight, 2004, 46(5): 275~277
    [14]刘海峰,胡剑,杨俊,国内油气长输管道检测技术的现状与发展趋势,天然气工业,2004,24(11):147~151
    [15]王立宁,原油输送管道泄漏理论及其检测系统的研究:[博士学位论文],天津:天津大学,1998
    [16]沈功田,井为科,左延田,埋地管道无损检测技术,无损检测,2006,28(3):137~141
    [17]金虹,漏磁检测技术在我国管道腐蚀检测上的应用和发展,管道技术与设备,2003,(1):43~46
    [18]高福庆,管道内检测技术应用与发展,石油规划设计,2000,11(1):40~41
    [19]高福庆,张世华,刘景美,管道腐蚀监测标准与管道安全工程,管道技术与设备,1999,(3):39~40
    [20]张复兴,新国标,CB/T126O6《钢管漏磁探伤方法》的制定说明,无损检测,2000,22(2):78~79
    [21] Song X C, Wu X J, Kang Y H, An inspection robot for boiler tube using magnetic flux leakage and ultrasonic methods, Insight, 2004, 46(5): 275~277
    [22]金涛,殉沛文,小波分析对漏磁检测噪声消除实验的分析,传感技术学报,2003,16(3):260~262
    [23]靳世久,王立宁,李健等,原油管道漏点定位技术,石油学报,1998,19(3):93~97
    [24]刘镇清,刘晓,超声无损检测的若干新进展,无损检测,2000,22(9):403~405
    [25]许守平译,张广纯校,ASTMEs6l一96利用电磁超声换能器(EMAT)技术进行超声检查的标准方法,无损探伤,2003,27(4):20~28
    [26]宋志东,靳世久,李一博等,管道内检测器里程轮信号优选算法的设计与实现,管道技术与设备,2006,(3):12~13
    [27]马凤铭,杨理践,高速漏磁检测中的速度效应及信号补偿,无损探伤,2005,29(3):12~15
    [28]杨理践,葛岷,高松巍,漏磁法管道在线检测计算机系统,沈阳工业大学学报,1999,21(3):227~229
    [29]李莺莺,油气管道在线内检测技术若干关键问题研究:[博士学位论文],天津:天津大学,2006
    [30]韩升华,李一博,靳世久,新一代管道内检测地面标记系统设计,现代科学仪器,2009,(02):34~6.
    [31] Albert Matthew E, Connell Jonathan H. Visual rotation detection and estimation for mobile robot navigation. 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, United States, 2004: 4247~4252
    [32] Kondo Michio, Ohnishi Kouhei. Constructing a platform of robust position estimation for mobile robot by ODR. 8th IEEE International Workshop on Advanced Motion Control.Kawasaki, Japan, 2004: 263~268
    [33] Ushimi Nobuhiro, Yamamoto Motoji, Mohri Akira. Two wheels caster typeodometer for omni-directional vehicles. IEEE International Conference on Robotics and Automation.Taipei,Taiwan, 2003: 497~502.
    [34] Meng Qinghao, Bischoff Rainer. Odometry based pose determination and errors measurement for a mobile robot with two steerable drive wheels. Journal of Intelligent and Robotic Systems:Theory and Applications. 2005, 41(4): 263~282
    [35] Biegelbauer,Georg. The inverse approach of FlexPaint:Automation generation of robot painting motions for unknown parts. IEEE Robotics and Automation Magazine. 2005, 12(3): 24~34
    [36] Vradis George, Schempf Hagen. Robotic system inspects live gas mains. Gas Industries. 2004, 48(8): 16~18
    [37] Anon. Measuring bending stress in buried metal gas pipes. Journal of Failure Analysis and Prevention. 2004, 4(4): 6~7
    [38] Roh Se-Gon, Choi Hyouk Ryeol. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Transactions on Robotics. 2005, 21(1): 1~17
    [39] Mark E.Bullock, Duncan, Okla, Magnetic Detector Appapatus, United States Patent, US 4638278, Jan. 20, 1987
    [40] Robert C.Brown,Ratho;John D.McIntyre,Musselburgh, Pipeline Pig Tracking, United States Patent, US 4590799, May. 27, 1986
    [41] Andy McAra, Pig Tracking a Review Of Existing Technology, Pigging Products and Services Association, 2002
    [42] Gordon Blair, Aberdeen, TDW Smarttrack? System Revolutionizes Pig Tracking by using two-way, through-wall communication between the Transponder and Receiver, TDW Offshore Aberdeen, UK, 2003年
    [43] Rozaidah Saat, Shihab A. Hameed, A Framework for Real Time Pipeline Pigging Tracking and Monitoring System, June 17-19, 2007
    [44]杨理践,葛岷,高松巍,漏磁法管道在线检测计算机系统,沈阳工业大学学报,1999,21(3):227~229
    [45]李军远,李盛凤,张晓华,邓宗全,基于N次K-NN分类算法的管道机器人定位技术研究,机器人,2007,29(1):72~77
    [46] A. C. Bruno, R. Schifini, New magnetic techniques for inspection and metal-loss assessment of oil pipelines, Journal of Magnetism and Magnetic Materials, 2001. 226~230
    [47] Gwan Soo Park, Eun Sik Park, Improvement of the sensor system in magnetic flux leakage-type nondestructive testing (NDT),Magnetics, IEEE Transactions, 2002, 38(2): 1277~1280
    [48] Stanley, R. K . Imaging of magnetic flux leakage signals for high quality assessment of oil field tubular products, NDT&E International, 1997, 30(1): 37
    [49] Laursen.P., Atherton,D.L., Development of small diameter in-line MFL inspection tools:a technical challenge, NDT&E International, 1997, 30 (5): 332~336
    [50] David W. Potter, Frederick V. Topping. Pipeline Signalling Systems and Techniques[P], United States Patent: US 3,878,453 Apr. 15, 1975.
    [51]吴刚,高清晰管道漏磁通检测系统地面标记技术研究:[硕士学位论文],天津大学, 2005
    [52]张元凯,管道漏磁通检测地面标记系统研制:[硕士学位论文],天津大学, 2007.
    [53]韩升华,新一代漏磁通内检测器地面标记系统设计:[硕士学位论文],天津大学,2009
    [54]李莺莺,漏磁法管道内检测的有限元分析及其实验研究:[硕士学位论文],天津;天津大学,2004
    [55]吴刚,李一博,胡晓莉,靳世久,磁阻传感器在“管道机器人”的地面标记器中的应用,仪器仪表学报,2004,(S2):129~35
    [56]李军远,基于超低频电磁波的基于超低频电磁波的管道机器人示踪定位技术研究:[博士学位论文],哈尔滨:哈尔滨工业大学, 2006.
    [57]孙小京,管道检测极低频定位技术研究:[硕士学位论文],沈阳工业大学, 2008.
    [58]李孟杰,海底管道内爬行及其轨迹测定技术研究:[硕士学位论文],中国海洋大学, 2005.
    [59]吴知非,吴敏生,一种可用于管道爬行器的静磁场型定位系统,测控技术,2001,20(4):1~5
    [60] Jim W. K. Smith, Burn Ross Hay. Magnetic Flux Leakage Inspection Tool for Pipelines, United States Patent: US 6,023,986 Feb. 15,2000.
    [61] Ziwen W. Liu, Alan P. Dean, Precision Positioning AGM System, United States Patent, US 6,816,110 B1, Nov. 9, 2004
    [62] Donald W. Anderson, Charles W. Gregory. Fixing A Geographical Reference of A Vehicle Traveling Through a Pipeline [P], United States Patent: US 4,857,851 Aug. 15, 1989.
    [63] French, Hartley A, Richardson, Anthony C. Apparatus for Observing The Passage of a Pig in A Pipeline, United States Patent: US 4,714,888 Dec. 22, 1987.
    [64] Walter L.Weeks, J.P. Steiner, Above Ground Detection and Interpretation of Transient Signals On Underground Power Distribution Systems, IEEE Transactions on Power Delivery, 1995, 10(1), 69~77
    [65] V. A. Kanaikin, Yu. A. Kalyuzhny, G. S. Korzunin, V. E. Loskutov ,A. F. Matvienko, and B. V. Patramansky. A Marker System of Equipment for Nondestructive Testing of Gas Main Pipelines. Russian Journal of Nondestructive Testing. 2008, 8(44). 548-551.
    [66] Liebenberg M, Magalhaes C C, Bueno D E G P, On the Design of an Operator Training Simulator in a South African Pipeline Network, Calgary, AB, Canada: American Society of Mechanical Engineers, 2009, 699-704.
    [67] Mabe J, Murphy K, Williams Get al., Commissioning a Real-Time Leak Detection System On a Large Scale Crude Oil Pipeline During Start Up, Calgary, AB, Canada: American Society of Mechanical Engineers, 2007, 893-902.
    [68] Miller J E, Perrin R L, Anderson J Det al., Tracking System for Inline Tool Or Pig in Pipe Has Display Device Which Receives Input Indicating Control Output and Displays Information Indicating Detection of Inline Tool and Geographical Location of Detection and Communication Device, US2009013806-A1; CA2636973-A1.
    [69] Brown R C, Innovation in Pipeline Pig Tracking Techniques, Gas engineering and management, 1986, 26 (4): 119~26.
    [70]张永江,陈崇祺,周春,管道智能内检测地面标记系统研究,化工自动化及仪表,2008,(02).
    [71] Ellul I.R., Advances in pipeline leak detection techniques, Pipes and Pipelines International, 1989, 34(3): 7~12
    [72] David U.Mauldin, Greenville, S.C, Indicator For Conduits , United States Patent, US 2371251, August. 3, 1943
    [73]孙东昌,李军远,张晓华,基于低频电磁波的管道机器人定位技术,控制工程,2007,14(S0):159~161
    [74] Von Olearius D S, Pipeline Assurance Using Radioisotope Applications: From Installation and Inspection to Maintenance, Global Pipeline Monthly, 2009, 5 (5) : 1-10.
    [75] Mcgillivray B, Kristiansen J W, Halliburton Using Acoustic Telemetry to Track Pigs in Flowlines, Pipeline and Gas Journal, 2003, 230 (3) : 62-5.
    [76] B. Culshaw, J. Dakin,光纤传感器(李少慧译),武汉:华中理工大学出版社,1997
    [77] A.J.Rogers, Distributed optical-fiber sensor, J.Phys.D: Appl. Phys,1986(19): 2237~2255
    [78]王延年,油气管线泄漏监测分布式光纤传感器的研究,西安交通大学学报,2003(9):933~936
    [79]黄尚廉,梁大巍,分布式光纤温度传感器系统的研究,仪器仪表学报,1991,12(4):359~364
    [80]周琰,靳世久等,分布式光纤管道泄漏检测和定位技术,石油学报,2006,27(2):121~124
    [81]曲志刚,分布式光纤油气长输管道泄漏检测及预警技术研究:[博士学位论文],天津大学,2007
    [82] Burton Ver Nooy,Tulsa,Okla. ,Position Indicator For Pipe Scraper, United States Patent, US 2782407, dec. 22, 1953
    [83] Burton Ver Nooy,Tulsa,Okla.,Passage Indicator For Pipeline Scarapers And The Like, United States Patent, US 3109410, Dec. 24, 1959
    [84] Strong A P, Sanderson N, Lees Get al., An Integrated System for Pipeline Condition Monitoring and Pig Tracking, 2009, 5 (2).
    [85] Kershaw C, Pig Tracking and Location, Pipes and Pipelines International, 1986, 31 (3): 13~6.
    [86] Riddell R K, Subsea Pipeline Pig Tracking, Underwater Technology, 1986, 12 (4): 28~32.
    [87] Hettrich U, Ultrasonic Flowmeters Offer Oil Line Leak-Detection Potential, Pipe Line and Gas Industry, 1995, 78 (4): 4p.
    [88] Larsen M, Hustvedt E, Hedne Pet al., Petra: A Novel Computer Code for Simulation of Slug Flow, Proceedings - SPE Annual Technical Conference and Exhibition, 1997, pp: 965~76.
    [89] Erickson Dale, Twaite David, Pipeline integrity monitoring system for leak detection, control, and optimization of wet gas pipelines, Proceedings - SPE Annual Technical Conference and Exhibition, Production Operations and Engineering/General, 1996, Pi: 335~347
    [90] Xu X, Gong J, Pigging Simulation for Horizontal Gas-Condensate Pipelines with Low-Liquid Loading, J Petrol Sci Eng, 2005, 48 (3-4): 272-80.
    [91]刘刚,柯映林,管道机器人全程定位理论和方法研究—基于光纤光栅空间曲率传感器.浙江大学学报(工学版),2004,38(6):687~690.
    [92]尚文,马旭东,戴先中,融合多传感器信息的移动机器人自定位方法,东南大学学报(自然科学版),2004,34(6):784~788
    [93] Jaejong Yu, Jang Gyu Lee, Chan Gook Park, Hyung Seok Han. An off-line navigation of a geometry PIG using a modified nonlinear fixed-interval smoothing filter. Control Engineering Practice.2005,13(11):1403-1411.
    [94] Jeffrey S. Rosenberg. Apparatus for indicating the passage of a pig moving within an underground pipeline, United States Patent: US 5,417,112 May. 23, 1995.
    [95] Shamus McDONNELL. Correction of In-line Inspection Run Data Logs Using Acoustical Data[P], United States Patent: US 2008/0312850 A1, Dec. 18, 2008.
    [96] Casey E, Satellites Track Pigs in Pipeline, Pipeline and Gas Journal, 2004, 231 (3): 96.
    [97]孙洁娣,靳世久,孙健,基于多地震波传感器数据融合的管道安全监测预警系统,石油学报, 2009, (03).
    [98]韩向阳,基于声发射的地震、山体滑坡监测诊断系统的应用研究:[硕士学位论文],武汉科技大学, 2007.
    [99]汪向阳,基于地震波检测的管道安全预警系统:[硕士学位论文],天津大学,2008.
    [100] Kaltenbacher M., Lerch R., Landes H., et al., Computer optimization of electromagnetic acoustic transducers, IEEE Ultrasonics Symposium, 1998(2): 1029~1034
    [101] Dai Xiaowei, Electromagnetic acoustic transducers: physical principles and finite element modeling, Ph.D Dissertation, Worcester Polytechnic Institue, 1991
    [102] Hancock Jimmy W, Maclauchlan Daniel T, Murphy Ralph D, Electromagnetic acoustic transducer inspection of cracks in boiler tubes, United States Patent: US6282964, 2001
    [103]靳世久,王立宁,李健等,原油管道漏点定位技术,石油学报,1998,19(3):93~97
    [104]张丽艳,复杂环境下麦克风阵列语音增强方法研究:[博士学位论文],大连理工大学, 2009.
    [105] Sun M, Ho K C, Energy-Based Source Localization with Non-Ideal Energy Decay Factor, Las Vegas, NV, United states: Institute of Electrical and Electronics Engineers Inc., 2008, 2561-4.
    [106]张丽艳,殷福亮,一种改进的奇异值分解语音增强方法,电子与信息学报, 2008, (02).
    [107] Peled Y, Rafaely B, Study of Speech Intelligibility in Noisy Enclosures Using Optimal Spherical Beamforming, Piscataway, NJ, USA: IEEE, 2008, 285-9.
    [108] Parthy A, Jin C, Van Schaik A, Measured and Theoretical Performance Comparison of a Co-Centred Rigid and Open Spherical Microphone Array, Shanghai, China: Inst. of Elec. and Elec. Eng. Computer Society, 2008, 1289-94.
    [109] Mohammed J R, Multi-Microphone Noise Reduction Technique Based On Upsampling and Iir-Rls Filter, Piscataway, NJ, USA: IEEE, 2008, 808-11.
    [110] Markovich S, Gannot S, Cohen I, A Comparison Between Alternative Beamforming Strategies for Interference Cancellation in Noisy and Reverberant Environment, Piscataway, NJ, USA: IEEE, 2008, 203-7.
    [111] Rhee S K,Tsang P H S,W ang Y S.Friction induced noise and vibration of disc brakes.Wear,1989(133):39~45
    [112]韩秋实,许宝杰,雷纪刚,刹车装置摩擦噪声的动力学模型及理论分析,北京机械工业学院学报,1999,14(2):1~5
    [113]韩秋实.汽车刹车装置摩擦噪声的试验研究.声学技术,1998,17(3):117~119.
    [114] Yokoi M,Nakai M .A fundamental study on frictional noise:1st report;The generating mechanism of rubbing noise and squeal noise.JSME,1981(24) 194~199
    [115]王彬主编.振动分析及应用.北京:海潮出版社,l992.
    [116]穆林范,惠珍宁,显宗,黄土层内的声波传播衰减,应用声学, 1995, (01) : 19-22.
    [117] Londhe N, Rao M D, Blough J R, Application of the Iso 13472-1 in Situ Technique for Measuring the Acoustic Absorption Coefficient of Grass and Artificial Turf Surfaces, Appl Acoust, 2009, 70 (1) : 129-41.
    [118] Oelze M L, O'Brien Jr W D, Darmody R G, Measurement of Attenuation and Speed of Sound in Soils, Soil Sci Soc Am J, 2002, 66 (3) : 788-96.
    [119] D. M. Mccann P D J A, Comparison of Seismic and Ground Probing Radar Methods in Geological Surveying, IEE Proc. F, Radar Signal Process, 1988, 135: 380-90.
    [120] Do H, Silverman H F, Yu Y, A Real-Time Srp-Phat Source Location Implementation Using Stochastic Region Contraction(Src) On a Large-Aperture Microphone Array, 2007, 1-121.
    [121] Kwak, B C P D, Sound Source Localization Based On Audio-Visual Information for Intelligent Service Robots, 2007, 364-7.
    [122]康玉梅,朱万成,白泉,基于小波变换时频能量分析技术的岩石声发射信号时延估计,岩石力学与工程学报, 2010, (05).
    [123]周浩洋,基于麦克风阵列的声源定位方法研究:[硕士学位论文],大连理工大学, 2002.
    [124]张莉,基于传声器阵列的声源定位方法研究:[硕士学位论文],电子科技大学, 2007.
    [125]王冬霞,麦克风阵列语音增强的若干方法研究:[博士学位论文],大连理工大学, 2007.
    [126]金蕾,室内被动声源定位算法的研究:[硕士学位论文],华东师范大学, 2007.
    [127]居太亮,基于麦克风阵列的声源定位算法研究:[博士学位论文],电子科技大学, 2006.
    [128] Ke P, Jiancheng H, Yaxin Z, Adaptive Close-Talking Beamforming with a Novel Differential Array, Piscataway, NJ, USA: IEEE, 2008, 1479-82.
    [129] Agmon M, Rafaely B, Beamforming for a Spherical-Aperture Microphone, Piscataway, NJ, USA: IEEE, 2008, 227-30.
    [130]林静然,基于麦克风阵列的语音增强算法研究:[博士学位论文],电子科技大学, 2007.
    [131]马晓红,传声器阵列语音增强中关键技术的研究:[博士学位论文],大连理工大学, 2006.
    [132]张奕,复杂声学环境下的麦克风阵列语音定位研究:[博士学位论文],大连理工大学, 2009.
    [133]杨祥清,汪增福,基于麦克风阵列的三维声源定位算法及其实现,声学技术, 2008, (02) : 260-5.
    [134]栗晓丽,基于GSC结构的麦克风阵列语音增强算法研究:[硕士学位论文],西安电子科技大学, 2008.
    [135] Doclo S, Spriet A, Wouters Jet al., Frequency-Domain Criterion for the Speech Distortion Weighted Multichannel Wiener Filter for Robust Noise Reduction, Speech Commun, 2007, 49 (7-8) : 636-56.
    [136] Reuven G, Gannot S, Cohen I, Dual-Source Transfer-Function Generalized Sidelobe Canceller , Audio, Speech, and Language Processing, IEEE Transactions on, 2008, 16 (4) : 711-27.
    [137] Li J, Akagi M, A Hybrid Microphone Array Post-Filter in a Diffuse Noise Field, Appl Acoust, 2008, 69 (6) :546-57.
    [138] Kumatani K, Mcdonough J, Klakow Det al., Adaptive Beamforming with a Maximum Negentropy Criterion, Trento, Italy: Inst. of Elec. and Elec. Eng. Computer Society, 2008, 180-3.
    [139]张念,刘天佑,李杰,Fastica算法及其在地震信号去噪中的应用,计算机应用研究,2009,26 (04):1432-4.
    [140]魏巍,盲信号处理技术在地震数据处理中的应用研究:[博士学位论文],中国地质大学,2009.
    [141] Reju V G, Koh S N, Soon I Y, Partial Separation Method for Solving Permutation Problem in Frequency Domain Blind Source Separation of Speech Signals, Neurocomputing, 2008, 71 (10-12) : 2098-112.
    [142] Rennie S J, Aarabi P, Frey B J, Variational Probabilistic Speech Separation Using Microphone Arrays, IEEE Transactions on Audio, Speech and Language Processing, 2007, 15 (1) : 135-49.
    [143] Park H, Shekhar Dhir C, Oh Set al., A Filter Bank Approach to Independent Component Analysis for Convolved Mixtures, Neurocomputing, 2006, 69 (16-18) : 2065-77.
    [144] Robledo-Arnuncio E, Juang B, Blind Source Separation of Acoustic Mixtures with Distributed Microphones, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, April 15, 2007 - April 20, 2007, Honolulu, HI, United states: Institute of Electrical and Electronics Engineers Inc., 2007, I949-52.
    [145] Kim M, Choi S, Ica-Based Clustering for Resolving Permutation Ambiguity in Frequency-Domain Convolutive Source Separation, 18th International Conference on Pattern Recognition, ICPR 2006, August 20, 2006 - August 24, 2006, Hong Kong, China: Institute of Electrical and Electronics Engineers Inc., 2006, 950-4.
    [146] Makino S, Blind Source Separation of Convolutive Mixtures, Independent Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks IV, April 17, 2006 - April 21, 2006, Kissimmee, FL, United states: SPIE, 2006, SPIE.
    [147]陶小亮,基于地震动的目标识别和人员定位算法的研究与实现:[硕士学位论文],南京理工大学,2007
    [148]周怀来,基于小波变换的地震信号去噪方法研究与应用:[硕士学位论文],成都理工大学, 2006.
    [149]宋胜利,变压器局放信号传播特性及小波包熵阈值法去干扰的研究:[硕士学位论文],重庆大学, 2002.
    [150]李建勋,柯熙政,郭华,小波方差与小波熵在信号特征提取中的应用,西安理工大学学报, 2007, 23 (4) : 365-9.
    [151]王尚九,多维AR_P_模型的估计及预测方法:[硕士学位论文],西南交通大学, 2009.
    [152]邹清,基于AR模型的脑电信号特征提取与识别:[硕士学位论文],中南大学, 2008.
    [153]曹冲锋,基于Emd的机械振动分析与诊断方法研究:[硕士学位论文],浙江大学, 2009.
    [154] N.E Huang et al ,The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceeding of Royal Society London., A, 1998, Vol.454: 903-995,.
    [155]余永增,基于小波和Emd的滚动轴承非接触声学诊断方法研究:[硕士学位论文],大庆石油学院, 2009.
    [156]杨宇,基于Emd和支持向量机的旋转机械故障诊断方法研究:[硕士学位论文],湖南大学, 2005.
    [157]李方方,赵英凯,颜昕,基于Matlab的最小二乘支持向量机的工具箱及其应用,计算机应用, 2006, 26 (12) : 358-60.
    [158]杨宇,基于Emd和支持向量机的旋转机械故障诊断方法研究:[硕士学位论文],湖南大学, 2005.
    [159]谢仕强,基于地震动传感器的人员车辆探测系统:[博士学位论文],南京理工大学,2006.
    [160] Falkofske D, Krantz B, Shimazu Ret al., Microsensors for Border Patrol Applications, Unattended Ground Sensor Technologies and Applications VII, March 28, 2005 - April 1, 2005, Orlando, FL, United states: SPIE, 2005, 453-64.
    [161] Pakhomov A, Sicignano A, Sandy Met al., Current Seismic Sensor Issues for Defense and Security Applications, Sensors, and Command, Control, Communications, and Intelligence (C31) Technologies for Homeland Security and Homeland Defense III, April 12, 2004 - April 16, 2004, Orlando, FL, United states: SPIE, 2004, 576-81.
    [162]孙洁娣,基于多地震动传感器的管道安全监测预警关键技术的研究:[博士学位论文],天津:天津大学,2009
    [163] Asgaria S, Stafsudd J Z, Chen C Eet al., Collection and Processing of Acoustic and Seismic Array Data for Source Localizaton, Advanced Signal Processing Algorithms, Architectures, and Implementations XV, August 2, 2005 - August 4, 2005, San Diego, CA, United states: SPIE, 2005, 1-12.
    [164]龚国良,一种利用固定相移测量同频正弦信号相位差的方法,,仪器仪表学报,2010,31 (4): 873-877.
    [165]赵民召,超短基线定位系统显控及算法实现技术研究:[硕士学位论文],哈尔滨工程大学,2008.
    [166]金鑫,超短基线定位系统检测技术研究:[硕士学位论文],哈尔滨工程大学,2008.
    [167]瑞宁,超短基线定位精度的改进方法研究:[硕士学位论文],中国海洋大学,2007.
    [168]喻敏,长程超短基线定位系统研制:[博士学位论文],哈尔滨工程大学,2006.
    [169]张晓亮,长程超短基线定位系统信号处理算法仿真及软件设计:[硕士学位论文],,哈尔滨工程大学, 2004.
    [170]胡伟,季晓衡,单片机C程序设计及应用实例,北京:人民邮电出版社,2003.15~243
    [171]林凌,李刚,丁茹等,新型单片机接口器件与技术,西安:西安电子科技大学出版社,2005.219~264
    [172]胡大可,MSP430系列Flash型超低功耗16位单片机,北京:北京航空航天大学出版社,2001.5~9
    [173]张国雄,金篆芷,测控电路,北京:机械工业出版社,2000.24~78
    [174] (美)McDonough,R.N.,Whalen,A.D.著,王德石等译,噪声中的信号检测,北京:电子工业出版社,2006.374~419
    [175]张宇,靳世久,陈世利等,GPS通信技术在管道防腐层缺陷检测中的应用,电子测量技术,2007,30(5):165~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700